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Abstract

:

Crop yield data are critical for managing agricultural sustainability and assessing national food security. This study aims at increasing peanut productivity from its current levels by analyzing the yield gap (difference) of potential production between theoretical yield and actual farmers’ yields. The spatial yield gap of peanut for the Tiruvannamalai district of Tamil Nadu is examined in this investigation by integrating the products of microwave remote sensing (SAR Sentinel-1A) with the DSSAT CROPGRO Peanut simulation model. The CROPGRO (crop growth) Peanut model was calibrated and validated by conducting a field experiment at Oilseeds Research Station, Tindivanam during Rabi (spring) 2019 for predominant cultivars, i.e., TMV 7, TMV 13, VRI 2 and G 7. Actual attainable yield was recorded by organizing crop cutting experiments (CCEs) with the help of the Department of Agriculture Economics and Statistics in the respective monitoring villages. The regression analysis between the maximum recorded DSSAT leaf area index (LAI) at the peak flowering stage of peanut and the yield recorded by CCEs for the spatial yield estimation of peanut in the Tiruvannamalai district of Tamil Nadu during Rabi 2021 was carried out using ArcGIS 10.6 software. The DSSAT CROPGRO simulated potential yield ranged from 3194 to 4843 kg/ha, whereas actual yield ranged from 1228 to 3106 kg/ha, with a considerable disparity between the actual and potential yield levels (from 1217 to 2346 kg/ha) of the monitored locations. The minimum, maximum and average yield gaps in peanut for Tiruvannamalai district were assessed as 1890, 2324 and 2134 kg/ha, respectively. In order to reduce the production difference of peanut cultivation, farmers should focus more on management issues such as time of sowing, irrigation or water management, quantity and sources of nutrients, cultivar selection and availability of quality seeds tailored to each region.
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1. Introduction


Peanut is the major oil seed crop in India, and it plays a significant role in bridging the vegetable oil deficit in the country. Peanut is grown on 24.59 mha worldwide, with a total production of 40.47 mt and a productivity of 1640 kg/ha. It is cultivated on an area of 3.65 mha in India, with an annual production of 9.57 mt and an average productivity of 1790 kg/ha. In Tamil Nadu, it occupies 0.35 mha and produces 1.03 mt, with average productivity of 2980 kg/ha during 2021–2022. Peanut productivity varied widely and was influenced by soil fertility, season and irrigation potential. The instability indices computed for decadal sub-periods at the state level also suggested that the variability was higher in the case of peanut productivity than the area. Bridging the yield gap, especially in developing nations, is a strategic step for alleviating the problem of food insecurity. The difference between the actual yield that farmers are currently producing and the potential yield that could be obtained by utilizing the best agronomic methods is known as the yield gap. This can aid in predicting future crop results for specific places and in identifying the contributing elements to the disparity.



In order to discover production barriers, examine measures to enhance agricultural productivity and identify intervention regions, it is vital to quantify crop yield gaps and assess the food security of a nation [1,2,3]. Furthermore, accurately assessing productivity, land use patterns and food security requires a thorough investigation of existing yield gaps as well as production limits [4,5].



Production capacity changes of farmland, changes in crop productivity and current yield differences must be analyzed holistically to potentially offer farmers policy decision makers so that they optimize their farm land management systems and boost their production of food by limiting additional area expansion [6,7,8].



Most agricultural yield disparities lead to two goals for their reduction [5]: (i) to determine the amount of yield gap, which is defined as the difference between potential yield (Yp) and average attainable yields, to be able to determine how much average yields may be raised by management adjustments; (ii) to pinpoint the root cause of yield differences, so that research and policy activity can promote the establishment of land and labor productivity as priorities.



Measuring the potential yield (Yp) from the highest farmer‘s yields, field trials and crop simulation models are the three common approaches for assessing potential yield of crops whilst using yield gap (Yg) analysis [9,10].



An understanding of farming practices at various scales and the assessment of production gaps can both be greatly improved by remote sensing approaches. Technological breakthroughs in remote sensing technologies, such as multispectral and hyperspectral sensors on drones and geosynchronous orbits (Copernicus Sentinel-1A, equipped with Synthetic Aperture Radar—SAR), have expanded the possibility to perceive small and marginal landholding systems at greater spatiotemporal resolutions, allowing a more accurate assessment of crop yields while integrating with simulation models in those areas. Crop simulation modeling and satellite image-based earth observation technologies have advanced to quickly allow for better regional crop yield monitoring and forecasting. Remote sensing has been an effective method for coping with heterogeneity during the past two decades, and it can be used in conjunction with more conventional strategies such as field tests and simulation models. In fact, remote sensing using sensors mounted on aircraft or satellites has the capacity to offer observations for a single field throughout each growing season. In order to investigate yield gap variability, remote sensing might augment surveys or field experiments by overcoming geospatial data limitations.



Through the use of data having high spatial and temporal resolutions, the most recently launched sophisticated remote sensing satellites aid in making precise estimates of crop area and yield. Additionally, the enhanced spatial, spectral and temporal resolutions make it easier to distinguish among crops [11]. Due to the availability of these high-resolution satellite sensors, software with automated processing chains, advanced agricultural yield models and reliable information on crop acreage, crop conditions and yields have been provided. The accuracy of crop classification is improved by time series satellite data’s repeated covering of the cultivated area [12]. SAR sensors have an especially impressive capability to detect structural changes in crop canopies. Additionally, they can accurately identify the crop type due to their sensitivity to a variety of biological and physical crop factors, including leaf area index (LAI), biomass and canopy height [13].



Crop simulation models are used to simulate potential crop yields, which are then compared with actual yields in many yield gap analyses [5]. If the potential yield (Yp) is taken from the maximum farmer’s yield and field studies, it is affected by constraints [14]. In order to estimate Yp from field experiments, it is quite challenging to establish ideal growth circumstances across the crop growth period for a number of seasons to account for climate change. Corresponding to this, the maximum farmers’ yield is determined by individual farmers’ estimates, which may incorporate flawed information. On the other hand, crop simulation models are very important because they allow for interconnections between crops, soil, weather, water regimes and management to generate a more precise estimate of Yp [5]. Models also account for the unpredictability of weather conditions across many years. Thus, notwithstanding difficulties relating to parameter estimates or structure functioning, crop simulation models provide the most accurate Yp for a certain area [4,15,16].



In order to address a wide range of complex agronomic problems at both the local and provincial scale, two distinct advancements in remote sensing and crop growth simulation models have been created [17,18]. Despite the fact that these two technologies have frequently been explored independently, there is rising interest in using data from remote sensing to update or enhance agricultural ecosystem model simulations. This is because these two technologies are inherently complementary [19,20,21].



Understanding the causes of yield gap variability can help to improve site specific land management and yields [22]. However, on a field level, there is a lack of understanding of the reasons for yield gap, mainly due to understanding factors limiting agricultural production at a local level and having used approaches such as surveys and field experiments [23]. These techniques have spatial data limitations since they use a limited number of randomly selected units and fall short of giving a thorough knowledge of yield gaps at the micro level when considering the variety that can be found even within individual fields and plots [14]. The purpose of this research paper is to combine satellite-based microwave remote sensing and a crop simulation model in order to measure and explain crop yield gaps.




2. Material and Methods


2.1. Study Area


Tiruvannamalai district belongs to the north–eastern agro-climatic zones of Tamil Nadu, which are spread over 6191 square kilometers and lie from 11°55′ to 13°15′ North latitude and from 78°20′ to 79°50′ East longitude. The study area map of this district, having eighteen blocks and consisting of 1067 villages, is shown in Figure 1. The prevailing climate is from hot sub-humid to semi-arid. The mean annual maximum and minimum temperatures are 32.6 and 22.2 °C, respectively. The annual rainfall of the north–eastern zone, excluding hills, varied from 800 to 1400 mm, and more rainfall was received during Rabi (spring) 2020–2021. The predominant soil types are red sandy loam and clay loam, which encourage the cultivation of peanut, rice, black gram and sesame.




2.2. Used Data


The benefit of Synthetic Aperture Radar (SAR) is that it can collect data day or night and operates at wavelengths that are not hindered by clouds or poor lighting. With its C-SAR equipment, Copernicus Sentinel-1A can provide dependable, ongoing wide-area monitoring. Sentinel 1’s C-band imaging system features four imaging modes with various resolutions and coverage areas. It is capable of dual polarization, has a brief revisit time and delivers products quickly. For crop identification and mapping in the study area during Rabi 2020–2021, Ground Range Detected (GRD) information from Sentinel-1A Synthetic Aperture Radar image acquisition with VH polarization in interferometric wide (IW) swath mode were gathered at 12-day intervals. The data were downloaded from https://scihub.copernicus.eu/dhus/ (accessed on 10 April 2021) based on the usual peanut growing season in the research location to have complete coverage during the crop growing season, beginning 4 October 2020 to 8 January 2021.



SAR Data Processing


The multi-temporal space-borne Sentinel-1A SAR IW-GRD data were converted into terrain-geocoded values using an entirely automated processing pipeline created by [24]. The processing string was a module of the MAPscape-RICE program, created by the Swiss company Sarmap, Switzerland. The SAR time series data performed a number of important processing steps, as indicated below and as illustrated in Figure 2, to produce terrain geocoded degree values.




	(i).

	
Strip mosaicking: to facilitate the overall data processing and data handling,




	(ii).

	
Co-registration: Images acquired with the same observation geometry were co registered in slant range geometry,




	(iii).

	
Time-series speckle filtering: to balance differences in reflectivity between images,




	(iv).

	
Terrain geocoding: Radiometric calibration and normalization,




	(v).

	
ANLD filtering: to get smoothened homogeneous targets,




	(vi).

	
Removal of atmospheric attenuation: σ° values were corrected by means of an interpolator.




	(vii).

	
Subsetting: The rectangular extent of the study was extracted from the base map and the raster images were subsetted to an extent from 11°55′ to 13°15′ North latitude and 78°20′ to 79°50′ East longitude. Subsetting of raster data reduces the time in further processing.











2.3. Crop Classification and Accuracy Assessment


2.3.1. Maximum Likelihood Classification (MLC)


To classify imaging pixels into a land use/cover category based on pixel value is the purpose of the image classification process. In this work, crop area identification was performed using the maximum likelihood classification (MLC) algorithm. The spectral response pattern was used by the MLC to statistically analyze the individual categories’ variance and covariance while identifying an unidentified pixel. It was assumed that the training dataset distribution was Gaussian. According to this premise, the average vector and covariance matrix can completely represent the distribution of a training dataset for a class. The statistical possibility that a given pixel belongs to a specific class can be calculated assuming these variables.



To determine peanut, the image was first categorized using MLC with multi-temporal superimposed SAR images. Based on training pixels acquired at various locations, the training spectral signature for the peanut crop was created. The categorization for VH polarization was then completed in order to distinguish the peanut field from other categories.




2.3.2. Accuracy Assessment


The accuracy of the peanut area map was validated using the error matrix and kappa statistics. To measure the classification accuracy, each pixel’s class assignment in the classified image was contrasted with the matching class assignment on the reference data. An error matrix was created using the agreement and disagreement pixels. The elements of the matrix indicated the number of pixels in the testing dataset, while the columns and rows represented the total number of classes [25]. All of the classified output’s classification accuracy was examined.



A farmer survey was used to confirm that the observed post-harvest situation accurately reflected the presence of a peanut crop during the surveilled season. Generally, the accuracy assessment in fields was performed during the pod filling or maturity phase before harvesting, but in some cases, the field assessment was conducted during the post-season and peanut haulms. The error matrix was used to determine the accuracy metrics, including overall accuracy, producer accuracy and user accuracy [26]. The proportion of correctly identified cases located along the diagonal, which represent the overall accuracy, were determined as follows:


   Overall   Accuracy    =   ∑    Correctly   classified   classes   along   diagonal      ∑    Row   Total   or   Column   Total       











By dividing the total number of correctly categorized samples by the total number of reference samples, the producer’s accuracy (errors of omission) for each class was calculated as follows:


   Producer ’ s   Accuracy    =    Number   of   correctly   classified   class   in   a   column     Total   number   of   items   verified   in   that   column     











By dividing the total number of samples in a class that were verified to belong to that class by the number of samples in that class that were correctly classified, the user’s accuracy (errors of omission) of each class was calculated as follows:


   User ’ s   Accuracy    =    Number   of   correctly   classified   item   in   a   row     Total   number   of   items   verified   in   that   row     












2.3.3. Kappa Coefficient


The kappa coefficient, which estimates the proportionality (or percentage) increase by the classifier over a simply random assignment to classes, is a different metric for classification accuracy [27]. The formula shown below was used to estimate the kappa coefficient.


      K ˆ   =    NA    − B    N 2  −  B       











In the case of a confusion matrix containing r rows and, correspondingly, r columns:



A = the sum of r diagonal elements, which is the numerator in the computation of overall accuracy;



B = sum of the r products (row total x column total);



N = the number of pixels in the error matrix (the sum of all r individual cell values).





2.4. Crop Cutting Experiments (CCEs) for Actual Yield Estimation


The actual yield of peanut or the yield attainable by farmers during Rabi (spring) 2020–2021 was estimated with the help of the Department of Agricultural Economics and Statistics by organizing CCEs in 31 monitoring sites of Tiruvannamalai district. In each monitoring site four CCEs were organized in a randomly selected area having the size of 5 × 5 m. The average of four CCEs from each monitoring site was converted to yield (per ha) and used as the actual yield for that monitoring site. The estimated yield data were used as attainable actual yields for measuring the yield gap.




2.5. Crop Simulation Using CROPGRO Peanut Model for Potential Yield Estimation


DSSAT is a software package for microcomputers that combines crop, soil and weather information in common formats for crop modeling and application program evaluation. The DSSAT was employed in the current analysis because the user may simulate the results of cultivation techniques over a number of years for various crops in any area in the world. The elements of the crop simulation models for DSSAT are shown in Figure 3.



In DSSAT v.4.5, the CROPGRO (crop growth) Peanut model can be utilized to simulate the daily growth and development of the peanut crop. DSSAT is a one-dimensional model that calculates daily variations in soil water content in a single layer through soil evaporation, infiltration, unsaturated flow, irrigation, vertical drainage, root water uptake and plant transpiration. In addition to crop coefficients that were thought to be less variable or even more conservative among crop cultivars, it also required cultivar coefficients (cultivar-specific characteristics) as an input to the model. The model could represent how high temperatures affected peanut development and growth. The maximum potential yield was computed using the input datasets for 31 monitoring locations by the DSSAT CROPGRO Peanut model. It needed just the small datasets mentioned for its execution.



2.5.1. Weather Data


Automatic weather stations (AWS) and regular observatories located in the study districts provided the daily meteorological information on maximum temperature (°C), minimum temperature (°C), solar radiation (MJ m−2 day−1) and rainfall (mm) for Rabi 2020–2021, which were used to create a weather file for running the CROPGRO Peanut model. To anticipate the yield, the DSSAT model needed weather information for the whole growing season of the crop.




2.5.2. Soil Data


The Department of Remote Sensing and Geographical Information Systems, Tamil Nadu Agricultural University, in Coimbatore, provided the soil data used to create the soil files. This was accomplished by using a digital soil information system that had data on the following soil parameters (1:50,000), i.e., depth; texture; pH; EC; bulk density; drainage; organic carbon; available N, P, K, Ca and Mg; and cation exchange capacity (CEC). The soil profiles’ information, as required in DSSAT, were fed into the S-Build tool in DSSAT to create a soil file. The Tiruvannamalai district comprises 12 soil series viz., Perunthurai, Devikapuram, Pedakallupalli, Meyyur, Vetavalam, Vilukam, Kolathur, Ayyalur, Perumalthangal, Mattathari, Parapperi and Kalugachalapuram, and the details were used for the S-build tool presented in Appendix A.




2.5.3. Crop Management Data


The inputs to the model for each of the 31 monitoring locations that would be simulated for Rabi 2020–2021 were documented in the crop management file (X-built) file. The actual figures of the experimental conditions and field characteristics, including the name of the weather station, the soil, initial soil water content, the field description, planting distances, the conditions of inorganic nitrogen content, irrigation and water management, fertilizer management, tillage operations, the application of organic residues and chemicals, environmental modifications, harvest management, simulation control mechanisms (specification of simulation options, i.e., starting dates, on/off options for water and nitrogen balances, symbiosis) and output options were included in the X-built tool as the crop management file.




2.5.4. Estimation of Peanut Genetic Co-Efficient


The tweaking of genetic parameters, also known as model calibration or parameterization, ensured that simulated and observed values were closely comparable. The genetic variables of cultivars were estimated using the data collected from the experiment. In order to achieve the most accurate fit between the observed and simulated number of days to the plant developmental events and grain yield at harvest, the genetic coefficients that affect the occurrence of developmental stages in the CROPGRO Peanut model entrenched in the DSSAT model were derived successively by manipulating the relevant coefficients. For developing varietal genetic coefficient, the field experiment with randomized block design was conducted for popular peanut varieties at Oilseeds Research Station, Tamil Nadu Agricultural Research Station, Tindivanam during Rabi 2019–2020 against the predominant varieties, i.e., TVM 7, TMV 13, VRI 2 and G 7 were used for generating varietal coefficient.





2.6. Yield Estimation by Integrating Remote Sensing and DSSAT CROPGRO Model


SAR Sentinel-1A data integrated with the DSSAT CROPGRO Peanut simulation model for estimating the yield are shown in Figure 4. LAI values retrieved from dB images of the SAR data were used to integrate the DSSAT simulated yield with the remote sensing data. A linear regression equation was generated between DSSAT simulated yield and spatially simulated LAI values for estimating peanut yield.



2.6.1. Generation of LAI for Peanut Yield Estimation


Five LAI readings were taken from each monitoring field, and the average was calculated. In order to provide information to the CROPGRO Peanut system for simulation and validation, yield data were collected at the completion of the season from each monitoring field and the entire dataset was finalized over the study area with measurements of peanut pod yield and LAI. Regression analysis was carried out between the observed and expected yield using the data from the study region pooled into a single dataset.




2.6.2. Retrieving LAI from dB Images of SAR Data


Using the point sample tool in QGIS software, v.2.18.4, the dB (back scattering) readings of peanut crops were gathered for the monitoring fields. In the monitored peanut fields of the study region, the equation for linear regression was created between the dB readings and the simulated LAI values at pod growth stage (Figure 5). The raster calculator tool in ArcMap gives users the option to create selection queries, enter map algebra syntax, or perform basic arithmetic using operators and functions. Therefore, in this investigation, the dB values of dB pictures from mature stages were substituted for the calculated regression values using the raster calculator in ArcMap. To construct yield maps and statistics spatially, an empirical method was used to extrapolate the field observed and DSSAT calculated LAI values (Figure 6).





2.7. Yield Gap Estimation


Yield gap is defined as the difference between potential yield (Yp) and average yield (Ya). The potential yield was derived from the crop simulation model CROPGRO Peanut by a trail conducted at Oilseeds Research Station, Tindivanam. The basic information essential for DSSAT model calibration and validation were used from this trial and allowed to estimate the potential yield of peanut for the study area. The actual yield data of peanut were collected by organizing the crop cutting experiments (CCEs) in the study area.





3. Results and Discussion


3.1. Peanut Area and Accuracy Assessment


The peanut area map for the Tiruvannamalai district was derived from multi-temporal C-band SAR imagery of the Sentinel-1A satellite. Using the shape files of administrative boundaries, the map of the district and blocks and statistics of the peanut area were extracted for 18 blocks of Tiruvannamalai district. The classified peanut area for each block is shown in Table 1 and Figure 7 and the total peanut growing area during the Rabi (spring) 2020–2021 was estimated to be 32,298 ha. The Thandrampet block of Tiruvannamalai district had the maximum area, with 6970 ha, followed by the Thurinjapuram, Tiruvannamalai, Keelpennathur and Chengam blocks, which had 5576, 5197, 4989 and 4111 ha, respectively. The Jawadhu hills block of Tiruvannamalai district recorded a minimum area of 29 ha.



The peanut area maps were assessed for accuracy on a peanut or non-peanut basis, where all other land cover types were grouped into a non-peanut class. In total 103 validation points, of which there were 69 peanut and 34 non-peanut points, were considered for validation and the confusion matrix is shown in Table 2. The overall classification accuracy was 87.4% with a kappa score of 0.75, indicating the accuracy of classification. The overall accuracy (>80%) and kappa score (>0.50) indicated that the assessment was of high quality. The results were in accordance with [28,29,30,31], who delineated the crop area estimation with high classification accuracy using multi-temporal Sentinel-1A data; this indicated the suitability of remote-sensing-based images for crop area estimation and monitoring for policy decisions, including crop insurance.




3.2. Genetic Coefficient Development and Calibration of DSSAT Model


Crop simulation model genetic coefficient development and calibration are vital for establishing their credibility and ability in simulating growth, development, production quality and yield [32]. Among the four varietal genetic coefficients (Table 3) generated during the Rabi season 2019–2020, the time between emergence to flower appearance (EM-FL) and the time between the first flower to first pod (FL-SH) ranged from 17.50 to 19.00 photothermal days and from 7.00 to 8.00 ones, respectively. In contrast, the time between the first flower and the first seed (FL-SD) and the time between the first seed and the physiological maturity stage (SD-PM) ranged from 17.30 to 18.50 photothermal days and from 58.00 to 62.00 ones, respectively. The maximum leaf photosynthesis rate ranged from 1.09 to 1.25 mg CO2 m−2 s−1. The seed filling duration (SFDUR) ranged from 31 to 33 photothermal days, while the amount of seeds per pod was 1.65, for six varieties. Similarly, Refs. [33,34,35,36] developed genetic coefficient for groundnut cultivars to various agro-climatic zones of India, for crop yield estimation using simulation models.



The capability of the DSSAT CROPGRO Peanut model to predict growth and development of the four predominant peanut cultivars, i.e., TMV7, TMV13, VRI 2 and G7 (Table 4) were assessed; the crop response was predicted as influenced by season, weather, management and soil distribution through field experiments conducted at Oilseeds Research Station, Tindivanam.



Further, the DSSAT model allowed researchers to record a simulated canopy height from 56 to 69 cm, as well as the maximum LAI for these six varieties ranging from 4.93 to 5.60. These simulation results were in line with those of [37], who deduced that when independent crop and soil datasets were used for evaluation, the PNUTGRO model was influenced by season and location for simulating growth and crop yield. Apart from that, Refs. [38,39,40] tried to simulate the varietal influence on the growth and physiological process at different regions using DSSAT crop simulation model. The simulated pod yield of different peanut varieties ranged from 3935 to 4657 kg ha−1. The results obtained in this study among the varieties highly correlated with those achieved by [28], who simulated the potential yield of rainfed peanut in the major production zones of Tamil Nadu, which correlated highly with the results obtained in the present study among the varieties. Similar findings on pod yield simulation by DSSAT in a different location were reported by [36,37,41,42,43], and the simulation model overestimated the pod yield rather than the attainable actual yield, because its simulation of crops had simulated the yield without considering the limiting factors. The CROPGRO Peanut model was used by [34] to simulate the phenological events, yield and production quality of peanut cultivars, i.e., GG 2 and GG 20, in Gujarat. In the past years, many research efforts were carried out to simulate the growth and productivity of peanut and other crops.




3.3. Spatial Estimation of Potential Yield, Actual Yield and Yield Gap of Peanut


3.3.1. Potential Yield Estimation


The DSSAT simulation model allowed researchers to estimate the peanut potential yield in the monitoring sites, divided into blocks, in Tiruvannamalai district (Table 5 and Table 6). According to [44]’s regression analysis, DSSAT is a useful method for creating yield prediction models. Among the monitoring sites, the maximum potential yield of 4843 kg/ha was simulated using CROPGRO Peanut at Mel Palur and Kil Palur villages, while the minimum potential yield of 3194 kg/ha was simulated at Tandarai village of Tiruvannamalai district. Similarly, from the potential yield of 18 blocks of Tiruvannamalai district, the minimum potential yield varied from 3711 to 3821 kg/ha, recorded at the Pernamallur and Jawadhu hills blocks, respectively, with a mean minimum yield of 3750 kg/ha. The maximum potential yield varied from 3936 to 4306 kg/ha, recorded in the Vembakkam and Thandarampet blocks, respectively, with the mean maximum yield of 4029 kg/ha. The mean overall potential yield of Tiruvannamalai district was 3874 kg/ha and the potential yield map is shown in Figure 8.



As the DSSAT simulation model is based on the optimum input data of soil, water, climate and crop management, the potential yield estimation always provides a yield higher than the yield attainable by farmers, similarly to the results of other scientists [45]. The DSSAT model simulates daily leaf area index (LAI), vegetation status parameters, biomass production and potential yield, using soil, crop management and daily weather data as inputs.



Moreover, simulation models provide the most accurate estimate of potential yield, because they account for temporal (during the years) and spatial (in the regions) variability of weather parameters, as well as the major interactions among crops, weather, soil, water regime and crop management. They allow quantification of the potential or water-limited yield within the climatic, soil and management context of a given cropping system. Hence, if it is possible to use the spatial and temporal variability of the above parameters, crop simulation models will perform much better than empirical methods [5].




3.3.2. Actual Yield Estimation


Crop cutting experiments (CCEs) allowed estimations of the actual yield of monitoring sites, divided into blocks; the results are shown in Table 5 and Table 6. Actual peanut yields recorded in monitoring locations of the Tiruvannamalai district during the Rabi 2020–2021 ranged from 1228 to 3106 kg/ha in the Agaramand and Mel Palur villages, respectively. Among the blocks of Tiruvannamalai district, the minimum actual yields were from 1394 to 1644 kg/ha in the Tandarampet and Jawadhu hills blocks, while the maximum yields ranged from 1858 to 2526 kg/ha in the Vembakkam and Tandarampet blocks, respectively. The mean overall actual yield was 1740 kg/ha and the actual yield map is shown in Figure 9.



During the Rabi 2020–2021, the actual crop yield decreased compared with the previous years. However, such a decrease in the actual yield was accompanied by a significant fluctuation from year to year, maybe due to rainfall variability. According to [46], there is a correlation between the growing season rainfall and the annual actual yield. The decrease in actual yield could be the result of changes in agronomic practices adopted in the region during the considered period, although this decrease was found at its early stage.




3.3.3. Peanut Yield Gap Estimation


The yield gap of monitoring sites and the spatial variability of yield gap in the various blocks are shown in Table 5 and Table 6. Among the monitoring sites, Ponnaiyur village recorded the maximum yield gap of 2346 kg/ha, whereas Mangalam village recorded the minimum yield gap of 1217 kg/ha, compared with other monitoring sites. For the Tiruvannamalai district, the minimum yield gap ranged from 1456 to 2072 kg/ha in the Tiruvannamalai and Vembakkam blocks, while the maximum yield gap from 2231 to 2508 kg/ha was recorded in the Thellar and Tiruvannamalai blocks, respectively. The mean overall yield gap of Tiruvannamalai district was 2134 kg/ha. By combining remote sensing (from SAR Sentinel-1A satellite) data with those obtained by means of the crop simulation model (DSSAT CROPGRO Peanut), the yield gap of peanut was investigated in this work for Rabi 2020–2021; the yield gap map is shown in Figure 10. The yield gap ranged from 1217 to 2346 kg/ha and the major production constraints of peanut in the district were seasonal rainfall variability, poor soil fertility, lack of improved varieties and inadequate weed management. The current yield gap could be minimized by combining traditional agronomic approaches with the latest technologies, as well as by involving different stakeholders. A substantial amount of work was devoted to mapping and interpreting the within-field spatial variability of yield, in order to perform spatially variable rate application of crop inputs, according to the principles of precision agriculture [4].






4. Conclusions


The integration of SAR Sentinel-1A with DSSAT CROPGRO Peanut for assessing the peanut yield gap during the Rabi 2020–2021 in Tiruvannamalai district recorded an average yield gap of 2134 kg/ha, with a mean minimum gap of 1890 kg/ha and a maximum gap of 2324 kg/ha. The key production constraints of the peanut growing areas in Tamil Nadu were seasonal rainfall unpredictability, poor soil fertility, lack of improved varieties and inadequate weed management, which created a wide gap between the potential and attainable yields. The current yield gap could be minimized by combining traditional agronomic approaches with the latest technologies, as well as by involving different stakeholders. As a result, the regular use of remote sensing for examining the magnitude and the causes of yield gap and, then, improving the awareness of the yield gap itself will be critical in satisfying future crop demand at reasonable prices, while minimizing the environmental impact.
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Table A1. Predominant soil series information of Tiruvannamalai district used in S-built tool of DSSAT model.
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Soil Series

	
Depth

	
Sand (%)

	
Silt (%)

	
Clay (%)

	
Texture Class

	
pH

	
EC

	
OC (%)

	
CEC

	
ESP






	
Perundurai

	
13

	
79.00

	
6.00

	
15.00

	
Sandy loam

	
6.00

	
0.25

	
0.41

	
10.60

	
2.74




	
38

	
41.00

	
11.00

	
48.00

	
Clay

	
5.90

	
0.22

	
0.50

	
22.80

	
1.32




	
70

	
23.00

	
8.00

	
69.00

	
Clay

	
5.90

	
0.18

	
0.70

	
26.40

	
1.52




	
92

	
45.00

	
9.00

	
46.00

	
Clay

	
6.40

	
0.18

	
0.30

	
19.20

	
1.61




	
Devikapuram

	
14

	
43.80

	
21.60

	
34.60

	
Clay loam

	
7.00

	
0.10

	
0.52

	
14.51

	
0.76




	
44

	
65.80

	
12.30

	
21.90

	
Sandy clay loam

	
7.30

	
0.10

	
0.17

	
10.23

	
0.88




	
59

	
64.90

	
12.80

	
22.30

	
Sandy clay loam

	
7.40

	
0.10

	
0.23

	
11.12

	
1.08




	
79

	
66.30

	
16.90

	
16.80

	
Sandy loam

	
7.70

	
0.10

	
0.11

	
8.64

	
0.69




	
98

	
68.70

	
7.50

	
23.80

	
Sandy clay loam

	
7.50

	
0.10

	
0.20

	
12.46

	
0.56




	
Meyyur

	
16

	
51.02

	
25.17

	
23.81

	
Sandy clay loam

	
8.90

	
0.40

	
0.75

	
39.53

	
1.10




	
30

	
36.27

	
32.90

	
30.83

	
Clay loam

	
9.00

	
0.70

	
0.78

	
40.32

	
1.08




	
50

	
20.21

	
35.67

	
44.12

	
Clay

	
9.30

	
1.10

	
0.80

	
42.84

	
1.02




	
110

	
42.39

	
11.49

	
46.12

	
Clay

	
9.10

	
0.90

	
0.65

	
42.00

	
1.04




	
Vetavalam

	
25

	
65.12

	
15.68

	
19.20

	
Sandy clay loam

	
7.20

	
0.40

	
0.64

	
21.94

	
1.19




	
52

	
73.54

	
12.26

	
14.20

	
Sandy loam

	
6.90

	
0.30

	
0.67

	
21.41

	
1.21




	
Villukam

	
14

	
46.72

	
18.28

	
35.00

	
Clay

	
8.50

	
1.41

	
0.31

	
27.10

	
2.80




	
36

	
44.41

	
18.89

	
36.70

	
Clay

	
7.90

	
0.25

	
0.32

	
28.20

	
1.38




	
72

	
42.11

	
19.00

	
38.89

	
Clay

	
7.80

	
0.22

	
0.30

	
30.10

	
1.40




	
103

	
37.34

	
22.66

	
40.00

	
Clay

	
7.80

	
0.20

	
0.25

	
31.26

	
1.02




	
Kollattur

	
18

	
64.77

	
14.34

	
20.89

	
Sandy clay loam

	
6.34

	
0.05

	
0.45

	
11.40

	
4.91




	
47

	
56.37

	
3.95

	
39.68

	
Sandy clay

	
6.69

	
0.04

	
0.37

	
13.80

	
2.90




	
Ayyalur

	
16

	
87.10

	
8.00

	
4.90

	
Loamy sand

	
6.60

	
0.02

	
0.32

	
10.60

	
2.08




	
40

	
43.00

	
17.00

	
40.00

	
Clay loam

	
6.20

	
0.22

	
0.17

	
15.40

	
1.43




	
75

	
60.36

	
2.29

	
37.35

	
Sandy clay

	
6.50

	
0.20

	
0.28

	
24.80

	
0.97




	
127

	
59.90

	
2.60

	
37.50

	
Sandy clay

	
6.60

	
0.10

	
0.17

	
21.95

	
1.23




	
Perumaltangal

	
14

	
40.26

	
23.46

	
36.28

	
Clay

	
7.17

	
0.16

	
0.56

	
22.00

	
5.83




	
51

	
34.89

	
24.87

	
40.24

	
Clay

	
7.27

	
0.13

	
0.41

	
25.60

	
4.88




	
Matathari

	
12

	
12.30

	
43.20

	
44.50

	
Silty clay

	
8.60

	
0.30

	
0.54

	
23.00

	
12.61




	
25

	
9.30

	
44.40

	
46.30

	
Silty clay

	
8.50

	
0.30

	
0.43

	
23.24

	
8.18




	
55

	
53.20

	
8.50

	
38.30

	
Sandy clay

	
8.50

	
0.20

	
0.38

	
28.00

	
6.43




	
85

	
51.80

	
10.60

	
37.60

	
Sandy clay

	
8.50

	
0.20

	
0.34

	
30.24

	
5.62




	
Papperi

	
12

	
66.00

	
13.20

	
20.80

	
Sandy clay loam

	
7.00

	
0.30

	
0.30

	
7.80

	
25.64




	
23

	
67.50

	
10.90

	
21.60

	
Sandy clay loam

	
7.00

	
0.20

	
0.20

	
8.80

	
11.36




	
40

	
66.40

	
11.20

	
22.40

	
Sandy clay loam

	
7.30

	
0.20

	
0.20

	
7.22

	
24.93




	
85

	
67.20

	
11.00

	
21.80

	
Sandy clay loam

	
7.30

	
0.20

	
0.20

	
6.22

	
25.72




	
Kalugachalapuram

	
12

	
35.00

	
22.00

	
43.00

	
Clay

	
6.44

	
0.52

	
0.84

	
19.60

	
5.61




	
35

	
34.00

	
20.00

	
46.00

	
Clay

	
6.55

	
0.44

	
0.62

	
22.30

	
7.17




	
68

	
32.00

	
19.00

	
49.00

	
Clay

	
6.59

	
0.53

	
0.60

	
22.60

	
5.84




	
86

	
24.60

	
24.80

	
50.60

	
Clay

	
6.56

	
0.69

	
0.58

	
27.80

	
4.53




	
113

	
24.40

	
29.60

	
46.00

	
Clay

	
6.40

	
0.50

	
0.52

	
28.50

	
3.51
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Figure 1. Study area map for Tiruvannamalai district. 
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Figure 2. Flow chart for methodology of SAR data processing and peanut area mapping. 
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Figure 3. Diagram of database, application and support software components in DSSAT. 
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Figure 4. Integration of remote sensing and DSSAT simulation model for yield estimation. 
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Figure 5. Integration of DSSAT simulated LAI and maximum SAR dB backscattering at pod formation stage. 
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Figure 6. Integration of SAR derived LAI and DSSAT simulated yield for the estimation of spatial variability. 
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Figure 7. Peanut area of Tiruvannamalai district during Rabi 2020–2021. 
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Figure 8. Peanut potential yield of Tiruvannamalai district during Rabi 2020–2021. 
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Figure 9. Spatial peanut actual yield of Tiruvannamalai district during Rabi 2020–2021. 
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Figure 10. Peanut yield gap for Tiruvannamalai district during Rabi 2020–2021. 
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Table 1. Peanut area divided in blocks for the Tiruvannamalai district of Tamil Nadu during Rabi 2020–2021.
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Block No.

	
Block Name

	
Peanut Area (ha)






	
1

	
Anakkavur

	
57




	
2

	
Arani

	
220




	
3

	
Chengam

	
4111




	
4

	
Chetpet

	
454




	
5

	
Cheyyar

	
171




	
6

	
Jawadhu hills

	
29




	
7

	
Kalasapakam

	
757




	
8

	
Keelpennathur

	
4989




	
9

	
Peranamallur

	
491




	
10

	
Polur

	
216




	
11

	
Pudupalayam

	
2173




	
12

	
Thandrampet

	
6970




	
13

	
Thellar

	
103




	
14

	
Thurinjapuram

	
5576




	
15

	
Tiruvannamalai

	
5197




	
16

	
Vandavasi

	
328




	
17

	
Vembakkam

	
36




	
18

	
West arani

	
421




	
Total

	
32298
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Table 2. Confusion matrix for accuracy assessment for peanut classification during Rabi 2020–2021.






Table 2. Confusion matrix for accuracy assessment for peanut classification during Rabi 2020–2021.





	
Actual class from Survey

	
Predicted Class from the Map




	

	
Peanut

	
Non-Peanut

	
Accuracy (%)




	
Peanut

	
59

	
10

	
85.5




	
Non-peanut

	
3

	
31

	
91.2




	
Reliability (%)

	
95.2

	
75.6

	
87.4




	
Average Accuracy

	
88.3%

	
Good Accuracy




	
Average Reliability

	
85.4%




	
Overall Accuracy

	
87.4%




	
Kappa Index

	
0.75
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Table 3. Developed genetic coefficient for predominant varieties of peanut in the Tiruvannamalai district of Tamil Nadu.
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	No.
	Code
	Genetic Coefficient
	TMV7
	TMV13
	VRI2
	G7





	1.
	CSDL
	Critical short-day length below which no reproductive development progress happens (for short-day plants) (hours)
	11.84
	11.84
	11.84
	11.84



	2.
	PPSEN
	Slope of the relative response of development to photoperiod with time (positive for short-day plants) (1/hour)
	0.00
	0.00
	0.00
	0.00



	3.
	EM-FL
	Time between plant emergence and flower appearance (R1) (photothermal days)
	17.50
	18.50
	18.30
	19.00



	4.
	FL-SH
	Time between first flower and first pod (R3) (photothermal days)
	8.00
	7.00
	7.50
	7.30



	5.
	FL-SD
	Time between first flower and first seed (R5) (photothermal days)
	18.00
	17.50
	17.30
	18.50



	6.
	SD-PM
	Time between first seed (R5) and physiological maturity (R7) stage (photothermal days)
	58.00
	62.00
	59.00
	61.30



	7.
	FL-LF
	Time between first flower (R1) and end of leaf expansion (photothermal days)
	67.00
	70.00
	68.00
	69.50



	8.
	LFMAX
	Maximum leaf photosynthesis rate at 350 vpm CO2 and high light intensity (mgCO2/m2/s)
	1.09
	1.11
	1.16
	1.25



	9.
	SLAVR
	Specific leaf area of cultivar under standard growth conditions (cm2/g)
	245
	228
	259
	263



	10.
	SIZLF
	Maximum size of full leaf (three leaflets) (cm2)
	16.00
	16.00
	16.00
	16.00



	11.
	XFRT
	Maximum fraction of daily growth that is partitioned to seed and shell
	0.72
	0.75
	0.73
	0.70



	12.
	WTPSD
	Maximum weight per seed (g)
	0.38
	0.37
	0.39
	0.41



	13.
	SFDUR
	Seed filling duration for pod cohort at standard growth conditions (photothermal days)
	31.00
	33.00
	32.50
	33.00



	14.
	SDPDV
	Average seed per pod under standard growing conditions (no./pod)
	1.65
	1.65
	1.65
	1.65



	15.
	PODUR
	Time required for cultivar to reach final pod load under optimal conditions (photothermal days)
	17.30
	19.00
	18.00
	19.20



	16.
	THRSH
	Maximum ratio (seed/(seed and shell)) at maturity stage (Threshing percentage)
	71.00
	74.00
	77.00
	79.00



	17.
	SDPRO
	Protein fraction per seed (g)
	0.27
	0.27
	0.27
	0.27



	18.
	SDLIP
	Fraction of oil (g) per g seed
	0.51
	0.51
	0.49
	0.48










[image: Table] 





Table 4. Growth and development variables simulated by DSSAT CROPGRO Peanut on predominant varieties cultivated in the study area.
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	No.
	Variables
	TMV7
	TMV13
	VRI2
	G7





	1.
	Anthesis day (DAS)
	26
	26
	26
	26



	2.
	First pod day (DAS)
	34
	36
	38
	38



	3.
	First seed day (DAS)
	44
	44
	44
	45



	4.
	Physiological maturity day (DAS)
	103
	96
	101
	101



	5.
	Yield at harvest maturity (kg/ha)
	2908
	2877
	3476
	3353



	6.
	Pod/Ear/Panicle weight at maturity (kg/ha)
	4098
	3935
	4657
	4577



	7.
	Pod number at maturity (no/m2)
	1274
	1053
	1159
	1047



	8.
	Unit weight at maturity (g)
	0.23
	0.27
	0.30
	0.32



	9.
	Seeds per pod at maturity (no/unit)
	1.58
	1.6
	1.6
	1.62



	10.
	Tops weight at maturity (kg/ha)
	10537
	10195
	11176
	10941



	11.
	By-product produced (stalk) at maturity (kg/ha)
	7630
	7320
	7700
	7590



	12.
	Leaf area index (LAI)
	4.93
	5.37
	5.38
	5.20



	13.
	Harvest index at maturity
	0.276
	0.282
	0.311
	0.306



	14.
	Threshing percentage at maturity (%)
	70.95
	73.11
	74.65
	73.27



	15.
	Grain N at maturity (kg/ha)
	143
	140
	176
	168



	16.
	Tops N at maturity (kg/ha)
	277
	270
	306
	297



	17.
	Stem N at maturity (kg/ha)
	52
	50
	50
	48



	18.
	Grain N at maturity (%)
	4.93
	4.87
	5.06
	5



	19.
	Tops weight at anthesis (kg [dm]/ha)
	429
	528
	372
	495



	20.
	Tops N at anthesis (Kg ha−1)
	14
	17
	11
	15



	21.
	Leaf number per stem at maturity
	24.92
	26.19
	24.01
	24.76



	22.
	Seed oil at maturity (%)
	50.04
	50.38
	47.86
	46.83



	23.
	Canopy height (m)
	0.65
	0.69
	0.59
	0.56



	24.
	Emergence day (DAS)
	8
	8
	8
	7







DAS—days after sowing.
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Table 5. Peanut potential, actual yield and yield gap estimated for monitoring sites of the Tiruvannamalai district of Tamil Nadu during Rabi 2020–2021.
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	Monitoring Site No.
	Village Name
	Latitude
	Longitude
	DSSAT-Based Potential Yield
	CCE-Based Actual Yield
	Yield Gap





	1
	Agaram
	12.60
	79.33
	3521
	1228
	2293



	2
	Ariyalai
	12.44
	79.16
	4607
	2829
	1778



	3
	Athurai
	12.48
	79.25
	3521
	1408
	2113



	4
	Budhamangalam
	12.40
	79.22
	4607
	2718
	1889



	5
	Edakkal
	12.08
	79.00
	4150
	2465
	1685



	6
	Isukalikatteri
	12.10
	79.17
	3414
	1365
	2049



	7
	Kallanai
	12.13
	79.18
	3414
	1496
	1918



	8
	Kambattu
	12.12
	79.02
	4403
	2718
	1685



	9
	Karampoondi
	12.26
	79.18
	4607
	2985
	1622



	10
	Kil Palur
	12.42
	78.94
	4843
	2964
	1879



	11
	Konnamadai R.F.
	12.09
	79.06
	4403
	2794
	1609



	12
	Kovur
	12.40
	79.16
	3521
	1289
	2232



	13
	Malappambadi
	12.25
	79.13
	3521
	1428
	2093



	14
	Mallavadi
	12.32
	79.08
	4607
	2806
	1801



	15
	Maluvambattu
	12.11
	79.01
	3807
	1618
	2189



	16
	Mamandur
	12.67
	79.33
	3521
	1456
	2065



	17
	Mangalam
	12.34
	79.19
	3322
	2105
	1217



	18
	Mel Palur
	12.40
	78.93
	4843
	3106
	1737



	19
	Nambedu
	12.57
	79.47
	3521
	1369
	2152



	20
	Padiyamputtu
	12.39
	79.20
	4607
	2569
	2038



	21
	Ponnaiyur RF
	12.19
	78.93
	3774
	1428
	2346



	22
	Puthur
	12.77
	79.26
	3521
	1346
	2175



	23
	Radhapuram
	12.15
	78.96
	3774
	1659
	2115



	24
	Tandarai
	12.12
	79.16
	3194
	1725
	1469



	25
	Thandarampatti
	12.15
	78.95
	3774
	1571
	2203



	26
	Tirumalai
	12.56
	79.20
	3521
	1342
	2179



	27
	Vallivagai
	12.29
	79.13
	3521
	1501
	2020



	28
	Vanapuram
	12.10
	79.03
	3807
	2219
	1588



	29
	Velunganandal
	12.36
	79.14
	3521
	1568
	1953



	30
	Velunganandal
	12.37
	79.14
	3322
	1963
	1359



	31
	Vilanallur
	12.58
	79.50
	3521
	1587
	1934
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Table 6. Spatial variability of peanut potential yield, actual yield and yield gap estimated for the Tiruvannamalai district of Tamil Nadu during Rabi 2020–2021.
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Block No.

	
Block Name

	
Potential Yield (kg/ha)

	
Actual Yield (kg/ha)

	
Yield Gap (kg/ha)




	
Minimum

	
Maximum

	
Mean

	
Minimum

	
Maximum

	
Mean

	
Minimum

	
Maximum

	
Mean






	
1

	
Anakkavur

	
3723

	
3964

	
3867

	
1421

	
1903

	
1726

	
2034

	
2326

	
2140




	
2

	
Arani

	
3718

	
3980

	
3847

	
1401

	
1934

	
1692

	
1991

	
2322

	
2155




	
3

	
Chengam

	
3744

	
4140

	
3878

	
1457

	
2223

	
1747

	
1778

	
2365

	
2131




	
4

	
Chetpet

	
3774

	
4005

	
3883

	
1540

	
1979

	
1756

	
1962

	
2274

	
2127




	
5

	
Cheyyar

	
3758

	
3960

	
3862

	
1527

	
1897

	
1718

	
1995

	
2286

	
2143




	
6

	
Jawadhu hills

	
3821

	
3964

	
3879

	
1644

	
1904

	
1750

	
1976

	
2238

	
2131




	
7

	
Kalasapakam

	
3764

	
3976

	
3880

	
1541

	
1926

	
1752

	
1960

	
2310

	
2128




	
8

	
Keelpennathur

	
3716

	
4111

	
3882

	
1437

	
2172

	
1755

	
1890

	
2370

	
2127




	
9

	
Peranamallur

	
3711

	
3984

	
3864

	
1397

	
1940

	
1723

	
1944

	
2345

	
2141




	
10

	
Polur

	
3805

	
3977

	
3878

	
1570

	
1927

	
1748

	
1983

	
2287

	
2130




	
11

	
Pudupalayam

	
3748

	
4004

	
3877

	
1512

	
2153

	
1745

	
1740

	
2335

	
2131




	
12

	
Thandrampet

	
3724

	
4306

	
3877

	
1394

	
2526

	
1746

	
1514

	
2460

	
2131




	
13

	
Thellar

	
3765

	
3977

	
3877

	
1561

	
1927

	
1747

	
2030

	
2231

	
2131




	
14

	
Thurinjapuram

	
3750

	
4039

	
3887

	
1516

	
2187

	
1765

	
1733

	
2307

	
2123




	
15

	
Tiruvannamalai

	
3753

	
4250

	
3885

	
1517

	
2423

	
1761

	
1456

	
2508

	
2124




	
16

	
Vandavasi

	
3753

	
3978

	
3871

	
1469

	
1929

	
1734

	
1976

	
2335

	
2136




	
17

	
Vembakkam

	
3752

	
3936

	
3863

	
1434

	
1858

	
1720

	
2072

	
2234

	
2143




	
18

	
West Arani

	
3721

	
3975

	
3868

	
1461

	
1925

	
1729

	
1994

	
2299

	
2139




	
Total/Mean

	
3750

	
4029

	
3874

	
1489

	
2041

	
1740

	
1890

	
2324

	
2134
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