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Abstract: The chlorophyll fluorescence parameter Fv/Fm plays a significant role in indicating the
photosynthetic function of plants. The existing technical methods used to measure Fv/Fm are often
inefficient and cumbersome. To realize fast and non-destructive monitoring of Fv/Fm, this study took
rice under different fertilizer treatments and measured the hyperspectral reflectance information and
Fv/Fm data of rice leaves during the whole growth period. Five spectral transformation methods were
used to pre-process the spectral data. Then, spectral characteristic wavelengths were extracted by the
correlation coefficient method (CC) combined with the competitive adaptative reweighted sampling
(CARS) algorithm. Finally, based on the combination of characteristic wavelengths extracted from
different spectral transformations, back propagation neural network (BPNN) models were constructed
and evaluated. The results showed that: (1) first derivative transform (FD), multiplicative scatter
correction (MSC) and standardized normal variation (SNV) methods could effectively highlight
the correlation between spectral data and Fv/Fm. The most sensitive bands with high correlation
coefficients were concentrated in the range of 650–850 nm, and the absolute values of the highest
correlation coefficients were 0.84, 0.73, and 0.72, respectively. (2) The CC-CARS algorithm could
effectively screen the characteristic wavelengths sensitive to Fv/Fm. The number of sensitive bands
extracted by FD, MSC, and SNV pre-treatment methods were 14, 13, and 16 which only accounted for
2.33%, 2.16%, and 2.66% of the total spectral wavelength (the number of full spectral bands is 601),
respectively. (3) The BPNN models were established based on the above sensitive wavelengths, and
it was found that MSC-CC-CARS-BPNN had the highest prediction accuracy, and its testing set R2,
RMSE and RPD were 0.74, 1.88% and 2.46, respectively. The results can provide technical references
for hyperspectral data pre-processing and rapid and non-destructive monitoring of chlorophyll
fluorescence parameters.

Keywords: rice; chlorophyll fluorescence parameters; Fv/Fm; hyperspectral; spectrum transform;
correlation coefficient method; competitive adaptative reweighted sampling; back propagation
neural network

1. Introduction

Chlorophyll fluorescence is the endogenous light emitted by plants themselves, which,
along with photosynthesis and heat dissipation, participates in the distribution of energy
acquired by plants [1–3]. Specifically, the residual light energy that is not consumed or
converted into heat by photochemical reactions will radiate from plants in the form of
fluorescence. As a result, compared to “apparent” gas exchange indicators, chlorophyll
fluorescence, which reflects “internality”, is a probe for the quick and non-destructive
assessment of plant photosynthetic function [4–6]. The pulse amplitude modulation (PAM)
fluorescence measurement is known as the active fluorescence observation technique, which
can obtain a large number of chlorophyll fluorescence parameters [7]. This technology
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plays an important role in research on plant physiological growth status, photosynthesis
mechanisms, biological abiotic stress, screening of good traits, and other fields [8–11].
However, PAM fluorescence technology also has some limitations, such as a long dark
adaptation time, difficult field environment measurement, single data analysis method,
and other problems [12], which limit the practical application and high-throughput test
efficiency of this method [13]. Therefore, it is of great significance to explore a real-time
and efficient monitoring method for plant chlorophyll fluorescence parameters [13].

With the rapid development of spectral analysis technology, it has been increasingly
widely used in plant physiological and ecological information research in recent years [14].
As one of the most frequently used chlorophyll fluorescence parameters, Fv/Fm is the ratio
of variable fluorescence (Fv) to maximum fluorescence (Fm) and is the maximum photo-
synthetic efficiency of the reaction center of optical system II (PS II), which is closely related
to plant photosynthesis [15,16]. The relationship between the reflectance spectrum and the
chlorophyll fluorescence parameter Fv/Fm in plants has been the subject of numerous stud-
ies, and also many studies have been carried out, such as rice [17], wheat [18], potato [19],
grape [20], corn [21], eggplant [22], and pepper [23]. All these studies collectively show the
feasibility and importance of using spectral analysis technology to monitor the fluorescence
parameter Fv/Fm.

Unfortunately, the original spectral information is often a high-dimensional and com-
plex data signal; meanwhile, it is easily interfered with by measurement errors, random
noise, external environment, and other factors in the process of spectral data acquisi-
tion [24,25], which will have a certain impact on the utilization of spectral data and the
accuracy of model construction. Therefore, it is crucial to conduct effective pre-treatment of
spectral data and feature wavelength screening to suppress noise interference and reduce
redundancy among spectral data to improve the predictive performance of relevant models.
Although most of the above studies have carried out some basic pre-processing on the
collected spectral data, in general, there are relatively few studies focusing on the effect
of different spectral pre-processing and characteristic wavelength screening methods on
monitoring Fv/Fm.

Rice (Oryza sativa L.) is one of the most important crops and a major food in the
world; therefore, it is essential for the rapid, non-destructive and accurate evaluation of its
photosynthetic capacity [17]. However, the current spectral monitoring of rice chlorophyll
fluorescence parameters needs to be further studied [26]. Therefore, this study selected
rice, collected spectral information and Fv/Fm data of rice leaves, used five spectral pre-
treatment methods, combined the correlation coefficient method (CC) with competitive
adaptative reweighted sampling (CARS) to extract spectral characteristic wavelengths to
construct a back propagation neural network (BPNN) model and perform model evaluation.

The purposes of this study were as follows: (1) to compare the applicability of different
spectral transformation methods in the Fv/Fm monitoring of rice leaves; (2) extract the
characteristic wavelengths sensitive to Fv/Fm in rice leaves by the CC, CARS and CC-CARS
algorithms; and (3) compare the effectiveness of different feature extraction algorithms in
selecting sensitive feature wavelengths and establishing a BPNN model to monitor the
Fv/Fm in rice leaves.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted at Yanxi Base, Hunan Agricultural University, Chang-
sha, Hunan Province, China (113◦84′ E, 28◦30′ N). The rice test variety was Jingliangy-
ouhuazhan, and the previous crop was rapeseed, which was sown on May 10 (dry seed
printing sowing), transplanted on June 4, and harvested on September 15. The experiment
adopted large seedling machine insertion technology, and the transplanting density was
22 cm × 25 cm. Three different tillering fertilizer treatments were set up in this experiment,
as shown in Table 1. Each treatment was performed in nine replicates with a plot area
of 18 m2, and there were 27 plots in total. Field water management and conventional
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chemical treatments at normal local operating levels were used to control pests, pathogens,
and weeds.

Table 1. Fertilizer treatments in the experiment.

Treatments N1 N2 N3

Base fertilizer (kg/hm2)
15–15–15 compound fertilizer 300 300 300

lime 600 600 600

Tillering fertilizer (kg/hm2)
15–15–15 compound fertilizer 300 150 0

urea 225 150 75

Panicle fertilizer (kg/hm2)
15–15–15 compound fertilizer 75 75 75

KCI 45 45 45

2.2. Data Collection

Rice leaves spectral reflectance were determined using a Field Spec 3 portable feature
spectrometer with a spectral range of 350 to 2500 nm, and a spectral resolution of 3 nm
between 350 and 1000 nm and 10 nm between 1000 and 2500 nm. (ASD, Boulder, CO,
USA). Before using the spectrometer for every first time, it is necessary to preheat the
instrument for 20 min and then optimize and calibrate the whiteboard. The leaf clip of
the instrument and its light source were used for leaf spectrum determination. Standard
whiteboard correction was carried out before and after each measurement.

Rice leaf chlorophyll fluorescence parameter Fv/Fm was determined using the Flour
Pen110 hand-held chlorophyll fluorescence analyzer (PSI, Drasov, Czech Republic). Before
each measurement, the leaf to be measured was clamped with the dark adaptation leaf
clip (consistent with the spectral measurement position of the leaf). After 20 min of
dark adaptation, the instrument probe was used to measure the chlorophyll fluorescence
parameter Fv/Fm of the leaf.

Five rice leaves with uniform growth in each plot were randomly selected for data
measurement, and their average values were taken as the spectral reflectance and Fv/Fm
of rice leaves in the plot. All data were collected six times at the tillering (23 June), joint-
ing (7 July), booting (22 July), heading (7 August), filling (20 August), and milky-ripe
(4 September) stages of rice growth. The spectral reflectance and Fv/Fm data of 162 groups
of rice leaves were collected in total.

2.3. Data Processing

The technical roadmap of this study is shown in Figure 1. Spectral data were first
exported by ViewSpecPro software (ASD, Boulder, CO, USA); spectral data transformation
and back propagation neural network model construction were carried out in MATLAB
2021b (MathWorks, Natick, MA, USA). MATLAB 2021b and Origin 2021 (Origin Lab
Corporation, Northampton, MA, USA) are used for charting.

2.3.1. Sample Division

A total of 162 sets of data samples (leaf spectral reflectance and Fv/Fm) were collected.
According to Fv/Fm, all data were arranged from low to high. One group of samples was
chosen as the testing set sample (54 samples in total) at an interval of two groups, and the
remaining samples were used as the training set samples (108 samples in total). As shown
in Table 2, the mean value and coefficient of variation (CV) of Fv/Fm of the full sample,
training set, and testing set were not very different, and the training set and testing set had
good representativeness.
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Figure 1. Technology roadmap.

Table 2. Fv/Fm statistical characteristics of the different sample sets.

Sample Set Size Max. Min. Mean CV (%)

All 162 0.86 0.66 0.81 5.54
Training set 108 0.86 0.66 0.81 5.64
Testing set 54 0.86 0.69 0.81 5.34

2.3.2. Spectral Transformation

The original spectrum is the most direct expression of crop reflection, and spectral
transformation can weaken or eliminate background noise to varying degrees, which is
crucial for the optimization of characteristic bands and the improvement of band sensitiv-
ity [27]. In this study, five commonly used spectral transformation methods were selected
for spectral data pre-processing, including the first derivative (FD), second derivative (FD),
Savitzky—Golay smoothing algorithm (SG), multiplicative scatter correction (MSC) and
standard normal variation (SNV).

2.3.3. Spectral Feature Extraction

The correlation coefficient method (CC) is an effective statistical analysis method
used to measure the strength and direction of the linear correlation between two variables.
The correlation between variables can be expressed in numerical form, also known as the
correlation coefficient [28].

Competitive adaptative reweighted sampling (CARS) imitates the principle of “sur-
vival of the fittest” in Darwin’s theory and is combined with Monte Carlo sampling (MCS)
and the partial least squares (PLS) model regression coefficient used for feature variable
selection [29]. With the aid of the adaptive reweighted sampling technique (ARS) and the
exponential attenuation function (EDF), wavelength variables with large absolute weights
of regression coefficients in the PLS model are selected to form a subset of variables, and
then the root mean square error of cross-validation (RMSECV) is calculated by the cross-
validation method to evaluate each subset. After N MCS samplings, N RMSECV values are
obtained, and the subset of variables with the smallest RMSECV value is the optimal subset.

2.3.4. Model Construction and Accuracy Evaluation

The back propagation neural network is a multilayer feedforward neural network,
which mainly includes two processes for the forward propagation of information and
reverse transmission of error, with good robustness and a better nonlinear mapping abil-
ity. [30]. In this study, neurons in the input layer were composed of the extracted character-
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istic wavelengths, and the output layer was Fv/Fm in rice leaves. The number of nodes in
the hidden layer is determined by Equation (1) and the trial-and-error method.

q =
√

k + m + α (1)

where k is the number of variables in the input layer, m is the element in the output layer,
and α is the constant between [1,10].

The coefficient of determination (R2), see Equation (2), the root mean square error
(RMSE), see Equation (3), and the relative analysis error (RPD), see Equation (4) were
statistical parameters used to evaluate the accuracy of all models in this study. The higher
R2 is, the smaller RMSE is, and the higher RPD is, indicating the higher estimation accuracy
of the model. When RPD < 1.4, the model has no estimation ability; when 1.4 ≤ RPD < 2,
the model’s estimation ability is acceptable; and when RPD ≥ 2, the model has excellent
estimation ability.

R2 = 1−
∑n

i=1
(
yi − yj

)2

∑n
i=1(yi − y)2 (2)

RMSE =

√
∑n

i=1
(
yi − yj

)2

n
(3)

RPD =
Stdv

RMSEv
(4)

where yi and yj are the measured and predicted values, respectively, y is the average value,
Stdv is the standard deviation of the testing set, RMSEv is the RMSE of the testing set, and n
is the number of samples.

3. Results
3.1. Spectral Data Transformation

Considering the influence of the instrument sampling interval, resolution, and noise,
existing studies have shown that visible and near-infrared bands can reflect the physio-
logical, biochemical and ecological status of plants [31]. This study finally selected the
400~1000 nm band, for a total of 601 bands for analysis. The original spectral reflectance
of rice leaves and the spectral reflectance obtained through different spectral transfor-
mations are shown in Figure 2. From Figure 2a, it can be seen that the original spectral
reflectance of rice leaves had the common characteristics of green plants. According to
Figure 2b,c, the spectral shape after FD and SD transformation was completely different
from the original spectrum, and the spectral features (absorption valley and reflection peak)
were more prominent than the original spectrum. As shown in Figure 2d–f, the shape of
the spectral curve after SG, MSC, and SNV transformation was still consistent with the
original spectrum.

Since it is difficult to determine the influence and degree of spectral transformation
on data based only on the change in spectral shape, correlation analysis of Fv/Fm with
the original spectrum and the reflectance of the five transform spectra was first conducted.
As shown in Figure 3, the correlation coefficients were higher in the range of 720–850 nm,
and the maximum absolute value of the correlation coefficient (|R|) was 0.56, located
at 740 nm. The correlation coefficients of the SG transformed spectrum were basically
unchanged compared with the original spectra, and the maximum value of |R| and its
corresponding wavelength both remained the same as the original spectra. After the SD
transform spectrum, while some parts of the wavelengths’ correlation coefficients increased
slightly (the maximum value of |R| was 0.60), overall, most of the correlation coefficients
with the original spectrally sensitive wavelengths were reduced instead. Nevertheless,
after the FD, MSC, and SNV spectra were transformed, the correlation between the spectral
data and Fv/Fm significantly increased, the correlation coefficient-sensitive wave band
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was mostly concentrated in the 650~850 nm band range, and the maximum value of |R|
reached 0.84, 0.73, and 0.72, respectively.

Figure 2. Different spectral data transformations.

Figure 3. |R| between Fv/Fm and spectral reflectance under different spectrum transforms.

Then, the wavelength corresponding to the maximum absolute value of the correlation
coefficient after each spectrum transformation was used to construct the linear, exponential,
logarithmic, and quadratic polynomial equations with Fv/Fm, and the results are shown in
Table 3. It can be seen from Table 3 that compared with the other three forms, the accuracy
of the model constructed by FD, MSC, and SNV was improved to some extent, among
which the quadratic polynomial equation constructed by the FD method had the best
performance, with the R2, RMSE, and RPD of the testing set being 0.66, 2.66%, and 1.75,
respectively, which reached the level of rough evaluation of Fv/Fm. The above results
showed that FD, MSC, and SNV could mine the potential spectral feature information
related to Fv/Fm, and simultaneously affect the accuracy of the model to a certain extent.
Therefore, the three spectral transform methods were selected as the spectral pre-processing
methods for the subsequent spectral feature extraction and model construction.
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Table 3. Performance of the Fv/Fm univariate model in the training and testing sets.

Spectrum Transform
Training Set Testing Set

RC
2 RMSEC (%) RV

2 RMSEV (%) RPD

Linear equation

OR 0.32 3.72 0.19 3.90 0.49
FD 0.70 2.49 0.64 2.86 1.42
SD 0.36 3.49 0.28 3.62 0.66
SG 0.32 3.71 0.19 3.89 0.49

MSC 0.53 3.24 0.47 3.10 1.03
SNV 0.52 3.23 0.47 3.09 1.02

Exponential equation

OR 0.32 3.74 0.19 3.93 0.50
FD 0.69 2.56 0.63 2.96 1.40
SD 0.35 3.53 0.28 3.66 0.67
SG 0.32 3.74 0.19 3.92 0.50

MSC 0.52 3.30 0.46 3.17 1.05
SNV 0.51 3.28 0.46 3.16 1.04

Logarithmic equation

OR 0.32 3.69 0.20 3.88 0.48
FD - - - - -
SD 0.37 3.45 0.28 3.60 0.68
SG 0.32 3.68 0.20 3.87 0.48

MSC 0.53 3.23 0.48 3.08 1.03
SNV 0.53 3.21 0.48 3.05 1.03

Quadratic polynomial equation

OR 0.32 3.71 0.19 3.90 0.49
FD 0.75 2.26 0.66 2.66 1.75
SD 0.37 11.4 0.27 10.9 0.35
SG 0.32 3.72 0.19 3.90 0.49

MSC 0.58 2.95 0.55 2.68 1.12
SNV 0.56 2.99 0.54 2.72 1.09

“-” indicates that part of the data is negative and cannot be calculated.

3.2. Spectral Feature Extraction Based on the CC and CARS Methods

Firstly, the CARS method was used to select the feature wavelengths of the full-
spectrum data after FD, MSC and SNV spectral transformation. Taking MSC as an example,
MCS times were set as 50, and the sampling times were iterated repeatedly. The selection
process of the characteristic variables of the CARS algorithm is shown in Figure 4.

Figure 4a illustrates that with the continuous iteration of sampling times, the number
of retained variables gradually decreased, and due to the effect of the EDF, the reduction
speed of the number of variables decreased from fast to slow, indicating that there were
two stages of “rough selection” and “fine selection” in the variable selection process of
the CARS algorithm. Figure 4b shows that the RMSECV of the PLS model decreased
first and then increased with increasing sampling times. In 1–25 iterations, RMSECV
gradually decreased, indicating that information or noise unrelated to Fv/Fm in the spectral
data was removed, while RMSECV gradually rose after 25 iterations, which showed
that the important variables related to Fv/Fm in the spectral data were eliminated, and
the information loss affected the performance of the model. The variation trend of the
regression coefficients of all variables in each sampling process is shown in Figure 4c.
According to Figure 4, the RMSECV value was the minimum when the number of runs
was 25, that is, the selected subset of characteristic variables was optimal, which contained
37 characteristic variables, accounting for 6.16% of the total number of spectral variables.
Table 4 shows that the characteristic bands screened by the CARS algorithm based on the
spectral transformation of FD, MSC, and SNV accounted for 6.82%, 6.16%, and 4.33% of the
total number of bands, respectively. The selected characteristic wavelengths were mainly
located in the blue, red, and near-infrared regions.



Agronomy 2023, 13, 337 8 of 13

Figure 4. Process of the CARS characteristic variable selection. (a) Variable retention rate; (b) change
in RMSECV; (c) the trend of the variable regression coefficient.

Table 4. Results of the CARS and CC-CARS characteristic variable selection.

Spectrum Transform Number of
Variables Wavelength Selection (nm)

CARS

FD 41
463, 477, 482, 485–486, 495, 511, 513, 527, 529–530, 600, 642–643, 684, 699, 706–707, 750
762–763, 771, 775, 795, 851, 859, 863, 877–878, 912, 917, 944, 957, 965, 969, 983, 990–992,

994, 997

MSC 37 400, 404–406, 408–410, 412, 417–418, 421, 423, 427, 430, 436, 442–444, 452, 463, 499
554–555, 583, 659–661, 691–692, 704–705, 727, 907, 911, 930, 984, 998

SNV 26 403, 405, 408–410, 418, 421, 423, 430, 436, 442–444, 452–453
463, 671–672, 691–692, 702–703, 724, 911, 930, 998

CC-CARS
FD 14 678–679, 707–710, 774–795, 832, 835 837, 864, 882, 889

MSC 13 742–743, 747, 753, 758, 773, 775, 785–786, 788, 794, 795, 800
SNV 16 744, 746, 749, 753, 767, 773, 775, 785–786, 788, 790, 794–797, 800

However, the direct use of a variable selection algorithm to screen full-spectrum data
easily causes low efficiency and information loss, while the combined use of different
algorithms can take advantage of the complementarity between algorithms [32]. Therefore,
the joint feature extraction method was used to extract the feature wavelength again. First,
the sensitive wavelength whose correlation coefficient was in the top 1% based on the CC
method was selected as the candidate feature wavelength subset, and then it was used as
the input variable of the CARS method for the final spectral feature extraction, as shown in
Table 4. As seen from Table 4, the characteristic bands screened by the CC-CARS algorithm
based on the spectral transformation of FD, MSC, and SNV only accounted for 2.33%,
2.16%, and 2.66% of the total number of bands, which were reduced by 4.49%, 4%, and
1.67%, respectively, compared with the CARS method alone. At the same time, the selected
feature wavelength was more concentrated in the red edge and near-infrared region.
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3.3. BPNN Model Construction and Accuracy Evaluation

Characteristic wavelengths screened by the CC, CARS, and CC-CARS algorithms were
constructed as BPNN models and evaluated for model accuracy, and the results are shown
in Table 5. Due to the strong nonlinear fitting ability of machine learning, the accuracy of the
BPNN model based on the combination of different feature wavelengths was significantly
improved. The R2 of the training sets all reached above 0.8, and the RPDs of the testing sets
all reached the level of basic prediction evaluation of Fv/Fm. Among all the results, the
characteristic wavelength optimized by MSC pre-treatment, and the CC-CARS algorithm
was used as the input layer of the model, and the constructed 13-9-1 BPNN model had
better robustness and generalization ability than the other models. Its testing set R2 was
0.74, RMSE was 1.88%, and RPD was 2.46, as shown in Figure 5.

Table 5. Model construction and evaluation.

Spectrum Transform
Training Set Testing Set

RC
2 RMSEC (%) RV

2 RMSEV (%) RPD

CC
FD 0.90 1.44 0.69 2.07 1.92

MSC 0.86 1.50 0.70 1.91 2.26
SNV 0.83 1.87 0.69 2.10 1.94

CARS
FD 0.90 1.27 0.70 2.24 1.94

MSC 0.84 1.77 0.68 2.47 1.83
SNV 0.84 1.64 0.65 2.23 1.71

CC-CARS
FD 0.91 1.20 0.72 2.24 1.98

MSC 0.86 1.50 0.74 1.88 2.46
SNV 0.85 1.54 0.72 1.91 2.39

Figure 5. The 1:1 relationship between the measured and predicted values of Fv/Fm.

4. Discussion

Spectral transformation can attenuate or eliminate spectral noise to varying degrees,
extract weak spectral changes, and highlight useful spectral features, which has a great
impact on the predictive performance of the model [33]. Although some studies have been
conducted on the effects of different spectral transformation methods on the accuracy of
monitoring Fv/Fm models [22,23], relatively few have been applied to monitor the rice leaf
fluorescence parameters Fv/Fm. Based on this situation, the applicability of five spectral
transformation methods (FD, SD, SG, MSC, and SNV) in the Fv/Fm monitoring of rice
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leaves was compared and analyzed in this study. The results of the correlation analysis and
univariate model are shown in Figure 3 and Table 3. The data show that FD, MSC, and SNV
transformations can more obviously highlight the correlation between spectral data and
Fv/Fm, and it can be found that the sensitive bands with high correlation coefficients were
mostly concentrated in the wavelength range of the chlorophyll fluorescence spectrum
(650–800 nm) [34], consistent with the physiological basis of chlorophyll fluorescence. How-
ever, only a few methods commonly used in spectral data pre-processing were selected
in this study. Therefore, in subsequent research, multiple spectral transformations, such
as continuum removal [35], fractional differentiation [36], and continuous wavelet trans-
form [18,19,26], should be used for comparison, and the combination of multiple spectral
pre-treatment methods should also be tried.

The CC method can retain most of the objective and reasonable wavelength range to
a certain extent and reduce the selection of characteristic variables. However, it is often
difficult to determine a clear number of variables when completely relying on the CC
method for selection. The CARS method can make maximum use of the existing sample
set information to better analyze the combination effect among spectral variables [28]. The
results of this study showed that the accuracy of the rice leaf Fv/Fm monitoring model
constructed by using the characteristic wavelength selected by the CC-CARS method was
better than that of the single CC method or CARS method (Table 5). Among them, the
MSC-CC-CARS-BPNN model had the highest prediction accuracy, and the R2, RMSE and
RPD of its testing set were 0.74, 1.88% and 2.46, respectively. Meanwhile, compared with
the traditional vegetation index and independent feature extraction methods, the combined
feature extraction method can improve the accuracy of the model to a certain extent [18].
This indicates that the combination of the CC method, which is a filtering method, and the
CARS method, which is a packaging method, can make full use of the advantages of both,
accurately select important feature wavelengths, reduce the difficulty of model learning,
improve the prediction effect of the model, and enhance the generalization ability of the
model [37].

Simultaneously, the characteristic wavelengths screened by the CC-CARS method
accounted for only 2.16 to 2.66% of the full spectrum. In addition, compared to the CARS
method alone, the wavelengths in the regions related to the absorption of photosynthetic
pigments, such as plant chlorophyll a, chlorophyll b, and carotenoids, were more obviously
excluded [23], and the characteristic wavelengths in the red and shortwave near-infrared
regions were mainly retained. Since Fv/Fm is a key parameter of chlorophyll excitation
fluorescence, the mechanism interpretation of keeping this part of the band as the charac-
teristic wavelength of Fv/Fm parameter monitoring is relatively stronger. Existing studies
have shown that there is a close relationship between chlorophyll excitation fluorescence
and fluorescence of natural light [38,39]. Meanwhile, some scholars have carried out collab-
orative studies on the remote sensing of reflectivity and chlorophyll fluorescence [16,40,41],
which indicates that passive remote sensing technology can be used to better assist the
in-depth exploration of fluorescence active and passive joint observation in the future.
However, this study only collected spectral reflectance at the leaf scale. If the study scale
is extended to the canopy scale, the fluorescence signal will be affected by plant canopy
structure, canopy heterogeneity, atmospheric action and other factors [18]. Therefore,
multiscale comprehensive observations should be carried out in subsequent studies. To
provide data and technical support for large-scale remote sensing monitoring of chlorophyll
fluorescence parameters.

In this study, only the spectral monitoring of the chlorophyll fluorescence parameter
Fv/Fm was evaluated. However, photochemical quenching (PQ) and non-photochemical
quenching (NPQ), which are important components of the plant carbon fixation mech-
anism, will also affect the photosynthetic performance of plants [1], and there is a high
degree of autocorrelation among massive fluorescence parameters [42]. Therefore, further
comprehensive analysis and exploration should be carried out for the monitoring of other
fluorescence parameters. At the same time, since this study was only conducted on rice,
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a large number of studies need to be carried out to verify the application of the research
results on other plants. On the other hand, with the continuous development of machine
learning, deep learning and other new technologies, there is a greater possibility for im-
proving the accuracy and robustness of relevant monitoring models. Therefore, further
exploration can be made on modelling methods in future studies to improve the accuracy
of model prediction.

5. Conclusions

By comparison in this study, the BPNN model based on the characteristic wavelength
extraction of MSC spectral pre-treatment and the CC-CARS method had the best monitoring
effect on the Fv/Fm in rice leaves. Its testing set’s R2, RMSE, and RPD were 0.74, 1.88%,
and 2.46, respectively. This study can provide a reference for the rapid non-destructive
monitoring of chlorophyll fluorescence parameters by using spectral analysis technology.
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