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Abstract: The accurate monitoring of soil salinization plays a key role in the ecological security
and sustainable agricultural development of semiarid regions. The objective of this study was to
achieve the best estimation of electrical conductivity variables from salt-affected soils in a south
Mediterranean region using Sentinel-2 multispectral imagery. In order to realize this goal, a test
was carried out using electrical conductivity (EC) data collected in central Tunisia. Soil electrical
conductivity and leaf electrical conductivity were measured in an olive orchard over two growing
seasons and under three irrigation treatments. Firstly, selected spectral salinity, chlorophyll, water,
and vegetation indices were tested over the experimental area to estimate both soil and leaf EC using
Sentinel-2 imagery on the Google Earth Engine platform. Subsequently, estimation models of soil
and leaf EC were calibrated by employing machine learning (ML) techniques using 12 spectral bands
of Sentinel-2 images. The prediction accuracy of the EC estimation was assessed by using k-fold
cross-validation and computing statistical metrics. The results of the study revealed that machine
learning algorithms, together with multispectral data, could advance the mapping and monitoring of
soil and leaf electrical conductivity.

Keywords: Mediterranean region; olive orchard; soil and leaf electrical conductivity; Google Earth
Engine; spectral vegetation indices

1. Introduction

Soil salinization is a critical environmental problem in arid and semiarid regions since
it seriously affects the ecological sustainability of limited land resources. As a form of
land degradation, soil salinization greatly impacts on ecosystem services [1]. Thus, soil
salinization is restricting agriculture’s global development and affecting the social econ-
omy’s growth [2,3]. At the same time, soil salinization is one of the most important factors
causing direct adverse effects on soil characteristics, as it gravely affects soil resources,
decreases both soil fertility and soil microbial activity; all this results in a sharp decline of
soil productivity and nutrient availability [4]. Meanwhile, soil salinization can accelerate
the desertification process and inhibit plants’ absorption of water and nutrients, thereby
affecting plants’ physiological status [5].

Semiarid and arid regions of the Mediterranean are facing extraordinary pressure
on already-degraded land and water resources, while the need for irrigation is increasing
sharply [6]. This is due to the scarcity of rainfall, massive evaporation, high water-soluble
salt content, and increasing demand for food, water, and living materials from the rapidly
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growing population [7,8]. A severe threat to the sustainable development of regional
agriculture and the economy is imposed. The timely and accurate acquisition of soil
salinization information has paramount practical significance for irrigation and drainage
management, for setting water and environmental policies [4,9] and for a selection of the
most appropriate and adapted crops to salinity challenges.

Traditional methods for monitoring soil salinization rarely obtain large-scale distri-
bution information [10]. It is always convenient to consider electrical conductivity as a
standard measurement of salinity [11,12], since the electrical conductivity (EC) of a soil,
vegetation, or water sample is influenced by the concentration and composition of dis-
solved salts [13,14]. Remote sensing techniques present great advantages in providing
spectral soil property information at large spatial scales, and repeatedly with short temporal
intervals [15]. In recent years, soil spectral characteristics have been used to estimate soil
organic matter [16], total nitrogen, heavy metals [17], and soil moisture content [18]. Cur-
rently, there are many satellites with sensors with moderate to high spatial and temporal
resolutions, which provide new opportunities for monitoring the spatial distribution of soil
salinization using digital soil mapping techniques [15,16,19]. Indeed, the soil spectrum is a
comprehensive reflection of various soil physical and chemical properties [17,18,20,21].

The theoretical basis for remote sensing monitoring is building upon the spectral charac-
teristics of saline soils. The soil reflectance increases with the increase in soil salinization in
visible, near-infrared, and shortwave infrared bands [22,23]. However, it is complicated to
obtain the pure spectral information of saline soils using remote sensing due to interference
from other factors, such as soil moisture, vegetation cover, and data acquisition time. Overall,
the monitoring accuracy in the dry season is usually higher than in the wet season [24].

Various machine learning (ML) models are assessed to find the model that maximizes
the prediction accuracy for a specific phenomenon. In this regard, Xu et al. [25] proposed
a new method for simultaneously identifying the hyper-parameters and input features of
the support vector machine regression algorithm based on an adaptive genetic algorithm
for the quantitative evaluation of soil salinization. The authors of [3] combined Sentinel-2
Multispectral Imager (MSI) data and MSI-derived covariates with measured soil salinity data
and applied three machine learning algorithms (support vector machines, artificial neural
network, and random forest) to estimate and map the soil salinity in a sample study area in
China and provided a scientific basis for the simulation of soil salinization scenarios in arid
areas. Recently, Xiao et al. [11] evaluated the performance of three machine learning models,
i.e., random forest, support vector machine, and extreme gradient boosting, in predicting soil
salinity variables (such as total dissolved ionic matter, potential salinity, sodium adsorption
ratio, exchangeable sodium percentage, residual sodium carbonate, and magnesium adsorp-
tion ratio in soils) and thus optimized the variable input combinations. Furthermore, the
main objective of [26] was to map soil salinity intrusion using Sentinel-1 Synthetic Aperture
Radar C-band data combined with five machine learning models. The authors concluded that
advanced machine learning models could be used for mapping soil salinity.

The groundwater resources of Tunisia are of low quality, and only 50% of these
resources have water salinity below 1.5 g/L. Tunisia is a country that faces the risk of soil
salinization through the combination of its arid climate and the poor quality of its waters
and soils [27]. Salt-affected soils cover about 1.5 million hectares (10% of the land) [28],
which are located mainly in the central part of the country [29]. This risk will be aggravated
in the upcoming years, along with increased water scarcity. In order to avoid the risk of
salinization, it is important, on the one hand, to control the soil salinity and to keep it below
plant salinity tolerance thresholds and, on the other hand, to comprehensively analyze the
area where water is applied.

Even though previous studies [30,31] explored the ability of some models to estimate
soil salinity, they have yet to be applied for soil and leaf EC prediction in the Tunisian case.
In this study, we investigated the potential of recently developed retrieval algorithms de-
signed to quantify EC traits from the spectroscopic imagery of the multispectral instrument
Sentinel-2 (S-2 MSI) satellite in a southern Mediterranean country (central Tunisia). We
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selected an experimental agricultural area in the Kondar region and tested different pro-
cessing approaches using parametric regression methods and machine learning algorithms.
In this regard, this research performed three primary investigations, which comprise (i) an
evaluation of the performance of a large number of machine learning algorithms; (ii) the
use of the whole spectral band set of the multispectral imager satellite instead of a selection
of specific wavelengths; and (iii) the retrieval of electrical conductivity at both the soil and
leaf level.

2. Materials and Methods
2.1. Study Area and Experimental Setup

The experiments were conducted at the olive orchard of a Kondar farm, located in
the Sousse region, Tunisia (35◦56′ N, 10◦14′ E). The climate is of the Mediterranean type,
having an average annual rainfall of 271 mm. Average temperatures reach 20–21 ◦C. The
soil is sandy loam, with a field capacity and wilting point of 15.6% and 8.6%, respec-
tively, according to the USDA methodology and granulometric analysis conducted in the
laboratory.

The area of the experimental farm covers 30 ha. The olive orchard under study
included 80 trees (Olea europaea cv. Koroneiki) with a spacing of 6 m × 7 m. Among them,
48 trees were monitored for experimental measurements. Olive trees were cultivated in
two growing seasons (March–November 2017 and March–November 2018) under three
irrigation treatments: full irrigation (FI), deficit irrigation (DI), and rainfed treatment (RF).
Each treatment was replicated four times. A completely randomized block design was
adopted; the three irrigation treatments were randomly distributed in each block, which led
to a total of twelve plots. Water was supplied to plots via a drip irrigation system. Irrigation
water was withdrawn from a well within the farm with a water electrical conductivity
equal to 7.3 mS/cm. The soil EC measured on the saturated paste extract was 5 mS/cm.

The crop water balance and irrigation scheduling were managed using an Excel-based
model [32]. The model estimates crop evapotranspiration, irrigation water requirements,
and relative yield through the standard procedure proposed in FAO Irrigation and Drainage
Paper 56 [33]. Water requirements were considered for the following fruit growth stages:
cluster formation (stage C), full bloom (stage F1), fruit set (stage H), fruit growth stage 1
(stage I), and fruit growth stage 2 (stage I1) (Tables 1 and 2).

Table 1. Observed phenological stages during the growing season March–November 2017.

Dates 8 April 2017 6 May 2017 21 May 2017 2 June 2017 23 July 2017

Julian days 98 126 141 153 174

Stage Cluster
formation Full bloom Fruit set Fruit growth (stage 1) Fruit growth

(stage 2)
Symbol C F1 H I I1

Table 2. Observed phenological stages during the growing season March–November 2018.

Dates 11 April 2018 25 April 2018 24 May 2018 25 June 2018 31 July 2018

Julian days 101 115 136 144 176 212

Stage Cluster
formation Full bloom Fruit set Fruit growth

(stage 1)
Fruit growth

(stage 2)
Symbol C F1 H I I1

Based on the soil water balance calculation, the effective net irrigation supply for the
fully irrigated trees (FI) was 801 m3/ha and 620 m3/ha for 2017 and 2018, respectively. Half
of these volumes were supplied in the case of deficit irrigation (DI).
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2.2. Ground-Based Field Measurements
2.2.1. Soil Electrical Conductivity

Soil electrical conductivity (ECSoil) measurements were performed periodically (once
per week) throughout the irrigation season by collecting a composite sample for each
experimental plot. The protocol followed involved collecting soil samples located within
an Elementary Sample Unit (ESU) scheme set up to fit the Sentinel-2 spatial resolution,
i.e., according to 10 by 10 m quadrats. Each ESU contained 5 sampling points, defined
by establishing a 14 m transect (diagonal) in each plot (center of the plot and 4 points
positioned 3.5 m away from the center). At each point, three soil samples were collected
with an Ejkelkamp auger in the 0–40 cm depth layer. Soil samples were collected from a
total of 12 ESUs for each data set, which implies a total of 120 ESUs in the two growing
seasons. Soil sampling was carried out to include the active layer affected by agricultural
practices and was performed on dates close to the pass of the satellite.

After the field work, soil electrical conductivity was measured in the laboratory
through the saturated paste extract method. The soil samples were collected and dried
in the air. The soil was sieved in the laboratory through a 2 mm mesh, and 200 g of soil
for each sample was weighed for the preparation of the saturated paste. Subsequently,
the saturated paste was introduced in a pressure pump for filtration, and soil electrical
conductivity was measured through a portable conductivity meter [34].

2.2.2. Leaf Electrical Conductivity

Leaf samples were periodically (once per week) collected throughout the irrigation
season in four replicates for each treatment, which led to a total of twelve plants selected
from the investigated plots. Data were taken across the experimental orchard from the clus-
ter formation stage until the end of the harvest in both growing seasons. As a consequence,
a total of 120 leaf samples were collected during both growing seasons. Measurements
were made after the irrigation and on dates close to the pass of the satellite.

The collection was carried out by sampling leaves from each plant at 1.5–1.8 m from
the soil surface on the four sides, N-S-E-W. Leaves were fully intact, clean, dry, green, and
free of signs of disease or damage.

For each composite leaf sample, 2 g leaf discs 0.6 cm in diameter were prepared with a
paper hole puncher and put in glass tubes in the laboratory. Then, 20 mL of distilled water
was added to each tube, and the whole sample was left at ambient temperature for 24 h.
Afterward, leaf electrical conductivity (ECLeaf) (mS/cm) was measured using a portable
conductivity meter [35].

2.3. Satellite Remote Sensing Analysis

In order to obtain the corresponding spectral acquisitions for the in-situ data, Sentinel-
2 Level-2A orthorectified atmospherically corrected surface reflectance (L2A) images were
requested using the GEE catalog. Each Level 2A product is composed of 100 × 100 km2

tiles in cartographic geometry (UTM/WGS84 projection). The Sentinel-2 products used in
this study corresponded to the MSI covering 12 spectral bands (443–2190 nm), with a swath
width of 290 km and spatial resolutions of 10 m (four visible and near-infrared bands),
20 m (six red-edge and shortwave infrared bands), and 60 m (coastal aerosol, water vapor,
and cirrus bands).

The processing and analysis steps of the remote sensing datasets were performed
using a self-prepared script written on the Google Earth Engine platform.

The web-based IDE for the Earth Engine JavaScript Application Programming Interface
(API) package ee provides functions that allow the extraction of any available information
layers over a specific area of interest (AOI; Kondar site) and the very efficient processing of
the resulting datasets. In this regard, the shapefile of the trial, including plots with different
water treatments, was uploaded using the Imports section of the GEE code.

In all subsequent steps, all processing was bounded by the AOI.
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Sentinel-2 images for the study area should be selected on specific dates, considering
the crop phenological stages (and in consequence, the ground sampling dates) on the
Google Earth Engine (GEE) code editor platform for the period between 1 March 2017 and
31 November 2018 (Table 3).

Table 3. Selected dates (based on crop phenological stages) of Sentinel-2 images for the study area
located in the south Mediterranean–Kondar, Tunisia.

Sentinel-2 Selected Dates

Growing Season 2016–2017 Growing Season 2017–2018

1 April 2017 11 April 2018
11 April 2017 6 May 2018
31 May 2017 26 May 2018
10 June 2017 30 June 2018
25 July 2017 30 July 2018

During this step, the satellite data (Sentinel-2) were imported using the ee.ImageCollection
function, and a filter was applied to the image collection to include only relevant data
that support the purpose of the research. The filter considers the dates (filterDate), cloud
cover (Filter.lt), spatial extent (filterBounds), and selective bands (select). As a result, (i) ten
out of all available Sentinel-2 MSI images were considered, (ii) a maximum of 20% cloud
presence was set, and (iii) from the 12 available Sentinel-2 MSI bands, eight were employed
for the calculation of the spectral indices, covering the visible, near-infrared (NIR), vegetation
red-edge (VREdge 1 and VREdge 4), and shortwave infrared (SWIR1 and SWIR2) bands
with central wavelengths of 490 nm, 560 nm, 665 nm, 842 nm, 705 nm, 865 nm, 1610 nm,
and 2190 nm.

Since the selected bands have different spatial resolutions (10 m and 20 m), the
corresponding 20 m bands were resampled to the 10 m band spatial resolution via the
resample function.

Furthermore, the study area was divided into two parts, (I) olive grove area and (II)
non-olive-grove area, to separate the exposed olive trees and bare soil area from other land
covers in the experimental site (e.g., uncultivated land). The outline of the olive area was
defined using the land cover map of Tunisia coordinated by the Observatoire du Sahara et
du Sahel. Maps of the different functional land cover traits were obtained by importing the
corresponding shapes into the GEE environment. The other classes of maps were excluded.

2.4. Assessment of the Appropriate Spectral Indices for Electrical Conductivity Property Estimation

A preliminary assessment of the most widely investigated spectral indices was car-
ried out in order to select those that have already been recognized as good descriptors
of salinity status.

For this purpose, a set of different salinity-, chlorophyll-, vegetation-, and water-
related spectral index families were selected. Definitions, formulas, and references are
summarized in Table 4. For each considered band, the specific central wavelengths are
those indicated in the original formulation proposed. NDSI, S1, SI, NDVI, NMDI, SAVI,
EVI, TCARI/OSAVI, MCARI, CVI, GDVI, SIWSI, and MSI were selected for the assessment
of the EC property estimation using the available dataset.
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Table 4. List of selected spectral indices related to salinity estimation.

Index Formula Reference

Salinity spectral indices

NDSI Normalized Differential Salinity
Index (R665 − R842)/(R665 + R842) (RRed − RNIR)/(RRed + RNIR) [36]

S1 Salinity
Index 1 R490/R665 RBlue/RRed [37]

SI Salinity
Index

√
R490 × R665

√
RBlue × RRed [38]

Vegetation spectral indices

NDVI Normalized Difference Vegetation
Index

(R842 − R665)
(R842 + R665)

(RNIR − RRed)
(RNIR + RRed)

[39]

SAVI Soil-
Adjusted Vegetation Index

1.5(R842 − R665)
(R842 + R665 + 0.5)

1.5(RNIR − RRed)
(RNIR + RRed + 0.5) [40]

EVI Enhanced Vegetation Index 2.5 (R842 − R665)
(R842 + (6R665) − (7.5R490) + 1) 2.5 (RNIR − RRed)

(RNIR + (6RRed) − (7.5RBlue) + 1) [41,42]
GDVI Generalized Difference Vegetation

Index
GDVIn = (R842

n − R665
n)/(R842

n + R665
n) GDVIn = (SRn − 1)/(SRn + 1)

= (RNIR
n − RRed

n)/(RNIR
n + RRed

n)
n: Power, an integer of the values of 1, 2, 3, 4 . . . n.

GDVI ranges from −1 to 1.
SR: simple ratio = RNIR/RRed

[43]

Water spectral indices

NMDI Normalized Multiband Drought
Index

(R860 − (R1640 − R2130))
(R860 + (R1640 − R2130))

(RVREdge4 − (RSWIR1 − RSWIR2))
(RVREdge4 + (RSWIR1 − RSWIR2))

[44]

SIWSI Shortwave Infrared
Water Stress Index

(R1640 − R850)
(R1640 + R850)

(RSWIR1 − RVREdge4)
(RSWIR1 + RVREdge4)

[45]

MSI Moisture Stress Index R1600
R820

RSWIR1
NIR [46,47]

Chlorophyll spectral indices

TCARI/OSAVI

Transformed Chlorophyll
Absorption Reflectance Index/

Optimized Soil Adjusted
Vegetation Index

3(R700 − R670) − 0.2(R700 − R550)
R700
R670

(1 + 0.16)
R800 − R670

R800 + R670 + 0.16

3(RVREdge1 − RRed) − 0.2(RVREdge1 − RGreen)
RVREdge1

RRed

(1 + 0.16)
RNIR − RRed

RNIR + RRed + 0.16

[48]

CVI Chlorophyll vegetation index (R842 × R665)

R2
560

(RNIR × RRed)

R2
Green

[49]

MCARI
Modified Chlorophyll Absorption

in
Reflectance Index

[(R700 − R670)− 0.2(R700 − R550)](R700/R670)
[(

RVREdge1 − RRed
)
− 0.2

(
RVREdge1 − RGreen

)](
RVREdge1/RRed

)
[38]

R: Reflectance for the specified spectral wavelength.
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Following the steps mentioned in Section 2.3, from the Sentinel-2 scenes, the spectral
indices were extracted at the location of the ESUs, i.e., within a 10 × 10 m Sentinel pixel, by
first defining the expression of each index on GEE and then mapping it for each Sentinel-2A
image. The required indices were downloaded to a personal Google Drive account.

Subsequently, simple linear regression models were computed with ECSoil and ECLeaf
as response variables and the selected spectral indices as predictors. The optimal index
was then deduced according to the maximum determination coefficient (R2), the lowest
root-mean-square deviation (RMSE), and the probability level (P). Data were statistically
analyzed using R (Auckland, New Zealand) (4.0.2, 2018) and the packages stats and metrics.

Chlorophyll indices (TCARI/OSAVI and MCARI) based on 550 nm, 670 nm, 700 nm,
and 800 nm were proposed here due to their sensitivity to salinity [50]. The chlorophyll
indices were calculated by replacing the 550 nm, 670 nm, 700 nm, and 800 nm bands
with the green, red, vegetation red edge 1, and NIR bands available in the Sentinel-2A
band set, as was also confirmed by other authors for both TCARI/OSAVI [51–55] and
MCARI [52,56–58] computation.

Water index retrieval from Sentinel-2A imagery for the study sites was carried out
via the Sentinel-2A band set proposed in the literature specifically for NMDI [59–64],
SIWSI [65–68], and MSI [69,70]. On the basis of calculating the existing hyperspectral
indices, red edge band 4 of the Sentinel-2 imagery was introduced to replace the 860 nm
band of the NMDI so as to calculate the water indices. The Shortwave Infrared Water Stress
Index and Normalized Multiband Drought Index used the SWIR1 band instead of the
1640 nm band. Bands 820 nm, 850 nm, 1600 nm, and 2130 nm used bands 4, 8a, SWIR1, and
SWIR2 of the Sentinel-2A band set, respectively, to replace the near-infrared, vegetation
red-edge and shortwave infrared bands of the NMDI, SIWSI, and MSI.

The calculation method of the relevant spectral indices is shown in Table 4.

2.5. Electrical Conductivity Variables’ Estimation Using Machine Learning Algorithms

Electrical conductivity property estimation models were built starting from measured
ECSoil and ECLeaf based on soil and plant ground sampling in the field and the spectral
data acquired by the Sentinel-2 satellite MSI sensor (processed using the GEE code script).

The spectral profiles of the corresponding Sentinel-2 satellite imagery were down-
loaded from the Google Earth Engine to a Google Drive account. Indeed, following
the steps mentioned in Section 2.3, from the Sentinel-2 scenes, the reflectance was ex-
tracted at the location of the ESUs, i.e., within a 10 × 10 m Sentinel pixel, using the
batch.Download.ImageCollection.toDrive function in GEE.

All estimation models were calibrated by testing machine learning algorithms available
in the Automated Radiative Transfer Models Operator (ARTMO) [71].

ARTMO is a modular GUI toolbox developed in Matlab that embodies a suite of leaf
and canopy radiative transfer models (RTMs), including PROSAIL and several retrieval
toolboxes, i.e., a spectral indices toolbox [72], a machine learning regression algorithm tool-
box [73], and a LUT-based inversion toolbox [74]. The full software framework can be freely
downloaded from artmotoolbox.com. The machine learning regression algorithm (MLRA)
assessment toolbox provides a suite of nonparametric techniques to enable semiautomatic
mapping of the electrical conductivity variables.

The input module is the first mandatory step to be configured. Two types of input data
(TXT in a matrix format) were required within the same file: the parameters to be estimated,
i.e., ECSoil and ECLeaf, and the related spectra. Once the input data had been configured,
the MLRA scenarios were identified. Indeed, the capabilities of the following statistical non-
parametric regression algorithms were computed for the evaluation: least-squares linear
regression, partial least-squares regression, regularized least-squares regression, principal
component regression, Elastic Net regression, K-nearest neighbor regression, weighted
k-nearest neighbor regression, regression tree, regression tree (LS boosting), boosting trees,
bagging trees, Gradient Boosting/Boosted Trees, random forest (TreeBagger), Canonical
Correlation Forests, Extreme Learning Machine, relevance vector machine, kernel ridge
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regression, kernel signal-to-noise ratio, Gaussian Process Regression, Sparse Spectrum
Gaussian Process Regression, Warped Gaussian Process Regression, and VH Gaussian
Process Regression.

The next step was the configuration of the k-fold cross-validation (k = 10). Once the
input data had been provided and the MLRA settings (single-input) had been configured,
these scenarios were run. Once all scenarios had been analyzed, an overview table with the
best validation results indicated the degree of association between estimated and observed
values of the same variable. To compare the estimation accuracy, the metrics included the
Mean Absolute Error (MAE), the root-mean-square error (RMSE), the coefficient of correla-
tion (R), the coefficient of determination (R2), and the Nash–Sutcliffe efficiency (NSE).

3. Results
3.1. Descriptive Statistics of the Soil and Leaf Samples Electrical Conductivity (EC) Values

The ECSoil for the whole dataset varied between 2.729 and 6.830 mS/cm. The mean
and median values were 4.939 mS/cm and 4.800 mS/cm, respectively, with a standard
deviation (SD) of 1.077 and a coefficient of variation (CV) of 21.805%. From a summary of
the descriptive statistics of the dataset employed (Table 5), it appeared that a quite moderate
variability in ECSoil was observed in the field.

Table 5. Descriptive statistics of the soil and leaf samples’ electrical conductivity (EC, mS/cm) dataset.

Variable Min Max Mean Median SD CV (%) Skewness

ECSoil 2.729 6.830 4.939 4.800 1.077 21.805 0.012
ECLeaf 0.536 1.690 0.898 0.859 0.210 23.395 1.159

Regarding the ECLeaf, the dataset varied between 0.536 and 1.690 mS/cm. The mean
and median values were 0.898 mS/cm and 0.859 mS/cm, respectively, with an SD of 0.210
and a CV of 23.395%.

Due to the strong evaporation and low precipitation, it was difficult for salt to leach
from the surface soil to soil layers below the 20 cm depth, and thus, the salts often accumu-
lated on the soil surface.

3.2. Assessment of the Spectral Indices for Electrical Conductivity Property Estimation

The regression analysis was performed to examine the sensitivity of the Sentinel-2
MSI-derived spectral indices to the soil and leaf EC. The results of the statistical analysis
are presented in Table 6.

Table 6. Coefficient of determination (R2), root-mean-square error (RMSE), and p-level statistical
significance for soil (ECSoil) and leaf (ECLeaf) electrical conductivity and spectral indices derived from
Sentinel-2 multispectral images.

Spectral Indices ECSoil ECLeaf

R2 RMSE p R2 RMSE p

Salinity
indices

NDSI 0.157 5.30 *** 0.154 1.17 ***
S1 0.702 4.07 *** 0.052 0.28 *
SI 0.573 4.84 *** 0.263 0.72 ***

Chlorophyll
indices

TCARI/OSAVI 0.314 4.17 *** 0.147 0.21 ***
MCARI 0.357 4.11 *** 0.187 0.28 ***

CVI 0.415 4.34 *** 0.030 0.29 n.s.
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Table 6. Cont.

Spectral Indices ECSoil ECLeaf

R2 RMSE p R2 RMSE p

Vegetation
indices

NDVI 0.001 4.76 n.s. 0.308 0.70 ***
SAVI 0.003 4.65 n.s. 0.341 0.59 ***
EVI 0.004 4.20 n.s. 0.309 0.44 ***

GDVI 0.310 5.19 *** 0.460 0.70 ***

Water indices NMDI 0.002 4.45 n.s. 0.355 0.41 ***
SIWSI 0.076 4.66 * 0.014 0.48 n.s.
MSI 0.180 4.27 *** 0.450 0.32 ***

* Significant at p ≤ 0.05. *** Significant at p ≤ 0.001. n.s. Not significant.

The results of the regression analysis between the salinity indices and ECSoil were
significant at p ≤ 0.001. The strongest relationship was obtained between S1 and ECSoil
(R2 = 0.70). The regression models between the same electrical conductivity variable and
the chlorophyll indices were also significant at p ≤ 0.001. However, for the vegetation and
water spectral indices generated from Sentinel-2 MSI spectral data and ECSoil, significant
relationships were observed only for GDVI, SIWSI, and MSI (Table 5). It is worth noting
that chlorophyll indices (TCARI/OSAVI, MCARI, and CVI) showed better results than the
broadband vegetation indices in estimating ECSoil, with R2 values ranging between 0.31
and 0.41.

The relationships between the same spectral indices and ECLeaf were significant at
p ≤ 0.001 and p ≤ 0.05. From a list of thirteen spectral indices, only two, namely, CVI
and SIWSI, showed non-significant relationships. However, the four categories of indices
presented low (for salinity and chlorophyll indices) to moderate (for vegetation and water
indices) relationships. The best model was obtained between GDVI and ECLeaf, with a
coefficient of determination of 0.46.

3.3. Electrical Conductivity Variables Estimation Using Machine Learning Algorithms

The original Sentinel-2 MSI images and their spectral bands were adopted as remote
sensing data sources to estimate both ECSoil and ECLeaf. With the use of 12 spectral bands
as the independent variables and with the soil and leaf EC data as the dependent variables,
machine learning regression algorithms (MLRAs) were constructed (Tables 7 and 8). In
Tables 7 and 8, we present only the statistical metric outputs of the machine learning
algorithms with acceptable ranges. The models that presented very low performance
are not shown. The predicted ECSoil and ECLeaf based on different tested models were
validated against the measured ECSoil and ECLeaf to evaluate the modeling effect and
accuracy. Five statistical metric parameters, namely, MAE, RMSE, R, R2, and NSE, were
considered for the evaluation.

Table 7. Estimation accuracy of the best-performing prediction models of ECSoil derived from
Sentinel-2 spectra. MAE: Mean Absolute Error; RMSE: root-mean-square error; R: coefficient of
correlation; R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency.

MLRA MAE RMSE R R2 NSE

Sparse Spectrum Gaussian Process Regression 0.601 0.720 0.716 0.513 0.510
Warped Gaussian Process Regression 0.620 0.762 0.716 0.4524 0.452
Canonical Correlation Forests 0.634 0.764 0.673 0.4834 0.449
Random forest (Tree Bagger) 0.614 0.766 0.695 0.4496 0.447
Bagging trees 0.622 0.769 0.671 0.4523 0.442
Gaussian Process Regression 0.651 0.794 0.673 0.4096 0.406
Boosting trees 0.616 0.796 0.640 0.4673 0.402
VH Gaussian Process Regression 0.664 0.796 0.684 0.4059 0.401
Regression tree 0.616 0.803 0.634 0.4578 0.392
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Table 7. Cont.

MLRA MAE RMSE R R2 NSE

Gradient Boosting/Boosted Trees 0.673 0.810 0.677 0.3981 0.381
Regression tree (LS boosting) 0.637 0.855 0.631 0.4228 0.310
Kernel signal-to-noise ratio 0.707 0.866 0.650 0.2995 0.293
Relevance vector machine 0.700 0.878 0.547 0.2766 0.273
Weighted k-nearest neighbor regression 0.712 0.879 0.526 0.2741 0.271
Kernel ridge Regression 0.754 0.894 0.524 0.3027 0.245
Elastic Net regression 0.770 0.944 0.550 0.1606 0.158
K-nearest neighbor regression 0.777 0.974 0.401 0.1381 0.105
Regularized least-squares regression 0.825 0.985 0.372 0.0966 0.084
Extreme Learning Machine 0.792 1.148 0.311 0.1768 -
Least-squares linear regression - - - - -
Partial least-squares regression - - - - -
Principal component regression - - - - -
Adaptive Regression Splines - - - - -
Support vector regression - - - - -
Twin Gaussian process - - - - -

Table 8. Estimation accuracy of the best-performing prediction models of ECLeaf derived from
Sentinel-2 spectra. MAE: Mean Absolute Error; RMSE: root-mean-square error; R: coefficient of
correlation; R2: coefficient of determination; NSE: Nash–Sutcliffe efficiency.

MLRA MAE RMSE R R2 NSE

Gaussian Process Regression 0.097 0.132 0.790 0.625 0.624
Kernel ridge Regression 0.098 0.134 0.797 0.636 0.613
Canonical Correlation Forests 0.101 0.134 0.813 0.661 0.597
Relevance vector machine 0.106 0.140 0.761 0.579 0.577
VH Gaussian Process Regression 0.098 0.140 0.761 0.579 0.576
Kernel signal-to-noise ratio 0.104 0.146 0.740 0.547 0.541
Sparse Spectrum Gaussian Process Regression 0.107 0.151 0.725 0.526 0.508
Weighted k-nearest neighbor regression 0.116 0.164 0.662 0.439 0.415
Extreme Learning Machine 0.128 0.172 0.627 0.393 0.362
Adaptive Regression Splines 0.127 0.172 0.678 0.460 0.360
Bagging trees 0.121 0.176 0.649 0.421 0.331
Boosting trees 0.132 0.177 0.601 0.361 0.322
Random forest (Tree Bagger) 0.119 0.177 0.574 0.330 0.319
Gradient Boosting/Boosted Trees 0.127 0.183 0.572 0.327 0.278
K-nearest neighbor regression 0.130 0.184 0.568 0.323 0.264
Elastic Net regression 0.139 0.185 0.530 0.281 0.258
Regularized least-squares regression 0.141 0.186 0.522 0.272 0.253
Regression tree 0.165 0.267 0.090 0.008 -
Warped Gaussian Process Regression 0.151 0.275 0.035 0.001 -
Regression tree (LS boosting) 0.182 0.281 0.108 0.012 -
Principal component regression - - - - -
Least-squares linear regression - - - - -
Partial least-squares regression - - - - -
Support Vector Regression - - - - -
Twin Gaussian process - - - - -

According to the prediction results, some machine learning algorithms exhibited
good accuracy. Tables 7 and 8 indicate that Sparse Spectrum Gaussian Process Regression
and Gaussian Process Regression were the most robust models among the twenty-five
models tested for the estimation of ECSoil and ECLeaf, respectively. The statistical results
of the model parameters showed that, regarding the Sparse Spectrum Gaussian Process
Regression model for ECSoil estimation, the R and R2 values were equal to 0.72 and 0.51,
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respectively, while in the Gaussian Process Regression model for ECLeaf estimation, the
MAE, R, and R2 were equal to 0.097, 0.79, and 0.62, respectively.

Among the machine learning models for ECSoil estimation (Table 7), Canonical Corre-
lation Forests (CCF), random forest (RF), and bagging trees (BT) exhibited high prediction
accuracy, with the CCF model having a low RMSE (0.764), high R (0.673), and low MAE
(0.634). The RF model was very close to BT (RF: RMSE = 0.766, R = 0.695, MAE = 0.614;
BT: RMSE = 0.769, R = 0.671, MAE = 0.622). Warped Gaussian Process Regression also
showed good fitting results, with a coefficient of correlation between predicted and ob-
served values of 0.716.

Regarding the estimation accuracy of the best-performing prediction models of ECLeaf
derived from Sentinel-2 spectra (Table 8), Canonical Correlation Forests and Sparse Spec-
trum Gaussian Process Regression results slightly improved, whereas for bagging trees
and random forest, the results were slightly worse. In more detail, in the case of CCF, the
values of MAE, RMSE, R, and R2 were equal to 0.101, 0.134, 0.813, and 0.661, respectively,
whereas RF presented MAE, RMSE, and R values of 0.119, 0.177, and 0.574, respectively.

Regarding the best-performing prediction models of ECSoil and ECLeaf derived from
Sentinel-2 spectral bands (Sparse Spectrum Gaussian Process Regression and Gaussian
Process Regression, respectively), in Figure 1 the relationships between measured and
estimated values are reported.
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4. Discussion

Soil and leaf EC estimation models were established in this study based on the use of
twenty-five machine learning algorithms. It was found that the Gaussian Process Regression
models (Sparse Spectrum and Gaussian Processes) met the accuracy requirements and can
be used for the quantitative estimation of the soil and leaf EC.

The response of vegetation spectral indices to soil EC is generally affected by many
factors, including vegetation cover, salt tolerance, soil moisture, and soil type [75]. The
results varied markedly, especially for leaf EC estimation, with better performance obtained
from “vegetation indices” [76]. Indeed, in many previous studies, using salinity indices
(salinity indices 1, 2, and 3) and vegetation indices (normalized difference infrared index,
green normalized difference vegetation index, and a simple ratio) to estimate ECSoil [77,78],
the regions with vegetation coverage were directly identified as not salinized regions or
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slightly salinized regions [16,24,79]. As confirmed by [3], spectral indices are indispensable
estimators for soil salinization monitoring. The relationship between spectral indices and
electrical conductivity variables is established through fitting functions. However, the
use of spectral indices is restricted to formulations that use only a few bands, with at
most three or four bands, which implies a decrease in the complete-spectrum dataset [80].
Nowadays, this limits the strength of the estimation methods, as tens or hundreds of
spectral bands are available, respectively, in current superspectral [81] or spaceborne
hyperspectral sensors [82,83].

Soils with different salinity have different spectral characteristics, which is the basis
of the remote sensing monitoring of soil salinization. The key to successfully estimating
the soil and leaf salt content using spectral variables is to choose an effective model.
Non-parametric regression algorithms (also referred to as machine learning regression
algorithms—MLRAs) are data-driven approaches based on the definition of regression
functions between the spectral information and the variables of interest. Machine learning
algorithms are able to learn autonomously and can solve the problem of complex nonlinear
function approximation in estimation of soil and leaf electrical conductivity. The main use of
these algorithms in this research is related to the possibility of training them with complete
spectral information from the Sentinel-2 multispectral satellite. These adaptive algorithms
can cope with the strong non-linearity inherent in remote sensing data [84,85]. As confirmed
by [86,87], ML algorithms such as random forest (RF) [88] were demonstrated to be more
robust to noisy features, small training sizes, and high dimensionality and collinearity.
Indeed, in this case study, because the soil electrical conductivity dataset contains in situ
sampling and the corresponding spectral characteristics, non-parametric regression models
were applied. The methodology allows electrical conductivity prediction models adjusted
to the input variables information and existing observations to be achieved.

As presented in the results (Section 3.3), the Gaussian Process Regression (GPR)
models presented the best results and attained a higher performance and accuracy when
estimating the electrical conductivity variables (ECSoil: RMSE = 0.132 and R = 0.790; ECLeaf:
RMSE = 0.720 and R = 0.716). Indeed, GPR models are efficient machine learning regres-
sion algorithms for retrieving biophysical parameters [73]. GPR is based on a Bayesian
approach for building generic regression models between the input (remote sensing data)
and output (biophysical parameter) variables [81]. Gaussian Process Regression models
are nonparametric as well as non-linear, while at the same time providing a ranking of
relevant bands (features) from input spectral data obtained from remote sensing tools [89].
Gaussian Process Regression models are flexible enough to fit many types of data, including
geospatial and time-series data. In the inference stage, every time a new observation is
made, the model hypothesis (prior probability distribution) is updated considering the
new observations [90]. For this reason, GPR was evaluated as top-performing in accu-
rately reconstructing time-series datasets [91,92]. Our results agree with the findings of
a previous study [26], revealing that GPR is a powerful tool that could be used for soil
salinity mapping.

Moreover, both boosting and random forest algorithms presented close statistic results
in the range of 0.7 and 0.6 for RMSE and R, respectively, when estimating ECSoil and at
the range of 0.2 and 0.6 for RMSE and R, respectively, when predicting ECLeaf. From
this perspective, some authors believed that the Gradient Boosting (GB) model added
regularization terms, which were beneficial in reducing model complexity, avoiding the
overfitting phenomenon, and increasing the generalization ability of the model [93]. In
addition, GB supports the parallel splitting process, which improves the efficiency of model
construction, optimizes the objective function, and ensures prediction accuracy [94]. As
one of boosting algorithms, the GB model places more weight on more important factors
in the training–testing process [95]. Therefore, this model shows a minimal reduction in
model accuracy. Many studies concluded that the accuracy of the predictions of boosting
algorithms depended mainly on the relevance of input parameters [96–98]. Our results
agree with the findings of [2], in which the authors compared three machine learning
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models (RF, SVM, and GB) to predict soil salinity parameters. These authors found that
GB and RF models showed good prediction ability for some salinity parameters, with a
slightly higher performance of the GB model. The same research also showed that all
models underestimated salinity variables for high salinity values, which may result in
more challenging predictions in soils with higher potential salinity values However, [99]
still recommended GB models for extreme values. Moreover, the authors of [100] found
that the boosting model performed best, but the simulation results of the RF model were
also acceptable.

On the other hand, the accuracy of the random forest model was high. Generally,
decision-tree-based algorithms (e.g., RF) require no assumptions about the data distribution,
adapt to outliers by isolating them in small regions of the feature space [101], have no
hidden layers in their structure, and use tree algorithms for estimation on the basis of
pattern recognition [102]. Our finding confirmed previous studies that indicated superior
estimation capacity of tree-based models [103,104]. Indeed, due to the nonlinear nature
of many environmental phenomena, more flexible models with non-linear structures will
yield better results [105].

From this perspective, among the tested machine learning algorithms, the results
revealed that RF performed better than support vector regression (SVR), with higher
accuracy and a lower root-mean-square error. Our results agree with those of [106]. Indeed,
in their research, [106] combined a dataset consisting of Landsat 5 Thematic Mapper and
ALOS L-band radar data acquired at the same time as field-measured salinity and used the
support vector regression and random forest algorithms for salinity prediction. The results
revealed that RF performed better than SVR. The SVR model showed low performance
in learning with values of EC greater than 7 mS/cm [26]. These samples caused the low
degree-of-fit of the model, and consequently, the model lacked the sensitivity required to
predict values with high EC.

Generally, decision-tree-based algorithms (e.g., RF) perform better, particularly in
comparison to data-intelligence algorithms with hidden layers in their structures [102].
Hence, GPR, GB, and RF are recommended for soil salinity estimation and mapping.

Recently, the increasing accessibility of the new generation of hyperspectral satellite
sensors and the operational enhancements in the retrieval methods are forging the op-
portunity to attain up-to-date knowledge about the variability in salinity characteristics
throughout the Earth system. With the upcoming stream of imaging spectroscopy data with
the new, already-launched PRISMA and EnMAP hyperspectral satellites, there is a rising
need to differentiate between methodologies, tools, and software applications exploiting
the spectral possibilities to extract relevant information on an operational basis to quantify
electrical conductivity variables. The quantitative estimation of soil traits considerably
relies on the retrieval approach. Moreover, according to the literature, hybrid algorithms,
in most cases, are more flexible and can enhance the prediction power of standalone
models [107–110].

5. Conclusions

The results of this research provide a further contribution to the ability of Sentinel-2
spectral data to predict soil and leaf electrical conductivity in an agricultural area in central
Tunisia. The performance of twenty-five regression algorithms for estimating electrical
conductivity at the soil and vegetation levels was compared and quantitively assessed. Our
results indicate that the combined use of machine learning algorithms and Sentinel-2 whole
multispectral band set improved the accuracy of the electrical conductivity estimation.

An additional key goal of this research was to investigate the potential of recently
developed retrieval regression methodologies for quantifying electrical conductivity not
only at the soil level but also at the vegetation (leaf) level.

For future perspectives, the higher spectral resolution of newly launched hyperspectral
satellites (e.g., PRISMA and EnMAP) will be a great tool to exploit narrow absorption spec-
tral features in the Vis-NIR and SWIR spectral ranges associated with salinity estimation.
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Therefore, combining data from hyperspectral sensors with the most advanced machine
learning algorithms could represent an innovative and robust strategy for improving the
mapping and monitoring of soil and vegetation salinity properties.
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