CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Trial
2.3. CO2 Measurements
2.4. Temperature and Precipitation
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Soil Moisture
3.3. CO2 Emissions
4. Discussion
5. Conclusions
- A lower intensity of soil tillage decreased the CO2 emissions under the reduced and no-tillage practices in comparison with conventional tillage on average by 45 and 51%, respectively.
- The current weather conditions, mainly temperature and precipitation, played an important role in CO2 emissions during the study period. The hot and dry weather in 2018 decreased overall CO2 emissions, which even under conventional tillage did not exceed 6 μmol CO2 m−2 s−1.
- The atypical weather in the year 2021, with a colder August by about 2 °C in comparison with the long-term average, led to delays in the soil operations, lower CO2 emissions at the end of August, and an increase in emissions in the warmer September 2021.
- These conditions will place higher demands on agronomists and their decisions regarding soil tillage. Reducing the soil tillage and the remaining soil being covered with straw mulch retained more soil moisture than did conventional tillage and also reduced CO2 emissions from soils.
- The obtained data will contribute to the choice and application of appropriate soil management practices having the potential to mitigate CO2 emissions and to build carbon stock in soils at the national and European levels.
- The obtained results will serve also at the national and European levels to adjust the CO2 emission factors, which are given generally without emphasis on the warm summer period, which is the most vulnerable to CO2 emissions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC Climate Change: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf (accessed on 12 November 2023).
- Zahradníček, P.; Trnka, M.; Brázdil, R.; Možný, M.; Štěpánek, P.; Hlavinka, P.; Žalud, Z.; Malý, A.; Semerádová, D.; Dobrovolný, P.; et al. The extreme drought episode of August 2011–May 2012 in the Czech Republic. Int. J. Clim. 2015, 35, 3335–3352. [Google Scholar] [CrossRef]
- Büntgen, U.; Urban, O.; Krusic, P.J.; Rybníček, M.; Kolář, T.; Kyncl, T.; Ač, A.; Koňasová, E.; Čáslavský, J.; Esper, J.; et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021, 14, 190–196. [Google Scholar] [CrossRef]
- Meitner, J.; Balek, J.; Bláhová, M.; Semerádová, D.; Hlavinka, P.; Lukas, V.; Jurečka, F.; Žalud, Z.; Klem, K.; Trnka, M. Estimating Drought-Induced Crop Yield Losses at the Cadastral Area Level in the Czech Republic. Agronomy 2023, 13, 1669. [Google Scholar] [CrossRef]
- Torbenson, M.C.A.; Buentgen, U.; Esper, J.; Urban, O.; Balek, J.; Reinig, F.; Krusic, P.J.; del Castillo, E.M.; Brázdil, R.; Semerádová, D.; et al. Central European Agroclimate over the Past 2000 Years. J. Clim. 2023, 36, 4429–4441. [Google Scholar] [CrossRef]
- Zahradníček, P.; Brázdil, R.; Řehoř, J.; Lhotka, O.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Temperature extremes and circulation types in the Czech Republic, 1961–2020. Int. J. Clim. 2021, 42, 4808–4829. [Google Scholar] [CrossRef]
- Chi, J.; Waldo, S.; Pressley, S.N.; Russell, E.S.; O’Keeffe, P.T.; Pan, W.L.; Huggins, D.R.; Stöckle, C.O.; Brooks, E.S.; Lamb, B.K. Effects of Climatic Conditions and Management Practices on Agricultural Carbon and Water Budgets in the Inland Pacific Northwest USA. J. Geophys. Res. Biogeosciences 2017, 122, 3142–3160. [Google Scholar] [CrossRef]
- Melero, S.; López-Garrido, R.; Murillo, J.M.; Moreno, F. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Tillage Res. 2009, 104, 292–298. [Google Scholar] [CrossRef]
- Wang, W.; Akhtar, K.; Ren, G.; Yang, G.; Feng, Y.; Yuan, L. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci. Total. Environ. 2019, 652, 471–482. [Google Scholar] [CrossRef]
- Parihar, C.; Singh, A.; Jat, S.; Ghosh, A.; Dey, A.; Nayak, H.; Parihar; Mahala, D.; Yadav, R.; Rai, V.; et al. Dependence of temperature sensitivity of soil organic carbon decomposition on nutrient management options under conservation agriculture in a sub-tropical Inceptisol. Soil Tillage Res. 2019, 190, 50–60. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Paustian, K.; Six, J.; Elliott, E.; Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48, 147–163. [Google Scholar] [CrossRef]
- Jat, S.; Parihar, C.; Dey, A.; Nayak, H.; Ghosh, A.; Parihar, N.; Goswami, A.; Singh, A. Dynamics and temperature sensitivity of soil organic carbon mineralization under medium-term conservation agriculture as affected by residue and nitrogen management options. Soil Tillage Res. 2019, 190, 175–185. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.; Tanveer, S.K.; Wen, X.; Liao, Y. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Res. 2015, 54, 38. [Google Scholar] [CrossRef]
- Dong, W.; Liu, E.; Wang, J.; Yan, C.; Li, J.; Zhang, Y. Impact of tillage management on the short- and long-term soil carbon dioxide emissions in the dryland of Loess Plateau in China. Geoderma 2017, 307, 38–45. [Google Scholar] [CrossRef]
- Lopez-Sangil, L.; Hartley, I.P.; Rovira, P.; Casals, P.; Sayer, E.J. Drying and rewetting conditions differentially affect the mineralization of fresh plant litter and extant soil organic matter. Soil Biol. Biochem. 2018, 124, 81–89. [Google Scholar] [CrossRef]
- Nishigaki, T.; Sugihara, S.; Kilasara, M.; Funakawa, S. Carbon dioxide flux and soil carbon stock as affected by crop residue management and soil texture in semi-arid maize croplands in Tanzania. Soil Use Manag. 2021, 37, 83–94. [Google Scholar] [CrossRef]
- Lenka, N.K.; Lal, R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 2013, 126, 78–89. [Google Scholar] [CrossRef]
- Zaman, M.; Di, H.; Sakamoto, K.; Goto, S.; Hayashi, H.; Inubushi, K. Effects of sewage sludge compost and chemical fertilizer application on microbial biomass and N mineralization rates. Soil Sci. Plant Nutr. 2002, 48, 195–201. [Google Scholar] [CrossRef]
- Curtin, D.; Selles, F.; Wang, H.; Biederbeck, V.O.; Campbell, C.A. Carbon Dioxide Emissions and Transformation of Soil Carbon and Nitrogen during Wheat Straw Decomposition. Soil Sci. Soc. Am. J. 1998, 62, 1035–1041. [Google Scholar] [CrossRef]
- Curtin, D.; Wang, H.; Selles, F.; McConkey, B.G.; Campbell, C.A. Tillage Effects on Carbon Fluxes in Continuous Wheat and Fallow–Wheat Rotations. Soil Sci. Soc. Am. J. 2000, 64, 2080–2086. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Di Felice, V.; Radicetti, E. Long-term residual effects of the management of cover crop biomass on soil nitrogen and yield of endive (Cichorium endivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil Tillage Res. 2014, 139, 1–7. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Brunetti, P.; Radicetti, E.; Campiglia, E. Organic mulching, irrigation and fertilization affect soil CO2 emission and C storage in tomato crop in the Mediterranean environment. Soil Tillage Res. 2015, 152, 39–51. [Google Scholar] [CrossRef]
- Commission Decision of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC (notified under document C(2010) 3751) (2010/335/EU). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:151:0019:0041:EN:PDF (accessed on 4 December 2023).
- Commission Implementing Regulation (EU) 2022/996 of 14 June 2022 on rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect land-use change-risk criteria (Text with EEA relevance). Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/996/oj (accessed on 4 December 2023).
- IUSS/ISTRIC/FAO World Reference Base for Soil Resources; FAO: Rome, Italy, 2006.
- Hejcman, M.; Kunzová, E.; Šrek, P. Sustainability of winter beat production over 50 years of crop rotation and N, P and K fertilizer application on illimerized luvisol in the Czech Republic. Field Crops Res. 2012, 139, 30–38. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Brázdil, R.; Dubrovský, M.; Eitzinger, J.; Hlavinka, P.; Chuchma, F.; Možný, M.; Prášil, I.; Růžek, P.; et al. Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant Soil Environ. 2021, 67, 154–163. [Google Scholar] [CrossRef]
- Káš, M.; Mühlbachová, G.; Kusá, H. Winter wheat yields under different soil-climatic conditions in a long-term field trial. Plant Soil Environ. 2019, 65, 27–34. [Google Scholar] [CrossRef]
- Thaler, S.; Pohanková, E.; Eitzinger, J.; Hlavinka, P.; Orság, M.; Lukáš, V.; Brtnický, M.; Růžek, P.; Šimečková, J.; Ghisi, T.; et al. Determining Factors Affecting the Soil Water Content and Yield of Selected Crops in a Field Experiment with a Rainout Shelter and a Control Plot in the Czech Republic. Agriculture 2023, 13, 1315. [Google Scholar] [CrossRef]
- Panagea, I.S.; Berti, A.; Čermak, P.; Diels, J.; Elsen, A.; Kusá, H.; Piccoli, I.; Poesen, J.; Stoate, C.; Tits, M.; et al. Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe. Land 2021, 10, 1362. [Google Scholar] [CrossRef]
- Yang, L.; Muhammad, I.; Chi, Y.X.; Liu, Y.X.; Wang, G.Y.; Wang, Y.; Zhou, X.B. Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system. Sci. Total. Environ. 2022, 853, 158370. [Google Scholar] [CrossRef]
- Su, X.; Su, X.; Zhou, G.; Du, Z.; Yang, S.; Ni, M.; Qin, H.; Huang, Z.; Zhou, X.; Deng, J. Drought accelerated recalcitrant carbon loss by changing soil aggregation and microbial communities in a subtropical forest. Soil Biol. Biochem. 2020, 148, 107898. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Wunderlich, S.; Borken, W.; Kitzler, B.; Zechmeister-Boltenstern, S.; Jandl, R. Soil respiration under climate change: Prolonged summer drought offsets soil warming effects. Glob. Chang. Biol. 2012, 18, 2270–2279. [Google Scholar] [CrossRef]
- Bérard, A.; Bouchet, T.; Sévenier, G.; Pablo, A.; Gros, R. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. Eur. J. Soil Biol. 2019, 47, 333–342. [Google Scholar] [CrossRef]
- Sosulski, T.; Niedzinski, T.; Jadczyszyn, T.; Szymanska, M. Influence of Reduced Tillage, Fertilizer Placement, and Soil Afforestation on CO2 Emission from Arable Sandy Soils. Agronomy 2022, 12, 3102. [Google Scholar] [CrossRef]
- Chatskikh, D.; Olesen, J.E. Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil Tillage Res. 2007, 97, 5–18. [Google Scholar] [CrossRef]
- Panagea, I.S.; Apostolakis, A.; Berti, A.; Bussell, J.; Čermak, P.; Diels, J.; Elsen, A.; Kusá, H.; Piccoli, I.; Poesen, J.; et al. Impact of agricultural management on soil aggregates and associated organic carbon fractions: Analysis of long-term experiments in Europe. SOIL 2022, 8, 621–644. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Kusá, H.; Růžek, P.; Vavera, R. CO2 emissions in a soil under different soil tillage practices. Plant Soil Environ. 2022, 68, 253–261. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R.; Káš, M. Winter Wheat Straw Decomposition under Different Nitrogen Fertilizers. Agriculture 2021, 11, 83. [Google Scholar] [CrossRef]
- Roozbeh, M.; Rajaie, M. Effects of residue management and nitrogen fertilizer rates on accumulation of soil residual nitrate and wheat yield under no-tillage system in south-west of Iran. Int. Soil Water Conserv. Res. 2020, 9, 116–126. [Google Scholar] [CrossRef]
- Yao, Y.; Li, G.; Lu, Y.; Liu, S. Modelling the impact of climate change and tillage practices on soil CO2 emissions from dry farmland in the Loess Plateau of China. Ecol. Model. 2023, 478, 110276. [Google Scholar] [CrossRef]
Moisture | (%) | |||
---|---|---|---|---|
Year | Tillage | Mmean | Mmax | Mmin |
2017 | Conventional till. | 14.5 ± 2.1 | 17.3 ± 0.4 | 10.8 ± 0.1 |
Reduced till. | 16.7 ± 2.2 | 20.0 ± 0.3 | 14.0 ± 0.2 | |
No-till. | 18.3 ± 3.1 | 23.7 ± 0.7 | 14.1 ± 0.3 | |
2018 | Conventional till. | 12.0 ± 1.1 | 15.5 ± 0.1 | 8.1 ± 0.2 |
Reduced till. | 12.5 ± 1.7 | 16.6 ± 0.1 | 7.8 ± 0.4 | |
No-till. | 14.1 ± 0.7 | 18.5 ± 0.4 | 9.1 ± 0.3 | |
2019 | Conventional till. | 15.4 ± 2.5 | 18.5 ± 0.2 | 12.2 ± 0.1 |
Reduced till. | 16.7 ± 2.7 | 19.9 ± 0.1 | 12.7 ± 0.1 | |
No-till. | 18.1 ± 1.7 | 19.9 ± 0.2 | 15.4 ± 0.3 | |
2020 | Conventional till. | 14.9 ± 2.5 | 18.2 ± 0.1 | 13.0 ± 0.1 |
Reduced till. | 15.2 ± 2.5 | 19.6 ± 0.2 | 12.2 ± 0.0 | |
No-till. | 16.6 ± 3.0 | 20.6 ± 0.1 | 12.5 ± 0.6 | |
2021 | Conventional till. | 14.0 ± 1.7 | 15.9 ± 0.2 | 11.2 ± 0.2 |
Reduced till. | 15.9 ± 2.0 | 18.2 ± 0.2 | 12.4 ± 0.2 | |
No-till. | 17.3 ± 2.0 | 19.7 ± 0.6 | 14.2 ± 0.6 | |
2022 | Conventional till. | 17.1 ± 1.4 | 18.6 ± 0.4 | 15.0 ± 0.1 |
Reduced till. | 18.0 ± 1.7 | 19.9 ± 0.6 | 15.8 ± 0.2 | |
No-till. | 18.9 ± 1.0 | 20.0 ± 0.4 | 17.0 ± 0.4 |
CO2 Emissions | Moisture | Temperature—Day of Measurement | Temperature—Week before Measurement | Precipitation—Week before Measurement | |
---|---|---|---|---|---|
Tillage | −0.340 *** | 0.270 *** | −0.009 | −0.005 | 0.006 |
CO2 emissions | - | 0.078 | 0.397 *** | 0.416 *** | 0.291 *** |
Moisture | 0.078 | 1.000 | −0.112 ** | −0.090 * | 0.276 *** |
CO2 Emissions | Soil Moisture | Temperature Day of Measurement | Temperature Week before Measurement | Precipitation Week before Measurement | |
---|---|---|---|---|---|
Conventional till. | |||||
Year | 0.165 * | 0.524 *** | −0.083 | −0.109 | 0.035 |
Day | −0.491 *** | 0.009 | −0.766 *** | −0.853 *** | −0.240 *** |
CO2 emissions | - | 0.200 ** | 0.488 *** | 0.482 *** | 0.386 *** |
Moisture | - | −0.132 | −0.111 | 0.314 *** | |
Reduced till. | |||||
Year | 0.338 *** | 0.529 *** | −0.084 | −0.112 | 0.036 |
Day | −0.548 *** | −0.115 | −0.766 *** | −0.853 *** | −0.240 *** |
CO2 emissions | - | 0.249 *** | 0.456 *** | 0.503 *** | 0.304 *** |
Soil moisture | - | −0.103 | −0.048 | 0.343 *** | |
No-till. | |||||
Year | 0.183 * | 0.105 | −0.084 | −0.112 | 0.036 |
Day | −0.609 *** | −0.016 | −0.766 *** | −0.852 *** | −0.241 *** |
CO2 emissions | - | 0.004 | 0.434 *** | 0.529 *** | 0.309 *** |
Soil moisture | - | 0.133 | 0.064 | −0.073 |
CO2 Emissions (µmol CO2 m−2 s−1) | ||||
---|---|---|---|---|
Year | Tillage | Mean | Max | Min |
2017 | Conventional till. | 4.63 ± 2.99 | 10.72 ± 4.52 | 1.93 ± 0.19 |
Reduced till. | 1.82 ± 0.78 | 3.25 ± 0.91 | 0.89 ± 0.23 | |
No-till. | 2.86 ± 1.42 | 5.57 ± 3.98 | 1.77 ± 0.34 | |
2018 | Conventional till. | 2.49 ± 1.10 | 4.42 ± 1.18 | 0.90 ± 0.24 |
Reduced till. | 2.39 ± 1.67 | 6.33 ± 0.74 | 0.76 ± 0.28 | |
No-till. | 1.96 ± 0.72 | 3.31 ± 1.26 | 1.12 ± 0.53 | |
2019 | Conventional till. | 10.01 ± 8.12 | 22.02 ± 5.55 | 2.07 ± 1.21 |
Reduced till. | 2.51 ± 0.96 | 3.64 ± 0.83 | 1.22 ± 0.27 | |
No-till. | 3.35 ± 1.84 | 7.03 ± 0.48 | 1.36 ± 0.20 | |
2020 | Conventional till. | 6.38 ± 4.37 | 14.84 ± 3.30 | 1.97 ± 0.61 |
Reduced till. | 4.99 ± 3.95 | 14.09 ± 4.21 | 1.78 ± 0.40 | |
No-till. | 3.44 ± 1.81 | 6.60 ± 1.71 | 1.16 ± 0.27 | |
2021 | Conventional till. | 5.03 ± 3.42 | 10.92 ± 1.39 | 1.64 ± 0.20 |
Reduced till. | 3.56 ± 1.75 | 6.01 ± 1.71 | 1.10 ± 0.19 | |
No-till. | 2.35 ± 1.36 | 4.97 ± 1.77 | 0.88 ± 0.48 | |
2022 | Conventional till. | 8.23 ± 4.83 | 18.50 ± 5.75 | 1.60 ± 0.61 |
Reduced till. | 4.83 ± 1.93 | 8.52 ± 2.12 | 2.34 ± 1.15 | |
No-till. | 3.24 ± 1.25 | 5.52 ± 2.75 | 1.44 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R. CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy 2023, 13, 3084. https://doi.org/10.3390/agronomy13123084
Mühlbachová G, Růžek P, Kusá H, Vavera R. CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy. 2023; 13(12):3084. https://doi.org/10.3390/agronomy13123084
Chicago/Turabian StyleMühlbachová, Gabriela, Pavel Růžek, Helena Kusá, and Radek Vavera. 2023. "CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions" Agronomy 13, no. 12: 3084. https://doi.org/10.3390/agronomy13123084
APA StyleMühlbachová, G., Růžek, P., Kusá, H., & Vavera, R. (2023). CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy, 13(12), 3084. https://doi.org/10.3390/agronomy13123084