Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages
Abstract
:1. Introduction
2. Results
2.1. Reference Transcriptome Assembly Using cDNA and Direct RNA Long-Read Sequencing
2.2. Missed Transcripts of A, B, and R Triticale Genomes Expressed during Seed Development
2.3. Early vs. Late Stages and GO
2.4. Genes Expressed in the Germ Parts of Developing Triticale Seed
2.5. Genomic Polymorphism of lncRNA Genes in the Triticale Collection
3. Discussion
4. Material and Methods
4.1. Plant Material and RNA Isolation
4.2. DNA Isolation
4.3. cDNA Synthesis
4.4. cDNA Nanopore Sequencing
4.5. Identification of Novel Loci Expressed during Triticale Seed Development
4.6. GO Enrichment
4.7. PCR Analysis of lncRNA
4.8. Data Visualization and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nadaud, I.; Girousse, C.; Debiton, C.; Chambon, C.; Bouzidi, M.F.; Martre, P.; Branlard, G. Proteomic and morphological analysis of early stages of wheat grain development. Proteomics 2010, 10, 2901–2910. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Mitchell, R.A.; Tosi, P.; Wan, Y.; Underwood, C.; Lovegrove, A.; Freeman, J.; Toole, G.A.; Mills, E.C.; Ward, J.L. An integrated study of grain development of wheat (cv. Hereward). J. Cereal Sci. 2012, 56, 21–30. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Dong, J.; Gandhi, N.; Cai, H.; von Wettstein, D.H.; Rustgi, S.; Wen, S. Pattern of Protein Expression in Developing Wheat Grains Identified through Proteomic Analysis. Front. Plant Sci. 2017, 8, 962. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Ghatak, A.; Bazargani, M.M.; Bajaj, P.; Varshney, R.K.; Chaturvedi, P.; Jiang, D.; Weckwerth, W. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. Plant J. 2021, 107, 669–687. [Google Scholar] [CrossRef] [PubMed]
- Gu, A.; Hao, P.; Lv, D.; Zhen, S.; Bian, Y.; Ma, C.; Xu, Y.; Zhang, W.; Yan, Y. Integrated Proteome Analysis of the Wheat Embryo and Endosperm Reveals Central Metabolic Changes Involved in the Water Deficit Response during Grain Development. J. Agr. Food Chem. 2015, 63, 8478–8487. [Google Scholar] [CrossRef]
- Cao, H.; He, M.; Zhu, C.; Yuan, L.; Dong, L.; Bian, Y.; Zhang, W.; Yan, Y. Distinct metabolic changes between wheat embryo and endosperm during grain development revealed by 2D-DIGE-based integrative proteome analysis. Proteomics 2016, 16, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhu, C.; Dong, K.; Zhang, T.; Cheng, Z.; Li, J.; Yan, Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 2015, 15, 97. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Liu, Y.; Dong, J.; Zhao, W.; Kashyap, S.; Gao, X.; Rustgi, S.; Wen, S. Probing early wheat grain development via transcriptomic and proteomic approaches. Funct. Integr. Genom. 2020, 20, 63–74. [Google Scholar] [CrossRef]
- Palovaara, J.; Saiga, S.; Wendrich, J.R.; van ‘t Wout Hofland, N.; van Schayck, J.P.; Hater, F.; Mutte, S.; Sjollema, J.; Boekschoten, M.; Hooiveld, G.J.; et al. Transcriptome Dynamics Revealed by a Gene Expression Atlas of the Early Arabidopsis Embryo. Nat. Plants 2017, 3, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Day, R.C.; Herridge, R.P.; Ambrose, B.A.; Macknight, R.C. Transcriptome Analysis of Proliferating Arabidopsis Endosperm Reveals Biological Implications for the Control of Syncytial Division, Cytokinin Signaling, and Gene Expression Regulation. Plant Physiol. 2008, 148, 1964–1984. [Google Scholar] [CrossRef]
- Mizzotti, C.; Rotasperti, L.; Moretto, M.; Tadini, L.; Resentini, F.; Galliani, B.M.; Galbiati, M.; Engelen, K.; Pesaresi, P.; Masiero, S. Time-Course Transcriptome Analysis of Arabidopsis Siliques Discloses Genes Essential for Fruit Development and Maturation. Plant Physiol. 2018, 178, 1249–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, F.; Gu, W.; Chen, J.; Song, N.; Gao, X.; Zhang, X.; Zhou, Y.; Ma, X.; Song, W.; Zhao, H.; et al. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell 2019, 31, 974–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zeng, B.; Zhang, M.; Xie, S.; Wang, G.; Hauck, A.; Lai, J. Dynamic Transcriptome Landscape of Maize Embryo and Endosperm Development. Plant Physiol. 2014, 166, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Rangan, P.; Furtado, A.; Henry, R.J. The Transcriptome of the Developing Grain: A Resource for Understanding Seed Development and the Molecular Control of the Functional and Nutritional Properties of Wheat. BMC Genom. 2017, 18, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhu, D.; Ma, C.; Cao, H.; Wang, Y.; Xu, Y.; Zhang, W.; Yan, Y. Transcriptome Analysis Reveals Key Differentially Expressed Genes Involved in Wheat Grain Development. Crop J. 2016, 4, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Kirov, I.; Dudnikov, M.; Merkulov, P.; Shingaliev, A.; Omarov, M.; Kolganova, E.; Sigaeva, A.; Karlov, G.; Soloviev, A. Nanopore RNA Sequencing Revealed Long Non-Coding and LTR Retrotransposon-Related RNAs Expressed at Early Stages of Triticale SEED Development. Plants 2020, 9, 1794. [Google Scholar] [CrossRef]
- Furtado, A.; Bundock, P.C.; Banks, P.M.; Fox, G.; Yin, X.; Henry, R.J. A Novel Highly Differentially Expressed Gene in Wheat Endosperm Associated with Bread Quality. Sci. Rep. 2015, 5, 10446. [Google Scholar] [CrossRef] [Green Version]
- Kirov, I.; Pirsikov, A.; Milyukova, N.; Dudnikov, M.; Kolenkov, M.; Gruzdev, I.; Siksin, S.; Khrustaleva, L.; Karlov, G.; Soloviev, A. Analysis of Wheat Bread-Making Gene (Wbm) Evolution and Occurrence in Triticale Collection Reveal Origin via Interspecific Introgression into Chromosome 7AL. Agronomy 2019, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, C.; Xiao, Y.; Crossa, J.; González-Santoyo, H.; Huerta, J.; Singh, R.; Dreisigacker, S. Sources of the Highly Expressed Wheat Bread Making (Wbm) Gene in CIMMYT Spring Wheat Germplasm and Its Effect on Processing and Bread-Making Quality. Euphytica 2016, 209, 689–692. [Google Scholar] [CrossRef]
- Henry, R.J.; Furtado, A.; Rangan, P. Wheat Seed Transcriptome Reveals Genes Controlling Key Traits for Human Preference and Crop Adaptation. Curr. Opin. Plant Biol. 2018, 45, 231–236. [Google Scholar] [CrossRef]
- Jin, X.; Fu, Z.; Lv, P.; Peng, Q.; Ding, D.; Li, W.; Tang, J. Identification and Characterization of microRNAs during Maize Grain Filling. PLOS One 2015, 10, e0125800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Jeong, D.H.; Kulkarni, K.; Pillay, M.; Nobuta, K.; German, R.; Thatcher, S.R.; Maher, C.; Zhang, L.; Ware, D.; et al. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc. Natl. Acad. Sci. USA 2008, 105, 4951–4956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Deng, P.; Guo, Q.; Shi, T.; Pan, W.; Cui, L.; Liu, X.; Nie, X. Population Transcriptomic Analysis Identifies the Comprehensive LncRNAs Landscape of Spike in Wheat (Triticum aestivum L.). BMC Plant Biol. 2022, 22, 450. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Fan, W.; Li, P.; Hu, Y. Genome-Wide Profiling of Long Noncoding RNAs Involved in Wheat Spike Development. BMC Genom. 2021, 22, 493. [Google Scholar] [CrossRef]
- Heo, J.B.; Sung, S. Vernalization-Mediated Epigenetic Silencing by a Long Intronic Noncoding RNA. Science 2011, 331, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Madhawan, A.; Sharma, A.; Bhandawat, A.; Rahim, M.S.; Kumar, P.; Mishra, A.; Parveen, A.; Sharma, H.; Verma, S.K.; Roy, J. Identification and Characterization of Long Non-Coding RNAs Regulating Resistant Starch Biosynthesis in Bread Wheat (Triticum aestivum L.). Genomics 2020, 112, 3065–3074. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.T.; Knop, K.; Sherwood, A.V.; Schurch, N.J.; Mackinnon, K.; Gould, P.D.; Hall, A.J.; Barton, G.J.; Simpson, G.G. Nanopore Direct RNA Sequencing Maps the Complexity of Arabidopsis MRNA Processing and M6A Modification. eLife 2020, 9, e49658. [Google Scholar] [CrossRef]
- Byrne, A.; Cole, C.; Volden, R.; Vollmers, C. Realizing the Potential of Full-Length Transcriptome Sequencing. Philos. Trans. R. Soc. B 2019, 374, 20190097. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, H.; Kohnen, M.V.; Prasad, K.V.S.K.; Gu, L.; Reddy, A.S.N. Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing. Front. Genet. 2019, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, R.; Zhang, L.; Chen, S.; Xie, M.; Yang, L.; Xia, Y.; Foyer, C.H.; Zhao, Z.; Lam, H.-M. New Insights into Arabidopsis Transcriptome Complexity Revealed by Direct Sequencing of Native RNAs. Nucleic Acids Res. 2020, 48, gkaa588. [Google Scholar] [CrossRef]
- Wang, D.; Lu, X.; Chen, X.; Wang, S.; Wang, J.; Guo, L.; Yin, Z.; Chen, Q.; Ye, W. Temporal Salt Stress-Induced Transcriptome Alterations and Regulatory Mechanisms Revealed by PacBio Long-Reads RNA Sequencing in Gossypium Hirsutum. BMC Genom. 2020, 21, 838. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Liang, F.; Ye, Z.; Li, J.; Shen, C.; Pei, L.; Wang, F.; Hu, J.; Tu, L.; et al. A Global Survey of Alternative Splicing in Allopolyploid Cotton: Landscape, Complexity and Regulation. New Phytol. 2018, 217, 163–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, J.I.; Ramekar, R.; Kim, J.M.; Hung, N.N.; Seo, J.S.; Kim, J.-B.; Choi, I.-Y.; Park, K.-C.; Kwon, S.-J. Unraveling the Complexity of Faba Bean (Vicia faba L.) Transcriptome to Reveal Cold-Stress-Responsive Genes Using Long-Read Isoform Sequencing Technology. Sci. Rep. 2021, 11, 21094. [Google Scholar] [CrossRef]
- Athiyannan, N.; Abrouk, M.; Boshoff, W.H.P.; Cauet, S.; Rodde, N.; Kudrna, D.; Mohammed, N.; Bettgenhaeuser, J.; Botha, K.S.; Derman, S.S.; et al. Long-Read Genome Sequencing of Bread Wheat Facilitates Disease Resistance Gene Cloning. Nat. Genet. 2022, 54, 227–231. [Google Scholar] [CrossRef]
- Kirov, I.; Omarov, M.; Merkulov, P.; Dudnikov, M.; Gvaramiya, S.; Kolganova, E.; Komakhin, R.; Karlov, G.; Soloviev, A. Genomic and Transcriptomic Survey Provides New Insight into the Organization and Transposition Activity of Highly Expressed LTR Retrotransposons of Sunflower (Helianthus annuus L.). Int. J. Mol. Sci. 2020, 21, 9331. [Google Scholar] [CrossRef]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staton, S.E.; Bakken, B.H.; Blackman, B.K.; Chapman, M.A.; Kane, N.C.; Tang, S.; Ungerer, M.C.; Knapp, S.J.; Rieseberg, L.H.; Burke, J.M. The Sunflower (Helianthus annuus L.) Genome Reflects a Recent History of Biased Accumulation of Transposable Elements. Plant J. 2012, 72, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Laclette, E.; Lyons, E.; Hernández-Guzmán, G.; Pérez-Torres, C.A.; Carretero-Paulet, L.; Chang, T.-H.; Lan, T.; Welch, A.J.; Juárez, M.J.A.; Simpson, J.; et al. Architecture and Evolution of a Minute Plant Genome. Nature 2013, 498, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennetzen, J.L.; Wang, H. The Contributions of Transposable Elements to the Structure, Function, and Evolution of Plant Genomes. Plant Biol. 2014, 65, 505–530. [Google Scholar] [CrossRef]
- Baud, A.; Wan, M.; Nouaud, D.; Francillonne, N.; Anxolabéhère, D.; Quesneville, H. Traces of Transposable Elements in Genome Dark Matter Co-Opted by Flowering Gene Regulation Networks. Peer Community J. 2022, 2, e14. [Google Scholar] [CrossRef]
- Kapusta, A.; Kronenberg, Z.; Lynch, V.J.; Zhuo, X.; Ramsay, L.; Bourque, G.; Yandell, M.; Feschotte, C. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genet. 2013, 9, e1003470. [Google Scholar] [CrossRef] [Green Version]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory Activities of Transposable Elements: From Conflicts to Benefits. Nat. Rev. Genet. 2017, 18, 71–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.H.; Choi, M.N.; Yoon, K.H.; Kim, K.-N. Ectopic Expression of SjCBL1, Calcineurin B-Like 1 Gene from Sedirea Japonica, Rescues the Salt and Osmotic Stress Hypersensitivity in Arabidopsis Cbl1 Mutant. Front. Plant Sci. 2018, 9, 1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [Green Version]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-Scale Genome Assembly Provides Insights into Rye Biology, Evolution and Agronomic Potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewski, A.J.; Curtis, C.A. Transfer of the Glu-D1 Gene from Chromosome 1D of Breadwheat to Chromosome 1R in Hexaploid Triticale. Plant Breed. 1992, 109, 203–210. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Q.; Wang, Y.; Ma, J.; Wu, N.; Ni, S.; Luo, T.; Zhuang, L.; Chu, C.; Cho, S.-W.; et al. Chromosome Aberrations Induced by Zebularine in Triticale. Genome 2016, 59, 485–492. [Google Scholar] [CrossRef]
- Shi, C.; Xu, L. Characters of Cysteine Endopeptidases in Wheat Endosperm during Seed Germination and Subsequent Seedling Growth. J. Integr. Plant Biol. 2009, 51, 52–57. [Google Scholar] [CrossRef]
- Tottman, D.R. The Decimal Code for the Growth Stages of Cereals, with Illustrations. Ann. Appl. Biol. 1987, 110, 441–454. [Google Scholar] [CrossRef]
- Szewińska, J.; Simińska, J.; Bielawski, W. The Roles of Cysteine Proteases and Phytocystatins in Development and Germination of Cereal Seeds. J. Plant Physiol. 2016, 207, 10–21. [Google Scholar] [CrossRef]
- Yi, R.; Zhu, Z.; Hu, J.; Qian, Q.; Dai, J.; Ding, Y. Identification and Expression Analysis of microRNAs at the Grain Filling Stage in Rice (Oryza sativa L.) via Deep Sequencing. PLOS One 2013, 8, e57863. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liu, H.; Wang, K.; Liu, L.; Wang, S.; Zhao, Y.; Yin, J.; Li, Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol. 2013, 13, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Li, Y.; Weng, J.; Liu, H.; Yu, G.; Liu, Y.; Xiao, Q.; Huang, H.; Wang, Y.; Wei, B.; et al. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation. Plant J. 2021, 105, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-H.; Slotkin, R.K. The initiation of RNA interference (RNAi) in plants. Curr. Opin. Plant Biol. 2021, 61, 102014. [Google Scholar] [CrossRef]
- Zemach, A.; Kim, M.Y.; Silva, P.; Rodrigues, J.A.; Dotson, B.; Brooks, M.D.; Zilberman, D. Local DNA Hypomethylation Activates Genes in Rice Endosperm. Proc. Natl. Acad. Sci. USA 2010, 107, 18729–18734. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.-F.; Ibarra, C.A.; Silva, P.; Zemach, A.; Eshed-Williams, L.; Fischer, R.L.; Zilberman, D. Genome-Wide Demethylation of Arabidopsis Endosperm. Science 2009, 324, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Enrichment Tool for Animals and Plants. Bioinformatics 2019, 36, 2628–2629. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R Package for the Visualization of Intersecting Sets and Their Properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef]
No. | Variety Name | Origin |
---|---|---|
1 | Dublet | Poland |
2 | Legalo | Poland |
3 | Sandro | Switzerland |
4 | Grebeshok | Russia |
5 | Lana | Belarus |
6 | Pamyati Merezhko | Russia–Belarus |
7 | Ukro | Ukraine–Russia |
8 | Ulyana | Belarus |
9 | Khlebodar Ukrainian | Ukraine |
10 | Yarilo | Russia |
11 | 131/1656 | Russia |
12 | 131/7 | Russia |
13 | 6-35-5 | Russia |
14 | C95 | Russia |
15 | C238 | Russia |
16 | C245 | Russia |
17 | C259 | Russia |
18 | V17/50 | Russia |
19 | L8665 | Russia |
20 | P2-16-20 | Russia |
21 | P13-5-2 | Russia |
22 | P13-5-13 | Russia |
23 | PRAG551 | Russia |
Primer ID | Primer Sequences 5′- 3′ | Expected Length of PCR Product, bp |
---|---|---|
1A2902 | CCATGATTGAAGATGAATTAGATCAG | 234 |
GATATGCCGGGGTGTTACTG | ||
1A59 | TGATTGAAGATGAATTAGATCAGAAGT | 208 |
TATGAGCGACGACATCTGCC | ||
3B61 | TTTGTTGTTGTCGCACGAGC | 302 |
ACCTTGATTATGTGGGCCCG | ||
3B75 | CCGTGTTGCTGCACAGAAAT | 162 |
CCAGAAAAGAAAAGGACAGGCA | ||
3B82 | GACCGACATTGTGACTCCGT | 298 |
ACACCCAAACAGAGAGGAGA | ||
6A12 | GCACATGTGACGTAGGGACA | 168 |
TGCAACTATCATAGGGTGTGTGT | ||
7B70 | GTGAAGGGGGTTGGACTCAC | 200 |
TGTTTTTCGTAGTTTGCACCCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polkhovskaya, E.; Bolotina, A.; Merkulov, P.; Dudnikov, M.; Soloviev, A.; Kirov, I. Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages. Agronomy 2023, 13, 292. https://doi.org/10.3390/agronomy13020292
Polkhovskaya E, Bolotina A, Merkulov P, Dudnikov M, Soloviev A, Kirov I. Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages. Agronomy. 2023; 13(2):292. https://doi.org/10.3390/agronomy13020292
Chicago/Turabian StylePolkhovskaya, Ekaterina, Anna Bolotina, Pavel Merkulov, Maxim Dudnikov, Alexander Soloviev, and Ilya Kirov. 2023. "Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages" Agronomy 13, no. 2: 292. https://doi.org/10.3390/agronomy13020292
APA StylePolkhovskaya, E., Bolotina, A., Merkulov, P., Dudnikov, M., Soloviev, A., & Kirov, I. (2023). Long-Read cDNA Sequencing Revealed Novel Expressed Genes and Dynamic Transcriptome Landscape of Triticale (x Triticosecale Wittmack) Seed at Different Developing Stages. Agronomy, 13(2), 292. https://doi.org/10.3390/agronomy13020292