Subsurface Lateral Solute Transport in Turfgrass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Soil Sampling and Laboratory Analysis
2.3. Weather and Soil Water Content Monitoring
2.4. Solute Application and Post Irrigation Treatment
2.5. Soil Sampling for Br− Extraction and Measurement
2.6. HYDRUS-2D Modelling
Soil Domain, Initial and Boundary Conditions, and Numerical Implementation
2.7. Statistical Analysis
3. Results
3.1. Field Observations
3.2. Modeling Results and Comparison with Measured Data
3.3. Spatial and Temporal Solute Movement
4. Discussion
4.1. Lateral Solute Transport
4.2. Caveats
4.3. Practical Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 14, 31–43. [Google Scholar] [CrossRef]
- Haith, D.A.; Rossi, F.S. Risk assessment of pesticide runoff from turf. J. Environ. Qual. 2003, 32, 447–455. [Google Scholar] [CrossRef]
- Lee, S.J.; Mehler, L.; Beckman, J.; Diebolt-Brown, B.; Prado, J.; Lackovic, M.; Calvert, G.M. Acute pesticide illnesses associated with off-target pesticide drift from agricultural applications: 11 States, 1998–2006. Environ. Health Perspect. 2011, 119, 1162–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cessna, A.J.; McConkey, B.G.; Elliott, J.A. Herbicide transport in surface runoff from conventional and zero—Tillage fields. J. Environ. Qual. 2013, 42, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Leon, R.G.; Unruh, J.B.; Brecke, B.J. Relative lateral movement in surface soil of amicarbazone and indaziflam compared with other preemergence herbicides for turfgrass. Weed Technol. 2016, 30, 229–237. [Google Scholar] [CrossRef]
- Gannon, T.W.; (North Carolina State University, Raleigh, NC, USA); Leon, R.G.; (North Carolina State University, Raleigh, NC, USA). Personal communication, 2018.
- Hardie, M.A.; Doyle, R.B.; Cotching, W.E.; Lisson, S. Subsurface lateral flow in texture-contrast (duplex) soils and catchments with shallow bedrock. Appl. Environ. Soil Sci. 2012, 2012, 861358. [Google Scholar] [CrossRef] [Green Version]
- Zaslavsky, D.; Sinai, G. Surface Hydrology: III Causes of lateral flow. J. Hydraul. Div. 1981, 107, 37–52. [Google Scholar] [CrossRef]
- Dusek, J.; Vogel, T. Modeling subsurface hillslope runoff dominated by preferential flow: One-vs. two-dimensional approximation. Vadose Zone J. 2014, 13, 1–13. [Google Scholar] [CrossRef]
- Dusek, J.; Vogel, T.; Sanda, M. Hillslope hydrograph analysis using synthetic and natural oxygen-18 signatures. J. Hydrol. 2012, 475, 415–427. [Google Scholar] [CrossRef]
- Kahl, G.; Ingwersen, J.; Nutniyom, P.; Totrakool, S.; Pansombat, K.; Thavornyutikarn, P.; Streck, T. Micro-Trench experiments on interflow and lateral pesticide transport in a sloped soil in Northern Thailand. J. Environ. Qual. 2007, 36, 1205–1216. [Google Scholar] [CrossRef]
- Kim, H.J.; Sidle, R.C.; Moore, R.D. Shallow lateral flow from a forested hillslope: Influence of antecedent wetness. Catena 2005, 60, 293–306. [Google Scholar] [CrossRef]
- Filipović, V.; Gerke, H.H.; Filipović, L.; Sommer, M. Quantifying subsurface lateral flow along sloping horizon boundaries in soil profiles of a hummocky ground moraine. Vadose Zone J. 2018, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- McCord, J.T.; Stephens, D.B.; Wilson, J.L. Hysteresis and state dependent anisotropy in modeling unsaturated hillslope hydrologic processes. Water Resour. Res. 1991, 27, 1501–1518. [Google Scholar] [CrossRef]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef]
- Petrovic, A.M.; Easton, Z.M. The role of turfgrass management in the water quality of urban environments. Int. Turfgrass Soc. Res. J. 2005, 10, 55–69. [Google Scholar]
- Smith, A.E.; Bridges, D.C. Movement of certain herbicides following application to simulated golf course greens and fairways. Crop Sci. 1996, 36, 1439–1445. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Gee, G.W.; Orr, D. 2.4 Particle-size analysis. In Methods of Soil Analysis, Part 4—Physical Methods; Dame, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 674–687. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. 3.3.2 Laboratory. In Methods of Soil Analysis, Part 4—Physical Methods; Dame, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 675–720. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. 2.1 Bulk density and linear extensibility. In Methods of Soil Analysis, Part 4—Physical Methods; Dame, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Topp, G.C.; Ferré, P.A. 3.1 Water Content. In Methods of Soil Analysis, Part 4—Physical Methods; Dame, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 417–545. [Google Scholar]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 635–662. [Google Scholar]
- Abdalla, N.A.; Lear, B. Determination of inorganic bromide in soils and plant tissues with a bromide selective-ion electrode. Commun. Soil Sci. Plant Anal. 1975, 6, 489–494. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Sejna, M.; van Genuchten, M.T. New features of version 3 of the HYDRUS (2D/3D) computer software package. J. Hydrol. Hydromech. 2018, 66, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Boivin, A.; Šimůnek, J.; Schiavon, M.; van Genuchten, M.T. Comparison of pesticide transport processes in three tile-drained field soils using HYDRUS-2D. Vadose Zone J. 2006, 5, 838–849. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Leij, F.J.; van Genuchten, M.T.; Yates, S.R.; Russell, W.B. RETC: A computer program for analyzing soil water retention and hydraulic conductivity data. In Proc. Int. Workshop, Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils; van Genuchten, M.T., Leij, F.J., Lund, L.J., Eds.; University of California: Riverside, CA, USA, 1991; pp. 263–272. [Google Scholar]
- Vogel, T.; van Genuchten, M.T.; Cislerová, M. Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions. Adv. Water Resour. 2001, 24, 133–144. [Google Scholar] [CrossRef]
- Abit, S.M.; Amoozegar, A.; Vepraskas, M.J.; Niewoehner, C.P. Fate of nitrate in the capillary fringe and shallow groundwater in a drained sandy soil. Geoderma 2008, 146, 209–215. [Google Scholar] [CrossRef]
- Shinde, D.; Savabi, M.R.; Nkedi-Kizza, P.; Vazquez, A. Modeling transport of atrazine through calcareous soils from south Florida. Trans. ASABE 2001, 44, 251. [Google Scholar] [CrossRef]
- Radcliffe, D.E.; Šimůnek, J. Soil Physics with HYDRUS: Modeling and Applications; CRC Press: Boca Raton, FL, USA, 2010; 373p. [Google Scholar]
- R Studio Team. R Studio: Integrated Development for R. R Studio, Inc., Boston. 2015. Available online: http://www.rstudio.com/ (accessed on 30 July 2021).
- Guo, L.; Fan, B.; Zhang, J.; Lin, H. Occurrence of subsurface lateral flow in the Shale Hills Catchment indicated by a soil water mass balance method. Eur. J. Soil Sci. 2018, 69, 771–786. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C.; Filchak, K.K. Education and changes in residential nonpoint source pollution. Environ. Manag. 2004, 34, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.E.; Cisar, J.L.; Volin, J.C.; Snyder, G.H. Comparing nitrogen runoff and leaching between newly established St. Augustinegrass turf and an alternative residential landscape. Crop Sci. 2001, 41, 1889–1895. [Google Scholar] [CrossRef] [Green Version]
- Amoozegar, A.; Niewoehner, C.; Lindbo, D. Water flow from trenches through different soils. J. Hydrol. Eng. 2008, 13, 655–664. [Google Scholar] [CrossRef]
- Gali, R.K.; Cryer, S.A.; Poletika, N.N.; Dande, P.K. Modeling pesticide runoff from small watersheds through field-scale management practices: Minnesota watershed case study with chlorpyrifos. Air Soil Water Res. 2016, 9, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Tiryaki, O.; Temur, C. The fate of pesticide in the environment. J. Biol. Environ. Sci. 2010, 4, 29–38. [Google Scholar]
- Dann, R.L.; Close, M.E.; Lee, R.; Pang, L. Impact of data quality and model complexity on prediction of pesticide leaching. J. Environ. Qual. 2006, 35, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Urbina, C.A.F.; van Dam, J.; Tang, D.; Gooren, H.; Ritsema, C. Estimating macropore parameters for HYDRUS using a meta-model. Eur. J. Soil. Sci. 2021, 72, 2006–2019. [Google Scholar] [CrossRef]
- Anlauf, R.; Schaefer, J.; Kajitvichyanukul, P. Coupling HYDRUS-1D with ArcGIS to estimate pesticide accumulation and leaching risk on a regional basis. J. Environ. Manag. 2018, 217, 980–990. [Google Scholar] [CrossRef] [PubMed]
Horizon | Depth (cm) | Ks (cm h−1) | Bulk Density * (g cm−3) | Porosity * (cm3 cm−3) | Sand (%) | Silt (%) | Clay (%) | A (cm−1) | n † | ϴs (cm3 cm−3) | ϴr (cm3 cm−3) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ap | 0–18 | 36.32 ± 4.48 | 1.20 ± 0.04 | 0.55 ± 0.01 | 91 | 5 | 4 | 0.006 | 1.460 | 0.47 | 0.08 |
Bt | 18–60 | 3.28 ± 1.25 | 1.32 ± 0.03 | 0.50 ± 0.01 | 21 | 11 | 68 | 0.015 | 1.085 | 0.46 | 0.27 |
Date | Sampling Depth Intervals (cm) |
---|---|
5 days after solute application | 0–15 |
15–30 | |
30–40 | |
40–50 | |
46 days after solute application | 0–5 |
5–10 | |
10–15 | |
15–30 | |
30–45 |
Predicting Variable | Statistical Parameter * | Modeled with HYDRUS 2D |
---|---|---|
Soil water content (cm3 cm−3) | RMSE (cm3 cm−3) | 0.030 |
d | 0.941 | |
NSE | 0.802 | |
Bromide concentration (mg cm−3) | RMSE (mg cm−3) | 0.453 |
d | 0.247 | |
NSE | –0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, M.E.; Faúndez-Urbina, C.A.; Amoozegar, A.; Gannon, T.W.; Heitman, J.L.; Leon, R.G. Subsurface Lateral Solute Transport in Turfgrass. Agronomy 2023, 13, 903. https://doi.org/10.3390/agronomy13030903
Camacho ME, Faúndez-Urbina CA, Amoozegar A, Gannon TW, Heitman JL, Leon RG. Subsurface Lateral Solute Transport in Turfgrass. Agronomy. 2023; 13(3):903. https://doi.org/10.3390/agronomy13030903
Chicago/Turabian StyleCamacho, Manuel E., Carlos A. Faúndez-Urbina, Aziz Amoozegar, Travis W. Gannon, Joshua L. Heitman, and Ramon G. Leon. 2023. "Subsurface Lateral Solute Transport in Turfgrass" Agronomy 13, no. 3: 903. https://doi.org/10.3390/agronomy13030903
APA StyleCamacho, M. E., Faúndez-Urbina, C. A., Amoozegar, A., Gannon, T. W., Heitman, J. L., & Leon, R. G. (2023). Subsurface Lateral Solute Transport in Turfgrass. Agronomy, 13(3), 903. https://doi.org/10.3390/agronomy13030903