Transcriptome Analysis of the Regulatory Mechanism of Exogenous Spermidine in High Temperature Stress Resistance of Tomato Seedlings
Abstract
:1. Introduction
2. Results
2.1. Plant Phenotyping and Physiological Reaction
2.1.1. Plant Growth
2.1.2. Soluble Proteins
2.1.3. Photosynthetic Parameters
2.1.4. Chlorophyll Content
2.2. Transcriptome Analysis Results
2.2.1. Summary of RNA Sequencing and Assembly
2.2.2. Novel Transcript Prediction and SNP and INDEL Detection
2.2.3. Gene Expression and Differentially Expressed Genes Analysis
2.2.4. GO and KEGG Pathway Enrichment Analysis of Differentially Expressed Genes
2.2.5. The Regulation of Energy and Carbohydrate Metabolism Was Closely Related to the Tolerance to High Temperature Stress
2.2.6. Response to High Temperature Related to the Regulation of the Photosynthesis Pathway
2.2.7. Epigenetic Genes Display Distinct Expression Profiles in the Heat-Treated and Heat/Spd-Treated Tomato Plants
2.2.8. The Response of Detoxification Signaling to High Temperature Stress Was Different in the Control and Exogenous Spd Treatment
2.2.9. The Regulation of Flavonoid Synthesis and Cell Wall Related Genes Was Associated with Spd Mediated Tolerance to Heat Stress
2.3. Role of Transcription Factor MYC2 in Different Heat Tolerance Varieties
3. Discussion
3.1. The Heat Stress Response Mechanisms under Exogenous Spd
3.2. Energy, Carbohydrate Metabolism, and Photosynthesis Process Presented Diverse Responses in HT and HS Samples
3.3. Transporter Genes Are Less Affected by Heat Stress upon Spd
3.4. Differentially Expressed Genes Implicated in ABA and JA Response
4. Materials and Methods
4.1. Plant Materials and Treatment
4.2. Determination of Plant Growth
4.3. Measurement of Chlorophyll Content and Photosynthetic Parameters
4.4. Assay for Soluble Sugar and Soluble Protein Contents
4.5. RNA Extraction and Sequencing
4.6. Reads Mapping
4.7. Novel Transcripts, SNP/INDEL, and Differentially Splicing Genes Detection
4.8. Differentially Expressed Genes Analysis and Gene Function Annotation
4.9. Role of Transcription Factor MYC2 in Different Heat Tolerance Varieties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [Green Version]
- Guy, C.L. Molecular responses of plants to cold shock and cold acclimation. J. Mol. Microbiol. Biotechnol. 1999, 1, 231–242. [Google Scholar] [PubMed]
- Weis, E.; Berry, J.A. Plants and high temperature stress. J. Symp. Soc. Exp. Biol. 1988, 42, 329–346. [Google Scholar]
- Bray, E.A.; Bailey-Serres, J.; Weretilnyk, E. Biochemistry and Molecular Biology of Plants, Responses to Abiotic Stresses; Gruissem, W., Buchannan, B., Jones, R., Eds.; American Society of Plant Physiologists: Rockville, MD, USA, 2000; pp. 1158–1249. [Google Scholar]
- Maestri, E.; Klueva, N.; Perrotta, C.; Gulli, M.; Marmiroli, N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002, 48, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J. Plant Res. 2007, 120, 219–228. [Google Scholar] [CrossRef]
- Sung, D.Y.; Kaplan, F.; Lee, K.J.; Guy, C.L. Acquired tolerance to temperature extremes. Trends Plant Sci. 2003, 8, 179–187. [Google Scholar] [CrossRef]
- Mirzaei, M.; Pascovici, D.; Atwell, B.J.; Haynes, P.A. Differential regulation of aquaporins, small GTPases and V-ATPases proteins in rice leaves subjected to drought stress and recovery. J. Proteomics 2012, 12, 864–877. [Google Scholar] [CrossRef] [PubMed]
- De Wit, M.; Lorrain, S.; Fankhauser, C. Auxin-mediated plant architectural changes in response to shade and high temperature. J. Physiol. Plant. 2014, 151, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, K.; Sengupta, A.; Chakraborty, M.; Gupta, B. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses. J. Front. Plant Sci. 2016, 7, 1343. [Google Scholar] [CrossRef] [Green Version]
- Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A.F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Pál, M.; Szalai, G.; Janda, T. Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 2015, 237, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottosin, I.; Shabala, S. Polyamines control of cation transport across plant membranes: Implications for ion homeostasis and abiotic stress signaling. Front. Plant Sci. 2014, 5, 154. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Lin, C.; He, F.; Li, Z.; Guan, Y.; Hu, Q.; Hu, J. Exogenous spermidine improves seed germination of sweet corn via involvement in phytohormone interactions, H2O2 and relevant gene expression. BMC Plant Biol. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassoni, A.; van Buuren, M.; Franceschetti, M.; Fornalè, S.; Bagni, N. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. J. Plant Physiol. Biochem. 2000, 38, 383–393. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, R.R.; Wang, F.Y.; Peng, Z.; Kong, F.L.; Wu, J.; Cao, J.S.; Lu, G. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J. Zhejiang Univ. Sci. B 2012, 13, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Franois, V.; Thibaut, B.; Myriam, D.; Christine, G.; Denis, V. Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. J. Exp. Bot. 2014, 65, 6457–6469. [Google Scholar]
- Liu, L.; Wang, M.N.; Feng, J.Y.; See, D. Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor. Appl. Genet. Int. J. Breed. Res. Cell Genet. 2018, 131, 1835–1849. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Prášil, I.T.; Renaut, J. Plant proteome changes under abiotic stress—Contribution of proteomics studies to understanding plant stress response. J. Proteom. 2011, 74, 1301–1322. [Google Scholar] [CrossRef]
- Wenjing, Z.; Li, M.; Jiaming, Z.; Zhiqiang, L.; Fuyu, S.; Xiaochun, L.; Blazquez, M.A. Comparative Transcriptome Analysis of Two Rice Varieties in Response to Rice Stripe Virus and Small Brown Planthoppers during Early Interaction. PLoS ONE 2013, 8, e82126. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57. [Google Scholar] [CrossRef]
- Rawal, H.C.; Kumar, S.; Mithra, S.V.A.; Solanke, A.U.; Nigam, D.; Saxena, S.; Tyagi, A.; Sureshkumar, V.; Yadav, N.R.; Kalia, P.; et al. High Quality Unigenes and Microsatellite Markers from Tissue Specific Transcriptome and Development of a Database in Clusterbean (Cyamopsis tetragonoloba, (L.) Taub). Genes 2017, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coble, D.J.; Fleming, D.; Persia, M.E.; Ashwell, C.M.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature. BMC Genom. 2014, 15, 1084. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.R.; Joshi, G.; Kukreja, B.; Malik, V.; Arora, P.; Pandey, R.; Shukla, R.N.; Bankar, K.G.; Katiyar-Agarwal, S.; Goel, S. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 2015, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.L.; Zhou, H.W.; Peng, Q.; Zhong, P.A.; Zhang, H.Y.; He, C.; Huang, Y.J. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC Genom. 2015, 16, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathy, S.; Padhi, S.K.; Sen, R.; Mohanty, S.; Samanta, M.; Maiti, N.K. Profiling of Brevibacillus borstelensis transcriptome exposed to high temperature shock. Genomics 2016, 107, 33–39. [Google Scholar] [CrossRef]
- Fan, M.; Sun, X.; Xu, N.; Liao, Z.; Li, Y.; Wang, J.; Fan, Y.; Cui, D.; Li, P.; Miao, Z. Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in Ulva prolifera. Sci. Rep. 2017, 7, 11052. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Chen, P.; Xiao, J.; Wang, L.; Lu, C. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS ONE 2017, 12, e0177641. [Google Scholar] [CrossRef]
- Sun, L.X.; Teng, J.; Zhao, Y.; Li, N.; Wang, H.; Ji, X.S. Gonad Transcriptome Analysis of High-Temperature-Treated Females and High-Temperature-Induced Sex-Reversed Neomales in Nile Tilapia. Int. J. Mol. Sci. 2018, 19, 689. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, Y. Fruit Set and Temperature Stress; Springer: Tokyo, Japan, 2015. [Google Scholar] [CrossRef]
- Sang, Q.; Xi, S.; An, Y.; Shu, S.; Sun, J.; Guo, S. Proteomic Analysis Reveals the Positive Effect of Exogenous Spermidine in Tomato Seedlings’ Response to High-Temperature Stress. Front. Plant. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Zhang, R. High Temperature Effects on Electron and Proton Circuits of Photosynthesis. J. Acta Bot. 2010, 52, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Ahmadnia, H.; Mojahedi, M.J.; Dalooee, M.K.; Ghanbarizadeh, S.R. A comparison between urinary bladder temperature and rectal, axillary and oral temperatures following kidney transplantation. Saudi J. Kidney Dis. Transpl. 2010, 21, 1135–1136. [Google Scholar] [PubMed]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Mitsuda, N.; Ohme-Takagi, M. Functional Analysis of Transcription Factors in Arabidopsis. Plant Cell Physiol. 2009, 50, 1232–1248. [Google Scholar] [CrossRef] [Green Version]
- Weiss, H.; Friedrich, T.; Hofhaus, G.; Preis, D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur. J. Biochem. 1991, 197, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Maduraimuthu, D.; Ramasamy, P.; Ciampitti, I.A. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef] [Green Version]
- Pecinka, A.; Dinh, H.Q.; Baubec, T.; Rosa, M.; Lettner, N.; Scheid, O.M. Epigenetic Regulation of Repetitive Elements Is Attenuated by Prolonged Heat Stress in Arabidopsis. Plant Cell 2010, 22, 3118–3129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, T.; Amombo, E.; Wang, G.; Xie, Y.; Fu, J. The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue. Front. Plant Sci. 2017, 8, 1747. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhou, H.; Guo, S.; An, Y.; Shu, S.; Lu, N.; Sun, J. Exogenous spermidine maintains the chloroplast structure of cucumber seedlings and inhibits the degradation of photosynthetic protein complexes under high-temperature stress. Acta Physiol. Plant. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, H.; Li, L.; Liu, X.; Chen, L.; Chen, W.; Ding, Y. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of rice under heat stress during early grain-filling period. Funct. Plant Biol. 2018, 45, 911–921. [Google Scholar] [CrossRef]
- Luo, L.; Li, Z.; Tang, M.; Cheng, B.; Zeng, W.; Peng, Y.; Nie, G.; Zhang, X. Metabolic regulation of polyamines and γ-aminobutyric acid in relation to spermidine-induced heat tolerance in white clover. Plant Biol. 2020, 22, 794–804. [Google Scholar] [CrossRef]
- Jing, J.; Guo, S.; Li, Y.; Li, W. The alleviating effect of exogenous polyamines on heat stress susceptibility of different heat resistant wheat (Triticum aestivum L.) varieties. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Cao, Y.; Wang, D.; Peng, Y.; Zhang, Y.; Li, Z. Spermine alleviates heat-induced senescence in creeping bentgrass by regulating water and oxidative balance, photosynthesis, and heat shock proteins. Biol. Plant 2021, 65, 184–192. [Google Scholar] [CrossRef]
- Collado-González, J.; Piñero, M.C.; Otálora, G.; López-Marín, J.; Del Amor, F.M. Effects of different nitrogen forms and exogenous application of putrescine on heat stress of cauliflower: Photosynthetic gas exchange, mineral concentration and lipid peroxidation. Plants 2021, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Han, Y.; Hao, J.; Qin, X.; Liu, C.; Fan, S. Exogenous spermidine enhances the photosynthesis and ultrastructure of lettuce seedlings under high-temperature stress. Sci. Hortic. 2022, 291, 110570. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zou, Z.R.; Huang, Z.; Zhang, Z.X. Effects of exogenous spermidine on photosynthesis of tomato seedlings under drought stress. Agric. Res. Arid Areas 2010, 28, 182–187. [Google Scholar]
- Ma, G.; Zhang, M.; Xu, J.; Zhou, W.; Cao, L. Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin. Ecotoxicol. Environ. Saf. 2020, 202, 110877. [Google Scholar] [CrossRef] [PubMed]
- Saito, S. Arabidopsis CYP707As Encode (+)-Abscisic Acid 8′-Hydroxylase, a Key Enzyme in the Oxidative Catabolism of Abscisic Acid. Plant Physiol. 2004, 134, 1439–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao-Qiong, S.U.; Wang, M.Y.; Shu, S.; Sun, J.; Guo, S.R.; University, N.A. Effects of Exogenous Spd on the Fast Chlorophyll Fluorescence Induction Dynamics in Tomato Seedlings under High Temperature Stress. Acta Hortic. Sin. 2013, 40, 2409–2418. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.J.; Sun, M.H.; Lu, J.; Liu, Y.J.; Hu, D.G.; Hao, Y.J. Transcription Factor AREB2 Is Involved in Soluble Sugar Accumulation by Activating Sugar Transporter and Amylase Genes. Plant Physiol. 2017, 174, 2348–2362. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
Library | Total Raw Reads (Mb) | Total Clean Reads (Mb) | Clean Reads Q30 (%) |
---|---|---|---|
NT-1 | 45.08 | 39.34 | 89.75 |
NT-2 | 50.20 | 44.11 | 90.08 |
NT-3 | 53.44 | 44.28 | 89.33 |
NS-1 | 55.06 | 44.68 | 89.81 |
NS-2 | 51.82 | 45.40 | 88.85 |
NS-3 | 53.44 | 45.26 | 89.64 |
HT-1 | 53.44 | 45.25 | 89.42 |
HT-2 | 56.68 | 45.13 | 90.51 |
HT-3 | 53.44 | 44.29 | 90.08 |
HS-1 | 53.44 | 44.39 | 90.41 |
HS-2 | 53.44 | 45.20 | 90.84 |
HS-3 | 56.68 | 45.26 | 89.20 |
Sample | Total Clean Reads | Total Mapping Ratio | Uniquely Mapping Ratio |
---|---|---|---|
NT-1 | 39,338,682 | 81.52% | 79.17% |
NT-2 | 44,112,738 | 83.55% | 81.25% |
NT-3 | 44,277,524 | 83.55% | 81.11% |
NS-1 | 44,684,888 | 82.85% | 80.38% |
NS-2 | 45,400,480 | 82.35% | 79.92% |
NS-3 | 45,260,080 | 82.81% | 80.24% |
HT-1 | 45,250,174 | 81.55% | 79.69% |
HT-2 | 45,133,642 | 83.37% | 81.55% |
HT-3 | 44,287,642 | 83.57% | 81.79% |
HS-1 | 44,388,334 | 84.44% | 82.39% |
HS-2 | 45,196,132 | 83.06% | 81.06% |
HS-3 | 45,262,252 | 83.91% | 81.95% |
Type of Novel Transcript | Number |
---|---|
Total Novel Transcript | 35,833 |
Novel Coding Transcript | 19,882 |
Novel Non-coding Transcript | 15,951 |
Novel Isoform | 18,696 |
Novel Gene | 1186 |
Library | A–G | C–T | Transition | A–C | A–T | C–G | G–T | Transversion | Total |
---|---|---|---|---|---|---|---|---|---|
HS-1 | 6434 | 6288 | 12,722 | 1881 | 2825 | 1297 | 1992 | 7995 | 20,717 |
HS-2 | 7597 | 7449 | 15,046 | 2407 | 3493 | 1498 | 2503 | 9901 | 24,947 |
HS-3 | 6696 | 6582 | 13,278 | 1966 | 2936 | 1343 | 2061 | 8306 | 21,584 |
HT-1 | 7991 | 7879 | 15,870 | 2601 | 3831 | 1595 | 2638 | 10,665 | 26,535 |
HT-2 | 7292 | 7119 | 14,411 | 2145 | 3102 | 1387 | 2252 | 8886 | 23,297 |
HT-3 | 7220 | 7041 | 14,261 | 2142 | 2942 | 1449 | 2175 | 8708 | 22,969 |
NS-1 | 6046 | 6077 | 12,123 | 1956 | 3137 | 1241 | 2101 | 8435 | 20,558 |
NS-2 | 5945 | 5818 | 11,763 | 1851 | 2946 | 1212 | 1952 | 7961 | 19,724 |
NS-3 | 6677 | 6480 | 13,157 | 2132 | 3479 | 1350 | 2292 | 9253 | 22,410 |
NT-1 | 5932 | 5821 | 11,753 | 1862 | 3054 | 1229 | 1957 | 8102 | 19,855 |
NT-2 | 6177 | 6167 | 12,344 | 1951 | 3021 | 1266 | 2010 | 8248 | 20,592 |
NT-3 | 7272 | 7187 | 14,459 | 2348 | 3492 | 1465 | 2432 | 9737 | 24,196 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Shu, S.; Wang, Y.; Du, J.; Shi, L.; Jahan, M.S.; Guo, S. Transcriptome Analysis of the Regulatory Mechanism of Exogenous Spermidine in High Temperature Stress Resistance of Tomato Seedlings. Agronomy 2023, 13, 285. https://doi.org/10.3390/agronomy13020285
Peng C, Shu S, Wang Y, Du J, Shi L, Jahan MS, Guo S. Transcriptome Analysis of the Regulatory Mechanism of Exogenous Spermidine in High Temperature Stress Resistance of Tomato Seedlings. Agronomy. 2023; 13(2):285. https://doi.org/10.3390/agronomy13020285
Chicago/Turabian StylePeng, Chen, Sheng Shu, Yu Wang, Jing Du, Lu Shi, Mohammad Shah Jahan, and Shirong Guo. 2023. "Transcriptome Analysis of the Regulatory Mechanism of Exogenous Spermidine in High Temperature Stress Resistance of Tomato Seedlings" Agronomy 13, no. 2: 285. https://doi.org/10.3390/agronomy13020285
APA StylePeng, C., Shu, S., Wang, Y., Du, J., Shi, L., Jahan, M. S., & Guo, S. (2023). Transcriptome Analysis of the Regulatory Mechanism of Exogenous Spermidine in High Temperature Stress Resistance of Tomato Seedlings. Agronomy, 13(2), 285. https://doi.org/10.3390/agronomy13020285