Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Extraction
2.3. Bioactive Compound Estimation of KDML 105 Bran Extract
2.3.1. Determination of Tocopherols
2.3.2. Determination of γ-Oryzanol
2.3.3. Determination of Phytic Acid and Phenolic Compounds
2.3.4. Determination of Free Fatty Acids
2.4. Determination of Antioxidant Activities
2.4.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Scavenging Assay
2.4.2. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid) (ABTS) Scavenging Assay
2.4.3. Metal Chelating Assay
2.5. Cell Viability Assay
2.6. Anti-Inflammation via Nitric Oxide Inhibition
2.7. Semi-Quantitative Reverse Transcription and Polymerase Chain Reaction Analysis
2.8. Statistical Analysis
3. Results
3.1. Bioactive Constituents of KDML105 Bran Extract
3.2. Antioxidant Activities
3.3. Anti-Inflammation via Nitric Oxide Inhibition
3.4. Effect of KDML105 Bran Extract on Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice Bran Nutraceutics: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef] [PubMed]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Effect of Extraction Conditions on Phenolic Content, Anthocyanin Content and Antioxidant Activity of Bran Extracts from Thai Rice Cultivars. J. Cereal Sci. 2019, 86, 86–91. [Google Scholar] [CrossRef]
- Fraterrigo Garofalo, S.; Tommasi, T.; Fino, D. A Short Review of Green Extraction Technologies for Rice Bran Oil. Biomass Convers. Biorefin. 2021, 11, 569–587. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Bioactive Compounds from By-Products of Rice Cultivation and Rice Processing: Extraction and Application in the Food and Pharmaceutical Industries. Trends Food Sci. Technol. 2019, 86, 109–117. [Google Scholar] [CrossRef]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock, M.J.; Ricke, S.C. Current Trends of Rice Milling Byproducts for Agricultural Applications and Alternative Food Production Systems. Front. Sustain. Food Syst. 2019, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Manosroi, A.; Ruksiriwanich, W.; Manosroi, W.; Abe, M.; Manosroi, J. In Vivo Hair Growth Promotion Activity of Gel Containing Niosomes Loaded with the Oryza Sativa Bran Fraction (OSF3). Adv. Sci. Lett. 2012, 5, 222–228. [Google Scholar] [CrossRef]
- Pantelireis, N.; Higgins, C.A. A Bald Statemen—Current Approaches to Manipulate Miniaturisation Focus Only on Promoting Hair Growth. Exp. Dermatol. 2018, 27, 959–965. [Google Scholar] [CrossRef]
- Katzer, T.; Leite Junior, A.; Beck, R.; da Silva, C. Physiopathology and Current Treatments of Androgenetic Alopecia: Going beyond Androgens and Anti-Androgens. Dermatol. Ther. 2019, 32, e13059. [Google Scholar] [CrossRef]
- Balık, A.R.; Balık, Z.B.; Aktaş, A.; Neşelioğlu, S.; Karabulut, E.; Karabulut, A.B. Examination of Androgenetic Alopecia with Serum Biomarkers. J. Cosmet. Dermatol. 2021, 20, 1855–1859. [Google Scholar] [CrossRef]
- Hou, C.; Miao, Y.; Wang, J.; Wang, X.; Chen, C.Y.; Hu, Z.Q. Collagenase IV Plays an Important Role in Regulating Hair Cycle by Inducing VEG F, IGF-I, and TGF-β Expression. Drug Des. Devel. Ther. 2015, 9, 5373–5383. [Google Scholar] [CrossRef]
- Inui, S.; Itami, S. Molecular Basis of Androgenetic Alopecia: From Androgen to Paracrine Mediators through Dermal Papilla. J. Dermatol. Sci. 2011, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.Q.; Wu, Z.B.; Chu, X.Y.; Bi, Z.G.; Fan, W.X. An Investigation of Crosstalk between Wnt/β-Catenin and Transforming Growth Factor-β Signaling in Androgenetic Alopecia. Medicine 2016, 95, e4297. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, B.; Li, Y.; Han, L.; Tang, X.; Deng, W.; Lai, W.; Wan, M. Dihydrotestosterone Regulates Hair Growth through the Wnt/b-Catenin Pathway in C57BL/6 Mice and in Vitro Organ Culture. Front. Pharmacol. 2020, 10, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwack, M.H.; Kang, B.M.; Kim, M.K.; Kim, J.C.; Sung, Y.K. Minoxidil Activates β-Catenin Pathway in Human Dermal Papilla Cells: A Possible Explanation for Its Anagen Prolongation Effect. J. Dermatol. Sci. 2011, 62, 154–159. [Google Scholar] [CrossRef]
- Hu, X.M.; Li, Z.X.; Zhang, D.Y.; Yang, Y.C.; Fu, S.A.; Zhang, Z.Q.; Yang, R.H.; Xiong, K. A Systematic Summary of Survival and Death Signalling during the Life of Hair Follicle Stem Cells. Stem Cell Res. Ther. 2021, 12, 453. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.; Jing, J.; Yu, L.; Wu, X.; Lu, Z. Regulation of Hair Follicle Development by Exosomes Derived from Dermal Papilla Cells. Biochem. Biophys. Res. Commun. 2018, 500, 325–332. [Google Scholar] [CrossRef]
- Gupta, A.K.; Talukder, M.; Venkataraman, M.; Bamimore, M.A. Minoxidil: A Comprehensive Review. J. Dermatol. Treat. 2022, 33, 1896–1906. [Google Scholar] [CrossRef]
- Dhariwala, M.Y.; Ravikumar, P. An Overview of Herbal Alternatives in Androgenetic Alopecia. J. Cosmet. Dermatol. 2019, 18, 966–975. [Google Scholar] [CrossRef]
- Wisetkomolmat, J.; Arjin, C.; Satsook, A.; Seel-audom, M.; Ruksiriwanich, W.; Prom-u-Thai, C.; Sringarm, K. Comparative Analysis of Nutritional Components and Phytochemical Attributes of Selected Thai Rice Bran. Front. Nutr. 2022, 9, 833730. [Google Scholar] [CrossRef]
- Arjin, C.; Hongsibsong, S.; Pringproa, K.; Seel-audom, M.; Ruksiriwanich, W.; Sutan, K.; Sommano, S.R.; Sringarm, K. Effect of Ethanolic Caesalpinia Sappan Fraction on In Vitro Antiviral Activity against Porcine Reproductive and Respiratory Syndrome Virus. Vet. Sci. 2021, 8, 106. [Google Scholar] [CrossRef]
- Mighri, H.; Akrout, A.; Bennour, N.; Eljeni, H.; Zammouri, T.; Neffati, M. LC/MS Method Development for the Determination of the Phenolic Compounds of Tunisian Ephedra Alata Hydro-Methanolic Extract and Its Fractions and Evaluation of Their Antioxidant Activities. S. Afr. J. Bot. 2019, 124, 102–110. [Google Scholar] [CrossRef]
- Arjin, C.; Souphannavong, C.; Norkeaw, R.; Chaiwang, N.; Mekchay, S.; Sartsook, A.; Thongkham, M.; Yosen, T.; Ruksiriwanich, W.; Sommano, S.R.; et al. Effects of Dietary Perilla Cake Supplementation in Growing Pig on Productive Performance, Meat Quality, and Fatty Acid Profiles. Animals 2021, 11, 3213. [Google Scholar] [CrossRef]
- Sringarm, K.; Chaiwang, N.; Wattanakul, W.; Mahinchai, P.; Satsook, A.; Norkeaw, R.; Seel-Audom, M.; Moonmanee, T.; Mekchay, S.; Sommano, S.R.; et al. Improvement of Intramuscular Fat in Longissimus Muscle of Finishing Thai Crossbred Black Pigs by Perilla Cake Supplementation in a Low-Lysine Diet. Foods 2022, 11, 907. [Google Scholar] [CrossRef]
- Manosroi, A.; Lohcharoenkal, W.; Ruksiriwanich, W.; Kietthanakorn, B.-O.; Manosroi, W.; Manosroi, J. In Vitro Immunostimulating Activity of the Dried Sap from Fermented Thai Rice on Human and Murine Neutrophils. Adv. Sci. Lett. 2012, 17, 306–311. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Linsaenkart, P.; Jantrawut, P.; Rajchasom, S. Optimization of Placenta Extraction for Wound Healing Activity. Chiang Mai J. Sci. 2019, 46, 946–959. [Google Scholar]
- Manosroi, A.; Chankhampan, C.; Kietthanakorn, B.; Ruksiriwanich, W.; Chaikul, P.; Boonpisuttinant, K.; Sainakham, M.; Manosroi, W.; Tangjai, T.; Manosroi, J. Pharmaceutical and Cosmeceutical Biological Activities of Hemp (Cannabis sativa L. var. sativa) Leaf and Seed Extracts. Chiang Mai J. Sci. 2019, 46, 180–195. [Google Scholar]
- Khantham, C.; Linsaenkart, P.; Chaitep, T.; Jantrawut, P.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Sommano, S.R.; Prom-U-Thai, C.; et al. Antioxidation, Anti-Inflammation, and Regulation of SRD5A Gene Expression of Oryza Sativa Cv. Bue Bang 3 CMU Husk and Bran Extracts as Androgenetic Alopecia Molecular Treatment Substances. Plants 2022, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Nazir, Y.; Linsaenkart, P.; Khantham, C.; Chaitep, T.; Jantrawut, P.; Chittasupho, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Sommano, S.R.; et al. High Efficiency in Vitro Wound Healing of Dictyophora Indusiata Extracts via Anti-Inflammatory and Collagen Stimulating (MMP-2 Inhibition) Mechanisms. J. Fungi 2021, 7, 1100. [Google Scholar] [CrossRef]
- Woranam, K.; Senawong, G.; Utaiwat, S.; Yunchalard, S.; Sattayasai, J.; Senawong, T. Anti-Inflammatory Activity of the Dietary Supplement Houttuynia Cordata Fermentation Product in RAW264.7 Cells and Wistar Rats. PLoS ONE 2020, 15, e0230645. [Google Scholar] [CrossRef] [Green Version]
- Chithra, M.A.; Ijinu, T.P.; Kharkwal, H.; Sharma, R.K.; Pushpangadan, P.; George, V. Phenolic Rich Cocos Nucifera Inflorescence Extract Ameliorates Inflammatory Responses in LPS-Stimulated RAW264.7 Macrophages and Toxin-Induced Murine Models. Inflammopharmacology 2020, 28, 1073–1089. [Google Scholar] [CrossRef]
- Khantham, C.; Yooin, W.; Sringarm, K.; Sommano, S.R.; Jiranusornkul, S.; Carmona, F.D.; Nimlamool, W.; Jantrawut, P.; Rachtanapun, P.; Ruksiriwanich, W. Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2. Biology 2021, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Song, K.H.; Seo, C.S.; Yang, W.K.; Gu, H.O.; Kim, K.J.; Kim, S.H. Extracts of Phyllostachys Pubescens Leaves Represses Human Steroid 5-Alpha Reductase Type 2 Promoter Activity in Bhp-1 Cells and Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia in Rat Model. Nutrients 2021, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.S.; Bellesini, L.S.; Defino, H.L.A.; da Silva Herrero, C.F.; Beloti, M.M.; Rosa, A.L. Hedgehog Signaling and Osteoblast Gene Expression Are Regulated by Purmorphamine in Human Mesenchymal Stem Cells. J. Cell Biochem. 2012, 113, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Carr, A.L.; Sun, L.; Drewing, A.; Lee, J.; Rao, Z. A Novel Function of the Human Oncogene Stil: Regulation of PC12 Cell Toxic Susceptibility through the Shh Pathway. Sci. Rep. 2015, 5, 16513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junlatat, J.; Sripanidkulchai, B. Hair Growth-Promoting Effect of Carthamus Tinctorius Floret Extract. Phytother Res. 2014, 28, 1030–1036. [Google Scholar] [CrossRef]
- Ramadhani, F.J.; Bak, D.H.; Kang, S.H.; Park, C.H.; Park, S.H.; Chung, B.Y.; Bai, H.W. The Effects of Centipedegrass Extract on Hair Growth via Promotion of Anagen Inductive Activity. PLoS ONE 2022, 17, e0265532. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Li, F.; Meng, Q.; Zhao, Y.; Chen, L.; Zhang, H.; Xue, L.; Zhang, X.; Lengner, C.; Yu, Z. Post-Transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by MiR-22. PLoS Genet. 2015, 11, e1005253. [Google Scholar] [CrossRef]
- Peyravian, N.; Deo, S.; Daunert, S.; Jimenez, J.J. The Inflammatory Aspect of Male and Female Pattern Hair Loss. J. Inflamm. Res. 2020, 13, 879–881. [Google Scholar] [CrossRef]
- Jung, Y.H.; Chae, C.W.; Choi, G.E.; Shin, H.C.; Lim, J.R.; Chang, H.S.; Park, J.; Cho, J.H.; Park, M.R.; Lee, H.J.; et al. Cyanidin 3-O-Arabinoside Suppresses DHT-Induced Dermal Papilla Cell Senescence by Modulating P38-Dependent ER-Mitochondria Contacts. J. Biomed Sci. 2022, 29, 1–17. [Google Scholar] [CrossRef]
- Upton, J.H.; Hannen, R.F.; Bahta, A.W.; Farjo, N.; Farjo, B.; Philpott, M.P. Oxidative Stress-Associated Senescence in Dermal Papilla Cells of Men with Androgenetic Alopecia. J. Investig. Dermatol. 2015, 135, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Rungratanawanich, W.; Memo, M.; Uberti, D. Redox Homeostasis and Natural Dietary Compounds: Focusing on Antioxidants of Rice (Oryza sativa L.). Nutrients 2018, 10, 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goufo, P.; Trindade, H. Rice Antioxidants: Phenolic Acids, Flavonoids, Anthocyanins, Proanthocyanidins, Tocopherols, Tocotrienols, c-Oryzanol, and Phytic Acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic Acid: Blessing in Disguise, a Prime Compound Required for Both Plant and Human Nutrition. Food Res. Int. 2021, 142, 110193. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Chaikul, P.; Chankhampan, C.; Ruksiriwanich, W.; Manosroi, W.; Manosroi, J. 5α-Reductase Inhibition and Melanogenesis Induction of the Selected Thai Plant Extracts. Chiang Mai J. Sci. 2018, 45, 220–236. [Google Scholar]
- Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of Refining Process on Physicochemical Parameters, Chemical Compositions and in Vitro Antioxidant Activities of Rice Bran Oil. LWT 2019, 109, 26–32. [Google Scholar] [CrossRef]
- Xu, D.; Hao, J.; Wang, Z.; Liang, D.; Wang, J.; Ma, Y.; Zhang, M. Physicochemical Properties, Fatty Acid Compositions, Bioactive Compounds, Antioxidant Activity and Thermal Behavior of Rice Bran Oil Obtained with Aqueous Enzymatic Extraction. LWT 2021, 149, 111817. [Google Scholar] [CrossRef]
- Wei, C.C.; Yen, P.L.; Chang, S.T.; Cheng, P.L.; Lo, Y.C.; Liao, V.H.C. Antioxidative Activities of Both Oleic Acid and Camellia Tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis Elegans. PLoS ONE 2016, 11, e0157195. [Google Scholar] [CrossRef] [Green Version]
- Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and Cyclooxygenase Activities of Fatty Acids Found in Food. J. Agric. Food Chem. 2002, 50, 2231–2234. [Google Scholar] [CrossRef]
- Lv, H.; Chen, S.; Xu, X.; Zhu, M.; Zhao, W.; Liu, K.; Liu, K. Isolation of Linoleic Acid from Sambucus Williamsii Seed Oil Extracted by High Pressure Fluid and Its Antioxidant, Antiglycemic, Hypolipidemic Activities. Int. J. Food Eng. 2015, 11, 383–391. [Google Scholar] [CrossRef]
- Wolf, R.; Schönfelder, G.; Paul, M.; Blume-Peytavi, U. Nitric Oxide in the Human Hair Follicle: Constitutive and Dihydrotestosterone-Induced Nitric Oxide Synthase Expression and NO Production in Dermal Papilla Cells. J. Mol. Med. 2003, 81, 110–117. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Oxidative Stress, Diet and Prostate Cancer. World J. Mens Health 2020, 38, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Yanez, D.A.; Lacher, R.K.; Vidyarthi, A.; Colegio, O.R. The Role of Macrophages in Skin Homeostasis. Pflugers Arch. 2017, 469, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, R.; Figueiredo, C.P.; Passos, G.F.; Calixto, J.B. Reduced Skin Inflammatory Response in Mice Lacking Inducible Nitric Oxide Synthase. Biochem. Pharmacol. 2009, 78, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Chakraborty, R.; Kalita, P. Rice—Not Just a Staple Food: A Comprehensive Review on Its Phytochemicals and Therapeutic Potential. Trends Food Sci. Technol. 2020, 97, 265–285. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med. Cell Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xiang, S.; Jiang, W.; Kong, L.; Tan, Z.; Liang, Z.; Yuan, Z.; Yi, J.; Zhu, L. Gamma-Oryzanol Protects Human Liver Cell (L02) from Hydrogen Peroxide-Induced Oxidative Damage through Regulation of the MAPK/Nrf2 Signaling Pathways. J. Food Biochem. 2022, 46, e14118. [Google Scholar] [CrossRef]
- Müller, A.K.; Albrecht, F.; Rohrer, C.; Koeberle, A.; Werz, O.; Schlörmann, W.; Glei, M.; Lorkowski, S.; Wallert, M. Olive Oil Extracts and Oleic Acid Attenuate the Lps-Induced Inflammatory Response in Murine Raw264.7 Macrophages but Induce the Release of Prostaglandin E2. Nutrients 2021, 13, 4437. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, M.E.; Price, V.H. Different Levels of 5α-Reductase Type I and II, Aromatase, and Androgen Receptor in Hair Follicles of Women and Men with Androgenetic Alopecia. J. Investig. Dermatol. 1997, 109, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, P.; Serrano-Falcón, C.; Torres, J.M.; Serrano, S.; Ortega, E. 5α-Reductase Isozymes and Aromatase MRNA Levels in Plucked Hair from Young Women with Female Pattern Hair Loss. Arch. Dermatol. Res. 2018, 310, 77–83. [Google Scholar] [CrossRef]
- Li, J.; Ding, Z.; Wang, Z.; Lu, J.F.; Maity, S.N.; Navone, N.M.; Logothetis, C.J.; Mills, G.B.; Kim, J. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention. PLoS ONE 2011, 6, e28840. [Google Scholar] [CrossRef] [Green Version]
- Saewan, N. Effect of Coffee Berry Extract on Anti-Aging for Skin and Hair—In Vitro Approach. Cosmetics 2022, 9, 66. [Google Scholar] [CrossRef]
- Azizi, A.; Mumin, N.H.; Shafqat, N. Phytochemicals With Anti 5-Alpha-Reductase Activity: A Prospective For Prostate Cancer Treatment. F1000Research 2021, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, G.; Li, X.; Sun, W.; Liang, Y.; Gan, D.; Liu, G.; Song, W.; Wang, Z. Study on the Chemical Constituents of Nut Oil from Prunus Mira Koehne and the Mechanism of Promoting Hair Growth. J. Ethnopharmacol. 2020, 258, 112831. [Google Scholar] [CrossRef]
- Zhang, H.; Nan, W.; Wang, S.; Song, X.; Si, H.; Li, T.; Li, G. Epigallocatechin-3-Gallate Promotes the Growth of Mink Hair Follicles through Sonic Hedgehog and Protein Kinase B Signaling Pathways. Front. Pharmacol. 2018, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Kim, Y.; Jung, N.; Hwang, J.W.; Kim, N.; Ha, J.-C.; Kim, M.J.; Lee, Y.; Choi, Y.-S.; Han, K.; et al. Hair Growth-Promoting Effect of Recombinant Human Sonic Hedgehog Proteins. Biomed. Dermatol. 2019, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Paladini, R.D.; Saleh, J.; Qian, C.; Xu, G.X.; Rubin, L.L. Modulation of Hair Growth with Small Molecule Agonists of the Hedgehog Signaling Pathway. J. Investig. Dermatol. 2005, 125, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y. Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms. Int. J. Mol. Sci. 2018, 19, 2703. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Lee, J.Y.; Choi, S.M.; Shin, Y.; Park, S. A Mixture of Tocopherol Acetate and L-Menthol Synergistically Promotes Hair Growth in C57bl/6 Mice. Pharmaceutics 2020, 12, 1234. [Google Scholar] [CrossRef]
- Kubanov, A.A.; Gallyamova, Y.A.; Korableva, O.A. The Study of Growth Factors in Patients with Androgenic Alopecia. Biomed. Pharmacol. J. 2017, 10, 1219–1228. [Google Scholar] [CrossRef]
- Choi, J.-S.; Jeon, M.-H.; Moon, W.-S.; Moon, J.-N.; Cheon, E.J.; Kim, J.-W.; Jung, S.K.; Ji, Y.-H.; Son, S.W.; Kim, M.-R. In Vivo Hair Growth-Promoting Effect of Rice Bran Extract Prepared by Supercritical Carbon Dioxide Fluid. Biol. Pharm. Bull. 2014, 37, 44–53. [Google Scholar] [CrossRef]
Gene | Forward Sequence | Reverse Sequence | Accession Number |
---|---|---|---|
SRD5A1 | AGCCATTGTGCAGTGTATGC | AGCCTCCCCTTGGTATTTTG | NM_001047.4 |
SRD5A2 | TGAATACCCTGATGGGTGG | CAAGCCACCTTGTGGAATC | NM_000348.4 |
SRD5A3 | TCCTTCTTTGCCCAAACATC | TCCTTCTTTGCCCAAACATC | NM_024592.5 |
SHH | AAAAGCTGACCCCTTTAGCC | GCTCCGGTGTTTTCTTCATC | NM_000193.4 |
SMO | GAAGTGCCCTTGGTTCGGACA | CCGCCAGTCAGCCACGAAT | NM_005631.5 |
GLI1 | GCAGGGAGTGCAGCCAATACAG | GAGCGGCGGCTGACAGTATA | NM_005269.3 |
CTNNB1 | CCCACTAATGTCCAGCGTTT | AACCAAGCATTTTCACCAGG | NM_001330729.2 |
TGFB1 | GCCCTGGACACCAACTATTG | GTCCAGGCTCCAAATGTAGG | NM_000660.7 |
VEGF | CTACCTCCACCATGCCAAGT | GCGAGTCTGTGTTTTTGCAG | NM_001025366.3 |
GAPDH | GGAAGGTGAAGGTCGGAGTC | CTCAGCCTTGACGGTGCCATG. | NM_001289745.3 |
Group | Bioactive Compounds | Content (mg/100 g extract) |
---|---|---|
Phenolic compounds | Caffeic acid | 2.21 ± 0.00 |
Chlorogenic acid | 10.28 ± 0.01 | |
Epigallocatechin gallate | 5.50 ± 0.04 | |
Ferulic acid | 2.87 ± 0.00 | |
Gallic acid | 1.52 ± 0.00 | |
Hydroxybenzoic acid | 4.94 ± 0.01 | |
Naringin | 2.77 ± 0.00 | |
o-Coumaric acid | 9.46 ± 0.02 | |
p-Coumaric acid | 6.14 ± 0.00 | |
Quercetin | 4.13 ± 0.01 | |
Rosmarinic acid | 1.17 ± 0.00 | |
γ-Oryzanol | 10.39 ± 2.17 | |
Phytic acid | Phytic acid | 19.26 ± 0.01 |
Tocopherols | α-Tocopherol | 40.19 ± 0.04 |
β-tocopherol | 2.30 ± 0.01 | |
γ-tocopherol | 48.01 ± 0.00 | |
δ-tocopherol | 0.81 ± 0.08 | |
Group | Bioactive compounds | Content (g/100 g extract) |
Saturated fatty acids | Arachidic acid | 1.06 ± 0.32 |
Behenic acid | 0.25 ± 0.00 | |
Heneicosylic acid | 1.29 ± 0.01 | |
Lignoceric acid | 0.45 ± 0.00 | |
Myristic acid | 0.27 ± 0.02 | |
Palmitic acid | 19.67 ± 0.18 | |
Stearic acid | 2.17 ± 0.02 | |
Monounsaturated fatty acids | Oleic acid | 42.62 ± 0.40 |
Polyunsaturated fatty acids | Eicosadienoic acid | 0.11 ± 0.00 |
Linoleic acid | 31.62 ± 0.29 | |
α-Linolenic acid | 0.48 ± 0.00 | |
γ-Linolenic acid | 0.02 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khantham, C.; Ruksiriwanich, W.; Sringarm, K.; Prom-u-thai, C.; Jamjod, S.; Arjin, C.; Muangsanguan, A.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; et al. Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells. Agronomy 2023, 13, 295. https://doi.org/10.3390/agronomy13020295
Khantham C, Ruksiriwanich W, Sringarm K, Prom-u-thai C, Jamjod S, Arjin C, Muangsanguan A, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, et al. Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells. Agronomy. 2023; 13(2):295. https://doi.org/10.3390/agronomy13020295
Chicago/Turabian StyleKhantham, Chiranan, Warintorn Ruksiriwanich, Korawan Sringarm, Chanakan Prom-u-thai, Sansanee Jamjod, Chaiwat Arjin, Anurak Muangsanguan, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Yuthana Phimolsiripol, and et al. 2023. "Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells" Agronomy 13, no. 2: 295. https://doi.org/10.3390/agronomy13020295
APA StyleKhantham, C., Ruksiriwanich, W., Sringarm, K., Prom-u-thai, C., Jamjod, S., Arjin, C., Muangsanguan, A., Rachtanapun, P., Jantanasakulwong, K., Phimolsiripol, Y., Barba, F. J., Sommano, S. R., Chutoprapat, R., & Boonpisuttinant, K. (2023). Effects of Bioactive Composition in Oryza sativa L. cv. KDML105 Bran Extract on Gene Expression Related to Hair Cycle in Human Hair Follicle Dermal Papilla Cells. Agronomy, 13(2), 295. https://doi.org/10.3390/agronomy13020295