Tropical Tree Crop Simulation with a Process-Based, Daily Timestep Simulation Model (ALMANAC): Description of Model Adaptation and Examples with Coffee and Cocoa Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of ALMANAC Model
2.2. Adaptation of ALMANAC to Tropical Trees
2.3. Deriving Values for Tree Phenology
2.4. Deriving Soils Data
2.5. Accessing Weather Data
2.6. Datasets Used for Model Demonstration
2.6.1. Coffee at Sites in Hawai’i
2.6.2. Cocoa at Sites in Ghana
2.7. Demonstration of the Model at the Two Sites
2.7.1. Sensitivity to Changes in Rainfall
2.7.2. Sensitivity to Overstory Trees
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiniry, J.R.; Williams, J.R.; Gassman, P.W.; Debaeke, P. A general, process-oriented model for two competing plant species. Trans. ASAE 1992, 35, 801–810. [Google Scholar] [CrossRef]
- Johnson, M.-V.V.; MacDonald, J.D.; Kiniry, J.R.; Arnold, J. Almanac: A potential tool for simulating agroforestry yields and improving SWAT simulations of agroforestry watersheds. Int. Agric. Eng. J. 2009, 18, 51–58. [Google Scholar]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Functional approach to simulating short-rotation woody crops in process-based models. Bioenergy Res. 2015, 8, 1598–1613. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, J.; Keesee, D.; Kiniry, J.R. Development, growth, and biomass simulations of two common wetland tree species in Texas. Environ. Monit. Assess. 2018, 190, 521. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, J.; Kiniry, J.R. Simulating the productivity of desert woody shrubs in southwestern Texas. J. Arid. Environ. Sustain. 2018, 2018, 23–51. [Google Scholar] [CrossRef]
- Kim, S.; Kiniry, J.; Loomis, L. Creosote bush, an arid zone survivor in southwestern U.S.: 1. Identification of morophological and environmental factors that affect its growth and development. J. Agric. Ecol. Res. Int. 2017, 11, 1–14. [Google Scholar] [CrossRef]
- MacDonald, J.D.; Kiniry, J.R.; Putz, G.; Prepas, E.E. A multi-species, process based vegetation simulation module to simulate successional forest regrowth after forest disturbance in daily time step hydrological transport models. Environ. Eng. Sci. 2008, 7, 127–143. [Google Scholar] [CrossRef]
- MacDonald, J.D.; Luke, S.L.; Kiniry, J.; Putz, G. Evaluating the role of shrub, grass and forb growth after harvest in forested catchment water balance using SWAT coupled with the ALMANAC model. In Proceedings of the 4th International SWAT Conference, UNESCO-IHE, Delft, The Netherlands, 4 July 2007. [Google Scholar]
- Ponte, S. The ‘Latte Revolution’? Regulation, markets and consumption in the global coffee chain. World Dev. 2002, 30, 1099–1122. [Google Scholar] [CrossRef]
- Moguel, P.; Toledo, V.M. Biodiversity conservation in traditional coffee systems of Mexico. Conserv. Biol. 1999, 13, 11–21. [Google Scholar] [CrossRef]
- Bosselmann, A.S.; Dons, K.; Oberthur, T.; Olsen, C.S.; Raebild, A.; Usma, H. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Columbia. Agric. Ecosyst. Environ. 2009, 129, 253–260. [Google Scholar] [CrossRef]
- Rodríguez, D.; Cure, J.R.; Cotes, J.M.; Guiterrez, A.P.; Cantor, F. A coffee agroecosystem model: 1. Growth and development of the coffee plant. Ecol. Modell. 2011, 222, 3626–3639. [Google Scholar] [CrossRef]
- Brunsell, N.A.; Pontes, P.P.B.; Lamparelli, R.A.C. Remotely sensed phenology of coffee and its relationship to yield. GISci. Remote Sens. 2009, 46, 289–304. [Google Scholar] [CrossRef]
- Ovalle-Rivera, O.; Van Oijen, M.; Läderach, P.; Roupsard, O.; de Melo Virginio Filho, E.; Barrios, M.; Rapidel, B. Assessing the accuracy and robustness of a process-based model for coffee agroforestry systems in Central America. Agro. Syst. 2020, 94, 2033–2051. [Google Scholar] [CrossRef]
- Rahn, E.; Vaast, P.; Läderach, P.; Van Asten, P.; Jassogne, l.; Ghazoul, J. Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecol. Modell. 2018, 371, 76–89. [Google Scholar] [CrossRef]
- Van Oijen, M.; Dauzat, J.; Harmand, J.-M.; Lawson, G.; Vaast, P. Coffee agroforestry systems in Central America: I. A review of quantitative information on physiological and ecological processes. Agrofor. Syst. 2010, 80, 341–359. [Google Scholar] [CrossRef]
- Van Oijen, M.; Dauzat, J.; Harmand, J.-M.; Lawson, G.; Vaast, P. Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor. Syst. 2010, 80, 361–378. [Google Scholar] [CrossRef]
- Dabaeke, P.; Caussanel, J.P.; Kiniry, J.R.; Kafiz, B.; Mondragon, G. Modelling crop:weed interactions in wheat with ALMANAC. Weed Res. 1997, 37, 325–341. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Sanchez, H.; Greenwade, J.; Seidensticker, E.; Bell, J.R.; Pringle, F.; Rives, J. Simulating grass productivity on diverse range sites in Texas. J. Soil Water Conserv. 2002, 57, 144–150. [Google Scholar]
- Behrman, K.D.; Keitt, T.H.; Kiniry, J.R. Modeling differential cultivars across the central and southern Great Plains. Bioenergy Res. 2014, 7, 1165–1173. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Johnson, M.V.V.; Venuto, B.C.; Burson, B.L. Novel applications of ALMANAC: Modelling a functional group, exotic warm-season perennial grasses. Am. J. Exp. Agric. 2013, 3, 631–650. [Google Scholar] [CrossRef]
- Kiniry, J.R.; MacDonald, J.D.; Kemanian, A.R.; Watson, B.; Putz, G.; Prepas, E.E. Plant growth simulation for landscape-scale hydrological modelling. Hydrol. Sci. J. 2008, 53, 1030–1042. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.; Kiniry, J.; Meki, M.; Williams, J.; Alvarez-Cilva, M.; Ramos-Gonzalez, J.; Zapata-Buenfil, G. Crop parameters for modeling sugarcane under rainfed conditions in Mexico. Sustainability 2017, 9, 1337. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Meki, M.N.; Williams, J.R.; Alvarez Cilva, M.; Ramos Gonzalez, J.L.; Magallanes Estala, A. Potential impact of future climate change on sugarcane under dryland conditions in Mexico. J. Agron. Crop. Sci. 2018, 204, 515–528. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Ramirez, J.S.P.; Garcia, G.M.; Gonzalez, J.L.R.; Ceja, E.S.O. Parameterization of ALMANAC crop simulation model for non-irrigated dry bean in semi-arid temperate areas in Mexico. Interciencia. 2015, 30, 185–189. [Google Scholar]
- Meki, M.N.; Kiniry, J.R.; Youkhana, A.H.; Crow, S.E.; Ogoshi, R.M.; Nakahata, M.H.; Jeong, J. Two-year growth cycle sugarcane crop parameter attributes and their application in modeling. J. Agron. 2015, 107, 1310–1320. [Google Scholar] [CrossRef]
- Meki, M.N.; Snider, J.L.; Kiniry, J.R.; Raper, R.L.; Rocatelli, A.C. Energy sorghum biomass harvest tresholds and tillage effects on soil organic carbon and bulk density. Ind. Crops and Prod. 2013, 43, 172–182. [Google Scholar] [CrossRef]
- Xie, Y.; Kiniry, J.R.; Williams, J.R. The ALMANAC model’s sensitivity to input variables. Agric. Syst. 2003, 78, 1–16. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Briggs, J.; Englert, J.; Weltz, M.; Jensen, K.; Tilley, D.; Goodson, D. Plant parameters for plant functional groups of western rangelands in enable process-based simulation modeling. Am. J. Exp. Agric. 2014, 4, 746–766. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Burson, B.L.; Evers, G.W.; Williams, J.R.; Sanchez, H.; Wade, C.; Greenwade, J. Coastal bermudagrass, Bahiagrass, and native range simulation at diverse sites in Texas. J. Agron. 2007, 99, 450–461. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Muscha, J.M.; Petersen, M.K.; Kilian, R.W.; Metz, L.J. Short duration, perennial grasses in low rainfall site in Montana deriving growth parameters and simulating with a process-based model. Exp. Agric. Intl. 2017, 15, 1–13. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Fajardo-Diaz, R.; Garcia-Romero, G.; Osuna-Ceja, E.; Kiniry, J.R.; Meki, M.N. High sowing densities in rainfed common beans (Phaseolus vulgaris L.) in Mexican semi-arid highlands under future climate change. Agronomy 2020, 10, 442. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.D.; Kiniry, J.R.; Williams, J. ALMANACMEX. Agricultural Land Management Alternatives with Numerical Assessment Criteria Model (ALMANAC) with Mexican Interface; Version 1.0.18. User’s Manual. Special Publication No. 44; INFAP: Mexico City, Mexico, 2016.
- Druille, M.; Williams, A.S.; Torrecillas, M.; Kim, S.; Meki, N.; Kiniry, J.R. Modeling climate warming impacts on grain and forage sorghum yields in Argentina. Agronomy 2020, 10, 964. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Johnson, M.-V.V.; Bruckerhoff, S.B.; Kaiser, J.U.; Cordsemon, R.L.; Harmel, R.D. Clash of the titans: Comparing productivity via radiation use efficiency for two grass giants of the biofuel field. BioEnergy Res. 2011, 5, 41–48. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Tischler, C.R.; Van Esbroeck, G.A. Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy. 1999, 17, 95–112. [Google Scholar] [CrossRef]
- Kiniry, J.R. Biomass accumulation and radiation use efficiency of honey mesquite and eastern red cedar. Biomass Bioenergy. 1998, 15, 467–473. [Google Scholar] [CrossRef]
- Taugourdeau, S.; Le Maire, G.; Avelino, J.; Jones, J.R.; Ramirez, L.G.; Quesada, M.J.; Roupsard, O. Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry. Agric. Ecosyst. Environ. 2014, 192, 19–37. [Google Scholar] [CrossRef]
- Monsi, M.; Saeki, T. The light factor in plant communities and its significance for dry matter production. J. Jpn. Bot. 1953, 14, 22–52. [Google Scholar]
- Spitters, C.J.T.; Aerts, R. Simulation of competition for light and water in crop-weed associations. Asp. Appl. Biol. 1983, 4, 467–483. [Google Scholar]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A generalized relationship between photosynthetically active radiation and solar radiation. J. Agron. 1984, 76, 939–945. [Google Scholar] [CrossRef]
- Monteith, J.L. Light distribution and photosynthesis in field crops. Ann. Bot. 1965, 29, 17–37. [Google Scholar] [CrossRef]
- Daymond, A.J.; Acheampong, K.; Prawoto, A.; Abdoellah, S.; Addo, G.; Adu-Yeboahm, P.; Hadley, P. Mapping Cocoa Productivity in Ghana, Indonesia and Côte d’Ivoire; International Symposium on Cocoa Research (ISCR): Lima, Peru, 2017. [Google Scholar]
- Ghana Cocoa Board. Manual for Cocoa Extension in Ghana. CCAFS Manual. Available online: https://hdl.handle.net/10568/93355 (accessed on 21 May 2020).
- AfSIS. African Soil Information Service, Soil Databases. 2020. Available online: http://africasoils.net/services/data/soil-databases/ (accessed on 21 May 2020).
- Coltri, P.P.; Zullo Junior, J.; Dubreuil, V.; Ramirez, G.M.; Pinto, H.S.; Coral, G.; Lazarim, C.G. Empirical models to predict LAI and aboveground biomass of Coffea arabica under full sun and shaded plantation: A case study of South of Minas Gerais, Brazil. Agrofor. Syst. 2015, 89, 621–636. [Google Scholar] [CrossRef]
- DaMatta, F.M. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Res. 2004, 86, 99–114. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
WA | The radiation use efficiency times 10; Biomass-energy ratio, g per MJ of IPAR |
HI | Harvest index; fruit yield/above-ground biomass |
TB | Optimal temperature for plant growth: °C |
TG | Minimum temperature for plant growth: °C |
DMLA | Maximum leaf area index (LAI) |
DLAI | Fraction of season when maximum LAI is reached and anthesis is assumed to occur |
LAP1 | First point on optimal LAI curve; Numbers before decimal are % of growing seasons. Numbers after decimal are fractions of maximum potential leaf area index |
LAP2 | Second point on optimal LAI curve; Numbers before decimal are % of growing seasons. Numbers after decimal are fractions of maximum potential leaf area index |
PPL1 | First plant population parameter; Number before decimal is plants/m2. Number after decimal is fraction of species LAI at that population (plants/100 m2 for trees) |
PPL2 | Second plant population parameter; Number before decimal is plants/m2 Number after decimal is fraction of species LAI at that population (plants/100 m2 for trees) |
RLAD | Leaf area index decline rate parameter. Estimated LAI decline between DLAI and harvest. 1 is linear, >1 accelerated decline, <1 retards decline rate |
RDMB | Biomass energy ratio decline rate parameter. Reduces efficiency of bio-mass-energy conversion due to creation of seeds or N translocation |
WAC2 | An “S” curve number used to describe the effect of CO2 concentration on the crop parameter WA. The value on the left of the decimal is a value of CO2 concentration higher than ambient. The value on the right of the decimal is the corresponding value WA |
CLAIYR | Number of years until maximum LAI |
HMX | Maximum crop height (m) |
RDMX | Maximum root depth (m) |
WSYF | The minimum value for HI when severe drought stress occurs near anthesis |
Tree1 | First point on multi-year S-curve function for trees’ LAI and height increase; Numbers before decimal are % of years to maturity. Numbers after decimal are fractions of maximum potential leaf area index and height increase |
Tree2 | Second point on multi-year S-curve function for trees’ LAI and height increase; Numbers before decimal are % of years to maturity. Numbers after decimal are fractions of maximum potential leaf area index and height increase |
BN1 | Normal fraction of N in crop biomass at emergence |
BN2 | Normal fraction of N in crop biomass at midseason |
BN3 | Normal fraction of N in crop biomass at maturity |
BP1 | Normal fraction of P in crop biomass at emergence |
BP2 | Normal fraction of P in crop biomass at midseason |
BP3 | Normal fraction of P in crop biomass at maturity |
EXT | Extinction coefficient for calculating light interception; Kc |
DORMNT | Defines the day length in the fall when dormancy begins (1 h greater than the minimum for the latitude). Value is hours of day length which is added to the minimum day length of the year for that location |
DMPHT | Tree parameter, minimum grams of biomass per meter of height |
CHTYR | Tree parameter, number of years to maximum height |
Parameter | Description |
---|---|
POP | Plant density (plants/100 m2 for trees) |
PHU | Potential heat units (degree days or GDD) |
N | Nitrogen applied kg/ha |
HE | Harvest efficiency. This is the ratio of seed yield removed from the field to total fruit yield |
ALMANAC Plant Parameters | Coffee | Cocoa | Tropical Tree |
---|---|---|---|
WA | 12.0 | 12.0 | 16.1 |
HI | 0.05 | 0.05 | 0.05 |
TB | 24 | 24 | 30 |
TG | 10 | 10 | 10 |
DMLA | 3.5 | 6 | 3.9 |
DLAI | 0.65 | 0.65 | 0.99 |
LAP1 | 5.05 | 5.05 | 5.05 |
LAP2 | 95.95 | 95.95 | 40.95 |
PPL1 | 1.1 | 1.1 | 1.1 |
PPL2 | 10.99 | 10.99 | 10.9 |
RLAD | 0.01 | 0.01 | 0.05 |
RBMD | 0.01 | 0.01 | 0.1 |
WAC2 | 660.18 | 660.18 | 660.18 |
CLAIYR | 5 | 5 | 10 |
HMX | 2 | 2 | 6 |
RDMX | 2 | 2 | 3.5 |
WSYF | 0.005 | 0.005 | 0.01 |
TREE1 | 1.95 | 1.95 | 1.95 |
TREE2 | 2.99 | 2.99 | 2.99 |
BN1 | 0.02 | 0.02 | 0.006 |
BN2 | 0.01 | 0.01 | 0.002 |
BN3 | 0.008 | 0.008 | 0.0015 |
BP1 | 0.0007 | 0.0007 | 0.0007 |
BP2 | 0.0004 | 0.0004 | 0.0004 |
BP3 | 0.0003 | 0.0003 | 0.0003 |
EXT | 0.61 | 0.72 | 0.65 |
DORMNT | 0.5 | 0.5 | 0 |
DMPHT | 120 | 120 | 120 |
CHTYR | 10 | 10 | 10 |
Attributes | ||||
---|---|---|---|---|
Layer | 1 | 2 | 3 | 4 |
SALB | 0.09 | |||
Z | 0.01 | 0.30 | 0.64 | 1.52 |
BD | 1.10 | 1.10 | 1.25 | 1.25 |
U | 0.173 | 0.173 | 0.133 | 0.195 |
CBN | 2.06 | 2.06 | 0.56 | 0.44 |
SIL | 44.0 | 44.0 | 54.6 | 44.0 |
SAN | 18.5 | 18.5 | 20.9 | 18.5 |
ROK | 20.0 | 20.0 | 0.0 | 0.0 |
Attributes | ||||||
---|---|---|---|---|---|---|
Layer | 1 | 2 | 3 | 4 | 5 | 6 |
SALB | 0.15 | |||||
Z | 0.05 | 0.15 | 0.30 | 0.60 | 1.00 | 2.00 |
BD | 1.571 | 1.583 | 1.612 | 1.616 | 1.621 | 1.649 |
U | 0.25 | 0.26 | 0.23 | 0.23 | 0.23 | 0.23 |
CBN | 2.02 | 1.81 | 1.37 | 1.05 | 0.80 | 0.61 |
SIL | 23.0 | 22.8 | 21.7 | 20.6 | 20.3 | 20.6 |
SAN | 56.2 | 55.0 | 53.1 | 47.9 | 46.5 | 46.4 |
ROK | 10.4 | 10.7 | 12.5 | 15.05 | 16.1 | 19.8 |
Year | Annual Precipitation in Sefwi Bekwai, Ghana (Cocoa) in mm | Annual Precipitation in Kaua’i, Hawai’i (Coffee) in mm |
---|---|---|
1998 | 1368 | 210 |
1999 | 1694 | 313 |
2000 | 1328 | 203 |
2001 | 1253 | 456 |
2002 | 1304 | 998 |
2003 | 1480 | 899 |
2004 | 1277 | 1185 |
2005 | 1273 | 792 |
2006 | 1451 | 1249 |
2007 | 1375 | 207 |
2008 | 1684 | 805 |
2009 | 1398 | 672 |
2010 | 1507 | 678 |
2011 | 1462 | 899 |
2012 | 1360 | 1027 |
2013 | 1390 | 965 |
2014 | 1708 | 1203 |
2015 | 1502 | 577 |
2016 | 1224 | 542 |
2017 | 1705 | 619 |
2018 | 1743 | 1178 |
2019 | 1789 | 757 |
2020 | 1930 | 826 |
2021 | 851 | |
Average | 1487 | 755 |
Std Dev | 194 | 312 |
Mean +1 std (% of mean) | 1681 (113%) | 1067 (141%) |
Mean +1.5 std | 1778 (120%) | 1223 (162%) |
Mean −1 std | 1293 (87%) | 442 (59%) |
Mean −1.5 std | 1196 (80%) | 286 (38%) |
Year | Simulated | Statewide | Kaua’i | ||
---|---|---|---|---|---|
Measured | Simulated/Measured | Measured | Simulated/Measured | ||
2012 | 0.95 | 1.13 | 0.84 | ||
2013 | 0.94 | 0.98 | 0.96 | ||
2014 | 1.07 | 1.1 | 0.97 | 1.01 | 1.06 |
2015 | 1.04 | 1.09 | 0.95 | 1.09 | 0.95 |
2016 | 0.99 | 0.99 | 1.00 | 0.94 | 1.05 |
2017 | 0.93 | 0.83 | 1.12 | ||
2018 | 0.98 | 0.91 | 1.08 | ||
2019 | 0.97 | 0.93 | 1.04 | ||
2020 | 0.99 | 0.93 | 1.06 | ||
2021 | 0.97 | 0.94 | 1.03 | ||
Avg | 0.98 | 0.98 | 1.01 | 1.01 | 1.02 |
Std Dev | 0.04 | 0.09 | 0.06 | ||
CV% | 4 | 9 | 6 | ||
RMSE | 0.08 | 0.10 |
Year | Simulated Yield | Actual Yield | Simulated/Measured |
---|---|---|---|
2011 | 0.78 | ||
2012 | 0.78 | 0.73 | 1.08 |
2013 | 0.77 | 0.78 | 0.99 |
2014 | 0.77 | 0.70 | 1.10 |
2015 | 0.76 | 0.79 | 0.96 |
2016 | 0.75 | ||
2017 | 0.74 | ||
2018 | 0.75 | ||
2019 | 0.74 | ||
2020 | 0.73 | ||
2021 | 0.74 | ||
Average | 0.76 | 0.75 | 1.03 |
Standard Deviation | 0.02 | ||
CV% | 2.2 | ||
RMSE | 0.05 |
Coffee Yields (Mg/ha) | ||
---|---|---|
Rainfall Changes Standard Deviation (%) | Average | Fraction of Average |
+1.5 (162%) | 1.31 | 1.41 |
+1 (141%) | 1.20 | 1.29 |
0 (100%) | 0.93 | 1.00 |
−1 (59%) | 0.54 | 0.58 |
−1.5 (38%) | 0.29 | 0.31 |
Cocoa Yields (Mg/ha) | ||
Rainfall Changes Standard Deviation (%) | Average | Fraction of Average |
+1.5 (120%) | 0.73 | 1.01 |
+1 (113%) | 0.73 | 1.01 |
0 (100%) | 0.72 | 1.00 |
−1 (87%) | 0.71 | 0.99 |
−1.5 (80%) | 0.70 | 0.97 |
POP of Overstory Tropical Tree | Control, No Overstory Tree | 0.05 | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
---|---|---|---|---|---|---|---|
DMLA of Overstory Tropical Tree | NA | 0.013 | 0.057 | 0.16 | 0.39 | 0.69 | 1.05 |
FI by Overstory Tropical Tree | NA | 0.008 | 0.0036 | 0.0099 | 0.224 | 0.361 | 0.495 |
Trans by Overstory Tropical Tree | NA | 0.992 | 0.964 | 0.901 | 0.776 | 0.639 | 0.505 |
Year | Simulated Coffee Yield | ||||||
2010 | 0.76 | 0.73 (0.96) | 0.73 (0.96) | 0.73 (0.96) | 0.69 (0.91) | 0.37 (0.49) | 0 (0) |
2011 | 0.79 | 0.79 (1.00) | 0.79 (1.00) | 0.78 (0.99) | 0.74 (0.94) | 0.65 (0.82) | 0 (0) |
2012 | 0.95 | 0.98 (1.03) | 0.98 (1.03) | 0.97 (1.02) | 0.92 (0.97) | 0.47 (0.49) | 0 (0) |
2013 | 0.94 | 1.00 (1.06) | 1.00 (1.06) | 0.99 (1.05) | 0.94 (1.00) | 0.80 (0.85) | 0 (0) |
2014 | 1.07 | 1.14 (1.07) | 1.14 (1.07) | 1.13 (1.06) | 1.07 (1.00) | 0.51 (0.48) | 0 (0) |
2015 | 1.04 | 1.13 (1.09) | 1.13 (1.09) | 1.12 (1.08) | 1.06 (1.02) | 0.85 (0.82) | 0 (0) |
2016 | 0.99 | 1.09 (1.10) | 1.09 (1.10) | 1.08 (1.09) | 1.02 (1.03) | 0.52 (0.53) | 0 (0) |
2017 | 0.93 | 1.06 (1.14) | 1.06 (1.14) | 1.05 (1.13) | 0.99 (1.06) | 0.80 (0.86) | 0 (0) |
2018 | 0.98 | 1.11 (1.13) | 1.11 (1.13) | 1.09 (1.11) | 1.03 (1.05) | 0.48 (0.49) | 0 (0) |
2019 | 0.97 | 1.16 (1.20) | 1.16 (1.20) | 1.14 (1.18) | 1.08 (1.11) | 0.76 (0.78) | 0 (0) |
2020 | 0.99 | 1.20 (1.21) | 1.20 (1.21) | 1.18 (1.19) | 1.12 (1.13) | 0.43 (0.43) | 0 (0) |
2021 | 0.97 | 1.22 (1.26) | 1.22 (1.26) | 1.20 (1.24) | 1.13 (1.16) | 0.69 (0.71) | 0 (0) |
Averages | 0.95 | 1.05 | 1.05 | 1.04 | 0.98 | 0.61 | 0 |
Fraction of Control | 1.10 | 1.10 | 1.09 | 1.03 | 0.65 | 0 |
POP of Overstory Tropical Tree | Control, No Overstory Tree | 0.05 | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
---|---|---|---|---|---|---|---|
DMLA of Overstory Tropical Tree | NA | 0.013 | 0.57 | 0.16 | 0.39 | 0.69 | 1.05 |
FI by Overstory Tropical Tree | NA | 0.008 | 0.0036 | 0.0099 | 0.224 | 0.361 | 0.495 |
Trans by Overstory Tropical Tree | NA | 0.992 | 0.964 | 0.901 | 0.776 | 0.639 | 0.505 |
Year | Simulated Cocoa Yield | ||||||
2007 | 0.52 | 0.52 (1.00) | 0.52 (1.00) | 0.52 (1.00) | 0.50 (0.96) | 0 (0) | 0 (0) |
2008 | 0.63 | 0.63 (1.00) | 0.63 (1.00) | 0.63 (1.00) | 0.60 (0.95) | 0 (0) | 0 (0) |
2009 | 0.71 | 0.72 (1.01) | 0.72 (1.01) | 0.71 (1.00) | 0.68 (0.68) | 0 (0) | 0 (0) |
2010 | 0.75 | 0.76 (1.01) | 0.76 (1.01) | 0.75 (1.00) | 0.72 (0.96) | 0 (0) | 0 (0) |
2011 | 0.78 | 0.79 (0.99) | 0.79 (0.99) | 0.78 (1.00) | 0.75 (0.96) | 0 (0) | 0 (0) |
2012 | 0.78 | 0.79 (1.01) | 0.79 (1.01) | 0.78 (1.00) | 0.75 (0.96) | 0 (0) | 0 (0) |
2013 | 0.77 | 0.79 (1.02) | 0.79 (1.09) | 0.78 (1.01) | 0.75 (0.97) | 0 (0) | 0 (0) |
2014 | 0.77 | 0.78 (1.01) | 0.78 (1.01) | 0.78 (1.01) | 0.75 (0.97) | 0 (0) | 0 (0) |
2015 | 0.76 | 0.78 (1.02) | 0.78 (1.02) | 0.77 (1.01) | 0.74 (0.97) | 0 (0) | 0 (0) |
2016 | 0.75 | 0.76 (1.01) | 0.76 (1.01) | 0.75 (1.00) | 0.72 (0.96) | 0 (0) | 0 (0) |
2017 | 0.74 | 0.76 (1.02) | 0.76 (1.02) | 0.75 (1.01) | 0.72 (0.97) | 0 (0) | 0 (0) |
2018 | 0.75 | 0.76 (1.01) | 0.76 (1.01) | 0.76 (1.01) | 0.73 (0.97) | 0 (0) | 0 (0) |
2019 | 0.74 | 0.77 (1.04) | 0.77 (1.04) | 0.76 (1.02) | 0.73 (0.99) | 0 (0) | 0 (0) |
2020 | 0.73 | 0.77 (1.05) | 0.77 (1.05) | 0.76 (1.04) | 0.73 (1.00) | 0 (0) | 0 (0) |
2021 | 0.74 | 0.77 (1.04) | 0.77 (1.04) | 0.76 (1.03) | 0.73 (0.99) | 0 (0) | 0 (0) |
Averages | 0.73 | 0.74 | 0.74 | 0.74 | 0.71 | 0 | 0 |
Fraction of Control | 1.01 | 1.01 | 1.01 | 0.97 | 0 | 0 |
POP of Overstory Tropical Tree | No Tree | 0.05 | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 | |
---|---|---|---|---|---|---|---|---|
Coffee Stress Days | Water | 115.4 | 84.3 | 84.5 | 85.5 | 79.9 | 27.9 | 0.0 |
N | 3.1 | 3.7 | 3.7 | 3.7 | 3.6 | 5.5 | 7.3 | |
P | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Temp | 1.4 | 1.6 | 1.6 | 1.5 | 2.0 | 2.2 | 2.6 | |
Air | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Cocoa Stress Days | Water | 13.6 | 2.3 | 6.7 | 2.6 | 3.7 | 0.0 | 0.0 |
N | 3.8 | 4.0 | 4.1 | 4.0 | 4.0 | 4.1 | 4.1 | |
P | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Temp | 24.1 | 26.9 | 21.5 | 26.9 | 26.6 | 28.2 | 28.2 | |
Air | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiniry, J.R.; Fernandez, J.G.; Aziz, F.; Jacot, J.; Williams, A.S.; Meki, M.N.; Leyton, J.O.; Baez-Gonzalez, A.D.; Johnson, M.-V.V. Tropical Tree Crop Simulation with a Process-Based, Daily Timestep Simulation Model (ALMANAC): Description of Model Adaptation and Examples with Coffee and Cocoa Simulations. Agronomy 2023, 13, 580. https://doi.org/10.3390/agronomy13020580
Kiniry JR, Fernandez JG, Aziz F, Jacot J, Williams AS, Meki MN, Leyton JO, Baez-Gonzalez AD, Johnson M-VV. Tropical Tree Crop Simulation with a Process-Based, Daily Timestep Simulation Model (ALMANAC): Description of Model Adaptation and Examples with Coffee and Cocoa Simulations. Agronomy. 2023; 13(2):580. https://doi.org/10.3390/agronomy13020580
Chicago/Turabian StyleKiniry, James R., J. G. Fernandez, Fati Aziz, Jacqueline Jacot, Amber S. Williams, Manyowa N. Meki, Javier Osorio Leyton, Alma Delia Baez-Gonzalez, and Mari-Vaughn V. Johnson. 2023. "Tropical Tree Crop Simulation with a Process-Based, Daily Timestep Simulation Model (ALMANAC): Description of Model Adaptation and Examples with Coffee and Cocoa Simulations" Agronomy 13, no. 2: 580. https://doi.org/10.3390/agronomy13020580
APA StyleKiniry, J. R., Fernandez, J. G., Aziz, F., Jacot, J., Williams, A. S., Meki, M. N., Leyton, J. O., Baez-Gonzalez, A. D., & Johnson, M. -V. V. (2023). Tropical Tree Crop Simulation with a Process-Based, Daily Timestep Simulation Model (ALMANAC): Description of Model Adaptation and Examples with Coffee and Cocoa Simulations. Agronomy, 13(2), 580. https://doi.org/10.3390/agronomy13020580