Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Pathogens Causing AFRR
2.2. Identification of Pathogens Causing AFRR
2.3. Pathogenicity Assay
2.4. Sensitivity to Seven Fungicides
3. Results
3.1. Morphological Identification of Pathogens Causing AFRR
3.2. Molecular Identification of Pathogens Causing AFRR
3.3. Pathogenicity
3.4. Toxicity Determination of Seven Fungicides on Fusarium Acuminatum
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azzam, C.R.; Abd El-Naby, Z.M.; Abd El-Rahman, S.S.; Omar, S.A.; Ali, E.F.; Majrashi, A.; Rady, M.M. Association of saponin concentration, molecular markers, and biochemical factors with enhancing resistance to alfalfa seedling damping-off. Saudi J. Biol. Sci. 2022, 29, 2148–2162. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhang, G.C.; Liu, X.; Tian, F.Y.; Yu, S.G.; Gao, H.Y.; Zhao, X.M.; Gao, X.P.; Feng, K. Study on benefits of alfalfa conservating soil and water. J. Soil Eros. Soil Water Conserv. 1997, 2, 91–96. [Google Scholar]
- Fernandez, A.L.; Sheaffer, C.C.; Tautges, N.E.; Putnam, D.H.; Hunter, M.C. Alfalfa, Wildlife, and the Environment; National Alfalfa and Forage Alliance: St. Paul, MN, USA, 2019. [Google Scholar]
- Yuan, Q.H. Advances in alfalfa diseases in China. Plant Prot. 2007, 1, 6–10. [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National alfalfa industry development plan. China Agric. Inf. 2017, 4, 9–13. [Google Scholar]
- Guo, Y.X.; Guo, Z.P.; Zhang, J.X.; Wang, M.; Qu, G.; Yan, X.; Zhang, M. Study on the pathogenicity of Fusarium semitectum and disease resistance of alfalfa varieties. Acta Phytopathol. Sin. 2018, 48, 108–118. [Google Scholar]
- Uddin, W.; Knous, T.R. Fusarium species associated with crown rot of alfalfa in Nevada. Plant Dis. 1991, 75, 51–56. [Google Scholar] [CrossRef]
- Li, M.Q. Studies on Pathogens and Resistance to Crown and Root rot in Alfalfa; Gansu Agricultural University: Lanzhou, China, 2002. [Google Scholar]
- Fang, X.L.; Zhang, C.X.; Nan, Z.B. Research advances in Fusarium root rot of alfalfa (Medicago sativa). Acta Prataculturae Sin. 2019, 28, 169–183. [Google Scholar]
- Zhang, B. Identification, Classification, and Phylogenetic Relationships of Pathogenic Fungi Based on Mitochondrial Cytochrome b Gene and Translation Elongation Factor Gene Analysis; Jilin University: Changchun, China, 2007. [Google Scholar]
- Mirhendi, H.; Ghiasian, A.; Vismer, H.F.; Asgari, M.; Jalalizand, N.; Arendrup, M.C.; Makimura, K. Preliminary identification and typing of pathogenic and toxigenic Fusarium species using restriction digestion of ITS1-5.8 S rDNA-ITS2 region. Iranian J. Publ. Health 2010, 39, 35–44. [Google Scholar]
- Cong, L.L.; Li, M.N.; Sun, Y.; Cong, L.L.; Yang, Q.C.; Long, R.C.; Kang, J.M.; Zhang, T.J. First report of root rot disease caused by Fusarium tricinctum on alfalfa in north China. Plant Disaese 2016, 100, 1503. [Google Scholar] [CrossRef]
- Yang, J.F.; Wang, L.; Zhang, Y.Y.; Lin, K.J.; Liu, A.P. Identification and pathogenicity test of pathogens causing alfalfa root rot in Hohhot. J. Plant Prot. 2022, 49, 1093–1101. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, Q.X.; Li, Y.; Yan, D.D.; Xu, J.; Jin, X.; Cao, A.C. Current situation of pesticides for control of mainly soil-borne diseases registration, extension and application in China. Agrochemicals 2021, 60, 547–554+570. [Google Scholar] [CrossRef]
- Cao, A.C.; Liu, X.M.; Guo, M.X.; Wang, Q.X.; Ouyang, C.B.; Yan, D.D. Incidences of soil-borne diseases and control measures. Plant Prot. 2017, 43, 6–16. [Google Scholar]
- Keerio, A.; Nizamani, A.Z.; Hussain, S.; Rafiq, M.; Iqbal, S.; Keerio, A.U.D. Efficacy of some chemical fungicides against fusarium wilt of sunflower in-vitro condition course by Fusarium oxysporum. Int. J. Bot. Stud. 2017, 2, 80–85. [Google Scholar]
- Xu, W.Y.; Wu, X.H.; Lin, C.H. Selection of the fungicides against Banana vascular wilt. J. Fujian Agric. For. Univ. 2005, 4, 420–424. [Google Scholar]
- Wei, J.C. Manual of Fungal Identification; Shanghai Science and Technology Press: Shanghai, China, 1979; pp. 609–928. [Google Scholar]
- Booth, C. Fusarium; Chen, Q., Ed.; Agriculture Press: Beijing, China, 1998. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Bhat, R.G.; Subbarao, K.V. Host range specificity in Verticillium dahliae. Phytopathology 1999, 89, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Gao, J. The Study on the Pathogen Isolation and Identification, Pathogenicity Differentiation and Infection Process of Sunflower Wilt; Inner Mongolia Agricultural University: Inner Mongolia, China, 2016. [Google Scholar]
- Chen, Y.B. Study on Inhibition of Plant Extracts on Botryris cinerea; Yunnan University: Kunming, China, 2017. [Google Scholar]
- Addrah, M.E.; Zhang, Y.; Zhang, J.; Liu, L.; Zhou, H.; Chen, W.; Zhao, J. Fungicide Treatments to Control Seed-borne Fungi of Sunflower Seeds. Pathogens 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Que, Y.X.; Liu, P.W.; Huang, Y.L.; Zhang, M.Q. Research progress of plant Fusarium phytopathogen. Suger Crops China 2014, 1, 58–64+78. [Google Scholar] [CrossRef]
- Geiser, D.M.; Jimenez-Gasco, M.M.; Kang, S.; Makalowska, I.; Veeraraghavan, N.; Ward, T.J.; Zhang, N.; Kuldau, G.A.; O’donnell, K. FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur. J. Plant Pathol. 2004, 110, 473–479. [Google Scholar] [CrossRef]
- Stenglein, S.A.; Rodriguero, M.S.; Chandler, E.; Jennings, P.; Salerno, G.L.; Nicholson, P. Phylogenetic relationships of Fusarium poae based on EF-1 alpha and mtSSU sequences. Fungal Biol. 2010, 114, 96–106. [Google Scholar] [CrossRef]
- Marín, P.; Moretti, A.; Ritieni, A.; Jurado, M.; Vázquez, C.; González-Jaén, M.T. Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from Southern Europe. Food Microbiol. 2012, 31, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Cormack, M.W. Fusarium spp. as root parasites of alfalfa and sweet clover in Alberta. Can. J. Res. 1937, 15, 493–510. [Google Scholar] [CrossRef]
- Miller-Garvin, J.E.; Viands, D.R. Selection for resistance to Fusarium root rot, and associations among resistances to six diseases in alfalfa. Crop Sci. 1994, 34, 1461–1465. [Google Scholar] [CrossRef]
- Elnasr, H.; Leath, K.T. Crown and root fungal diseases of alfalfa in Egypt. Plant Dis. 1983, 67, 509–511. [Google Scholar] [CrossRef]
- Zhi, X.X. Identification of Fusarium Root Rot Pathogens and Evaluation of Alfalfa (Medicago sativa L.) Fusarium Root Rot-Resistant Germplasm Materials; Chinese Academy of Agricultural Sciences: Beijing, China, 2020. [Google Scholar]
- Li, M.Q.; Chai, Z.X.; Li, J.H.; Dong, Y.X.; Zhang, L.P.; Zhang, Z.D. Identification pathogens of crown and root rot of alfalfa in Dingxi region. Acta Agresria Sin. 2013, 11, 83–86. [Google Scholar]
- Zhang, Z.M.; Bai, Y.J.; Buman, A.; Yang, C.D. Identifying the Fusarium spp. that function as the causal pathogens of alfalfa root rot in Wuwei, Gansu Province. Pratacultural Sci. 2018, 35, 2998–3003. [Google Scholar]
- Wang, D.C.; Meng, Y.R.; Li, W.M.; Li, W.C. Isolation and identification of the pathogens causing root rot disease of Medicago sativa. Pratacultural Sci. 2005, 10, 78–81. [Google Scholar]
- Zhang, J.N.; Wang, T.M.; Liu, Z.X.; Su, A.L.; Xun, J.Z.; Li, X.S. Identification of the pathogen of alfalfa root rot in western Inner Mongolia. In Proceedings of the Third (2014) China Grassland Industry Conference, Hohhot, China, 18–20 July 2014; pp. 179–184. [Google Scholar]
- Wen, Z.H.; Duan, T.Y.; Christensen, M.J.; Nan, Z.B. Bacillus subtilis subsp. spizizenii MB29 controls alfalfa root rot caused by Fusarium semitectum. Biocontrol Sci. Technol. 2015, 25, 898–910. [Google Scholar] [CrossRef]
- Li, B.X.; Sihomchanh, B.; Xuan, Z.Q.; He, Q.; Wu, H.Y. Screening of fungicides on Fusarium wilt of tomato. China Cucurbits Veg. 2021, 34, 61–64. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, L.; Jin, C.L.; Zhang, H.J.; Liu, S.S. Control effect of pyraclostrobin and its mixture on maize root rot. China Plant Prot. 2022, 42, 74–76+112. [Google Scholar]
- Lu, F.; Zhao, J.J.; Liu, X.Y.; Meng, R.J.; Wu, J.; Han, X.Y.; Wang, W.Q. Monitoring of Resistance of Phytophthora infestans on Potato to Metalaxyl and the Control Efficacy of Alternative Fungicides. Sci. Agric. Sin. 2018, 51, 2700–2710. [Google Scholar]
Collection Cities | Collection Locations | Sample Number | Quantity | Gathering Time | Longitude and Latitude |
---|---|---|---|---|---|
Ordos | Hangjin Banner | EA | 3 | 2021.06.23 | E: 107°49′09″ N: 40°47′39″ |
Ordos | Hangjin Banner | EB | 4 | 2021.06.23 | E: 108°45′41″ N: 40°31′29″ |
Ordos | Dalad Banner | EC | 7 | 2021.06.23 | E: 109°53′50″ N: 40°24′06″ |
Ordos | Dalad Banner | ED | 14 | 2021.06.23 | E: 110°24′52″ N: 40°19′52″ |
Bayannaoer | Linhe District | BW | 27 | 2021.08.15 | E: 107°31′56″ N: 40°48′55″ |
Hohhot | Tuzuo Banner | HS | 42 | 2021.06.18 | E: 111°46′57″ N: 40°35′06″ |
Hohhot | Helingeer County | HM | 30 | 2021.08.01 | E: 111°49′42″ N: 40°44′37″ |
Hohhot | New District | H | 30 | 2021.08.30 | E: 111°46′56″ N: 40°54′10″ |
Hulunbuir | Hailar District | HX | 50 | 2021.07.09 | E: 120°00′55″ N: 49°20′42″ |
Hulunbuir | Chenbaerhu Banner | HT | 22 | 2021.07.09 | E: 120°29′27″ N: 49°33′07″ |
Chifeng | Aohan Banner | CJ | 40 | 2021.07.11 | E: 119°47′48″ N: 42°42′53″ |
Chifeng | Alukerqin Banner | CA | 36 | 2021.08.18 | E: 120°16′51″ N: 43°26′57″ |
Drug Name | Dosage Form | Manufacturer Information |
---|---|---|
Triadimefon | 15% WP | Sichuan Guoguang Agricultural Co., Ltd., Jianyang, Sichuan, China |
Kresoxim-methyl | 50% WG | BASF (China) Co., Ltd., Shanghai, China |
Mancozeb | 70% WP | Sichuan Guoguang Agricultural Co., Ltd., Jianyang, Sichuan, China |
Fine frost · manganese zinc | 68% WG | Syngenta (China) Investment Co., Ltd., Shanghai, China |
Ene acyl intermediate | 25% WP | Fujian Kaili Biological Products Co., Ltd., Zhangzhou, Fujian, China |
Metalaxyl-M | 35 g/L EC | Syngenta (China) Investment Co., Ltd., Shanghai, China |
Fludioxonil | 25 g/L FS | Syngenta Nantong Crop Protection Co., Ltd., Nantong, Jiangsu, China |
Fusarium Species | Collection Cities | Total | ||||
---|---|---|---|---|---|---|
Ordos | Bayannaoer | Hohhot | Hulunbuir | Chifeng | ||
F. acuminatum | 14 | 13 | 70 | 46 | 39 | 182 |
F. solani | 2 | 7 | 7 | 16 | 18 | 50 |
F. equiseti | 4 | 3 | 14 | 0 | 4 | 25 |
F. incarnatum | 0 | 8 | 15 | 0 | 0 | 23 |
F. oxysporum | 1 | 8 | 6 | 3 | 4 | 22 |
F. avenaceum | 1 | 0 | 1 | 3 | 0 | 5 |
F. verticillioides | 0 | 0 | 4 | 0 | 0 | 4 |
F. proliferatum | 0 | 0 | 2 | 0 | 0 | 2 |
F. falciforme | 0 | 0 | 1 | 0 | 0 | 1 |
F. tricinctum | 0 | 0 | 1 | 0 | 0 | 1 |
F. virguliforme | 0 | 0 | 0 | 1 | 0 | 1 |
F. redolens | 0 | 0 | 0 | 1 | 0 | 1 |
Drug Name | Treatment Concentration (μg/mL) | Concentration Logarithm (x) | Inhibition Rate % | Probability Value (Y) | Virulence Regression Equation | EC50 (μg/mL) | R |
---|---|---|---|---|---|---|---|
Triadimefon | 30.00 | 1.48 | 69.17 | 5.5006 | y = 2.0593x + 2.4999 | 16.37 | 0.9938 |
15.00 | 1.18 | 48.55 | 4.9636 | ||||
7.50 | 0.88 | 26.73 | 4.3790 | ||||
3.75 | 0.57 | 7.59 | 3.5670 | ||||
1.88 | 0.27 | 2.87 | 3.0993 | ||||
Kresoxim-methyl | 100.00 | 2.00 | 58.05 | 5.2032 | y = 0.1531x + 4.9454 | 2.28 | 0.9468 |
10.00 | 1.00 | 54.57 | 5.1148 | ||||
1.00 | 0.00 | 49.46 | 4.9864 | ||||
0.10 | −1.00 | 44.21 | 4.8543 | ||||
0.01 | −2.00 | 33.29 | 4.5682 | ||||
Mancozeb | 40.00 | 1.60 | 53.85 | 5.0965 | y = 1.0962x + 3.2451 | 39.90 | 0.9344 |
30.00 | 1.48 | 45.82 | 4.8950 | ||||
20.00 | 1.30 | 31.76 | 4.5257 | ||||
10.00 | 1.00 | 23.19 | 4.2675 | ||||
5.00 | 0.70 | 18.53 | 4.1048 | ||||
Fine frost · manganese zinc | 75.00 | 1.88 | 64.80 | 5.3798 | y = 1.1902x + 3.1552 | 35.48 | 0.9497 |
60.00 | 1.78 | 63.53 | 5.3460 | ||||
45.00 | 1.65 | 50.16 | 5.0040 | ||||
30.00 | 1.48 | 48.77 | 4.9692 | ||||
15.00 | 1.18 | 32.66 | 4.5506 | ||||
Ene acyl intermediate | 1600.00 | 3.20 | 63.84 | 5.3541 | y = 1.2843x + 1.1582 | 979.49 | 0.9889 |
800.00 | 2.90 | 41.87 | 4.7947 | ||||
400.00 | 2.60 | 29.89 | 4.4723 | ||||
200.00 | 2.30 | 18.95 | 4.1202 | ||||
0.00 | 2.00 | 10.72 | 3.7583 | ||||
Metalaxyl-M | 512.00 | 2.71 | 71.53 | 5.5689 | y = 1.2884x + 2.0665 | 189.23 | 0.9927 |
28.00 | 2.11 | 36.50 | 4.6549 | ||||
32.00 | 1.51 | 19.82 | 4.1520 | ||||
8.00 | 0.90 | 4.19 | 3.2715 | ||||
2.00 | 0.30 | 0.44 | 2.3820 | ||||
Fludioxonil | 0.10 | −1.00 | 57.91 | 5.1997 | y = 1.5103x + 6.6113 | 0.09 | 0.9807 |
0.05 | −1.30 | 30.07 | 4.4776 | ||||
0.03 | −1.60 | 22.20 | 4.2346 | ||||
0.01 | −1.90 | 10.80 | 3.7630 | ||||
0.01 | −2.20 | 4.31 | 3.2838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, N.; Yu, J.; Wu, J.; Liu, H.; Lin, K.; Zhang, Y. Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China. Agronomy 2023, 13, 456. https://doi.org/10.3390/agronomy13020456
Wang L, Wang N, Yu J, Wu J, Liu H, Lin K, Zhang Y. Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China. Agronomy. 2023; 13(2):456. https://doi.org/10.3390/agronomy13020456
Chicago/Turabian StyleWang, Le, Na Wang, Jialiang Yu, Jie Wu, Huan Liu, Kejian Lin, and Yuanyuan Zhang. 2023. "Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China" Agronomy 13, no. 2: 456. https://doi.org/10.3390/agronomy13020456
APA StyleWang, L., Wang, N., Yu, J., Wu, J., Liu, H., Lin, K., & Zhang, Y. (2023). Identification of Pathogens Causing Alfalfa Fusarium Root Rot in Inner Mongolia, China. Agronomy, 13(2), 456. https://doi.org/10.3390/agronomy13020456