Cadmium Accumulation and Immobilization by Artemisia selengensis under Different Compound Amendments in Cadmium-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characterization
2.2. Experimental Design and Treatments
2.3. Soil and Plant Sampling and Analysis
2.4. Cadmium Migration and Transformation Analysis
2.5. Human Health Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. Soil pH and Soil Nutrient Trends
3.2. Effect on A. selengensis Yield
3.3. Cd Absorption by Edible Parts of A. selengensis over Three Seasons
3.4. CaCl2 Extractable Cd and Transfer Process in the Soil
3.5. Cd Contamination Degree and Human Health Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation Strategies for Soils Contaminated with Heavy Metals: Modifications and Future Perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, Q.; Zhou, Q.; Ma, L.; Wu, Y.; Liu, Q.; Wang, S.; Feng, Y. Cadmium Uptake from Soil and Transport by Leafy Vegetables: A Meta-Analysis. Environ. Pollut. 2020, 264, 114677. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Yang, X.; Wang, P.; McGrath, S.P.; Zhao, F.-J. Effective Methods to Reduce Cadmium Accumulation in Rice Grain. Chemosphere 2018, 207, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.; Rasid, M. Heavy Metal Contamination of Soil and Vegetation in Ambient Locality of Ship Breaking Yards in Chittagong, Bangladesh. J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 20–27. [Google Scholar]
- Zhao, Y.; Deng, Q.; Lin, Q.; Zeng, C.; Zhong, C. Cadmium Source Identification in Soils and High-Risk Regions Predicted by Geographical Detector Method. Environ. Pollut. 2020, 263, 114338. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-T.; Zhou, H.; Gu, J.-F.; Liao, B.-H.; Peng, P.-Q.; Zeng, Q.-R. Effects of a Combined Amendment on Pb, Cd, and As Availability and Accumulation in Rice Planted in Contaminated Paddy Soil. Soil Sediment Contam. Int. J. 2017, 26, 70–83. [Google Scholar] [CrossRef]
- Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Kuraeiad, S.; Wongrith, P.; Vesey, D.A.; Gobe, G.C.; Satarug, S. Effects of Environmental Exposure to Cadmium and Lead on the Risks of Diabetes and Kidney Dysfunction. Int. J. Environ. Res. Public. Health 2022, 19, 2259. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, S.; Khan, A.; Alam, M. Soil Contamination with Cadmium, Consequences and Remediation Using Organic Amendments. Sci. Total Environ. 2017, 601–602, 1591–1605. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Khan, S.; Brusseau, M.L.; Shah, M.T. Lead and Cadmium Contamination and Exposure Risk Assessment via Consumption of Vegetables Grown in Agricultural Soils of Five-Selected Regions of Pakistan. Chemosphere 2017, 168, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium Toxicity in Plants: Impacts and Remediation Strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Jallad, K.N. Heavy Metal Exposure from Ingesting Rice and Its Related Potential Hazardous Health Risks to Humans. Environ. Sci. Pollut. Res. 2015, 22, 15449–15458. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.; Zia ur Rehman, M.; Ali, S.; Qayyum, M.F.; Naeem, A.; Ayub, M.A.; Anwar ul Haq, M.; Iqbal, A.; Rizwan, M. Comparative Effectiveness of Different Biochars and Conventional Organic Materials on Growth, Photosynthesis and Cadmium Accumulation in Cereals. Chemosphere 2019, 227, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Sinnett, D.; Bray, I.; Baranyi, G.; Braubach, M.; Netanyanhu, S. Systematic Review of the Health and Equity Impacts of Remediation and Redevelopment of Contaminated Sites. Int. J. Environ. Res. Public. Health 2022, 19, 5278. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Sun, Y.; Deng, Y.; Zheng, X.; Sun, S.; Sinkkonen, A.; Romantschuk, M. Enhanced Electrokinetic Remediation of Cadmium (Cd)-Contaminated Soil with Interval Power Breaking. Int. J. Environ. Res. 2022, 16, 31. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Fu, Q.; Zhuang, P.; Guo, B.; Li, H. Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L. Water Air Soil Pollut. 2013, 224, 1673. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Yaseen, M.; Hussain, B.; Zehra, A.; Aziz, M.Z.; He, Z.; Yang, X. Comparative Efficacy of Organic and Inorganic Amendments for Cadmium and Lead Immobilization in Contaminated Soil under Rice-Wheat Cropping System. Chemosphere 2019, 214, 259–268. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J.; Selim, M.H. Impact of Various Amendments on Immobilization and Phytoavailability of Nickel and Zinc in a Contaminated Floodplain Soil. Int. J. Environ. Sci. Technol. 2015, 12, 2765–2776. [Google Scholar] [CrossRef]
- Tajudin, S.A.A.; Azmi, M.A.M.; Nabila, A.T.A. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2016, 136, 012043. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Yi, Y.; Zeng, G. Effects of Modified Zeolite on the Removal and Stabilization of Heavy Metals in Contaminated Lake Sediment Using BCR Sequential Extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Zhou, H.; Zeng, M.; Zhang, J.; Huang, F.; Shan, S.; Guo, Z.; Yi, H.; Sun, Z.; et al. Combined Amendment Reduces Soil Cd Availability and Rice Cd Accumulation in Three Consecutive Rice Planting Seasons. J. Environ. Sci. 2022, 111, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; ur Rehman Hashmi, M.L.; Bilal Khan, M.; Yang, X.; He, Z. Immobilization and Sorption of Cd and Pb in Contaminated Stagnic Anthrosols as Amended with Biochar and Manure Combined with Inorganic Additives. J. Environ. Manag. 2020, 257, 109999. [Google Scholar] [CrossRef] [PubMed]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of Soil Amendments to Contaminated Soils for Heavy Metal Immobilization and Improved Soil Quality—A Critical Review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- He, D.; Cui, J.; Gao, M.; Wang, W.; Zhou, J.; Yang, J.; Wang, J.; Li, Y.; Jiang, C.; Peng, Y. Effects of Soil Amendments Applied on Cadmium Availability, Soil Enzyme Activity, and Plant Uptake in Contaminated Purple Soil. Sci. Total Environ. 2019, 654, 1364–1371. [Google Scholar] [CrossRef]
- Yan-bing, H.; Dao-You, H.; Qi-Hong, Z.; Shuai, W.; Shou-Long, L.; Hai-Bo, H.; Han-Hua, Z.; Chao, X. A Three-Season Field Study on the in-Situ Remediation of Cd-Contaminated Paddy Soil Using Lime, Two Industrial by-Products, and a Low-Cd-Accumulation Rice Cultivar. Ecotoxicol. Environ. Saf. 2017, 136, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wang, Y.; Yang, Z.; Yuan, J. Effects of Phosphorus Supplied in Soil on Subcellular Distribution and Chemical Forms of Cadmium in Two Chinese Flowering Cabbage (Brassica parachinensis L.) Cultivars Differing in Cadmium Accumulation. Food Chem. Toxicol. 2011, 49, 2260–2267. [Google Scholar] [CrossRef]
- Cui, X.; Sun, X.; Hu, P.; Yuan, C.; Luo, Y.; Wu, L.; Christie, P. Concentrations of Heavy Metals in Suburban Horticultural Soils and Their Uptake by Artemisia Selengensis. Pedosphere 2015, 25, 878–887. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; New Zealand Soil Bureau Report 10 A; Government Printer: Wellington, New Zealand, 1972. [Google Scholar]
- Page, A.L. (Ed.) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Agronomy Monographs; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1983; ISBN 978-0-89118-977-0. [Google Scholar]
- Lu, R. Analytical Methods for Soil and Agro-Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 108–109, 150–152. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.D. Analytical Methods for Soil and Agro-Chemistry, 3rd ed.; China Agricultural Science and Technology Press: Beijing, China, 2008. [Google Scholar]
- Esnaola, M.V.; Bermond, A.; Millán, E. Optimization of DTPA and Calcium Chloride Extractants for Assessing Extractable Metal Fraction in Polluted Soils. Commun. Soil Sci. Plant Anal. 2000, 31, 13–29. [Google Scholar] [CrossRef]
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the Bioavailability, Bioaccessibility and Transfer of Heavy Metals in the Soil-Grain-Human Systems near a Mining and Smelting Area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency | US EPA. Available online: https://www.epa.gov/ (accessed on 25 February 2023).
- Wang, H.; Wu, Q.; Hu, W.; Huang, B.; Dong, L.; Liu, G. Using Multi-Medium Factors Analysis to Assess Heavy Metal Health Risks along the Yangtze River in Nanjing, Southeast China. Environ. Pollut. 2018, 243, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, M.Z.; Zafar, M.; Waris, A.A.; Rizwan, M.; Ali, S.; Sabir, M.; Usman, M.; Ayub, M.A.; Ahmad, Z. Residual Effects of Frequently Available Organic Amendments on Cadmium Bioavailability and Accumulation in Wheat. Chemosphere 2020, 244, 125548. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.-M.; Remais, J.; Fung, M.-C.; Xu, L.; Sun, S.S.-M. Food Supply and Food Safety Issues in China. Lancet 2013, 381, 2044–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental Risks of Trace Elements Associated with Long-Term Phosphate Fertilizers Applications: A Review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-Ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium Minimization in Wheat: A Critical Review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic Amendments Influence Soil Quality and Carbon Sequestration in the Indo-Gangetic Plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Sohail, M.I.; ur Rehman, M.Z.; Murtaza, G.; Wahid, M.A. Chemical Investigations of Si-Rich Organic and Inorganic Amendments and Correlation Analysis between Different Chemical Composition and Si Contents in Amendments. Arab. J. Geosci. 2019, 12, 47. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.; Xu, C.; Zhu, Q.; Huang, D. Effects of Soil Acidification and Liming on the Phytoavailability of Cadmium in Paddy Soils of Central Subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.T.; Liao, B.H.; Wu, P. Effects of Rapeseed Cake on Soil Dissolved Cd Rate and Accumulation in Rice. Guizhou Agric. Sci. 2019, 47, 10–16. [Google Scholar]
- Zhang, X.J.; Yang, S.X.; Duan, C.; Liu, F.; Li, F.M. Amelioration of Lead-zinc Tailings by Spent Mushroom Compost:Effects on Growth of Lolium perenne L. and Physico-chemical Properties of Tailings. J. Agro-Environ. Sci. 2014, 33, 526–531. [Google Scholar]
- Yadvinder-Singh; Bijay-Singh; Ladha, J.K.; Khind, C.S.; Gupta, R.K.; Meelu, O.P.; Pasuquin, E. Long-Term Effects of Organic Inputs on Yield and Soil Fertility in the Rice–Wheat Rotation. Soil Sci. Soc. Am. J. 2004, 68, 845–853. [Google Scholar] [CrossRef]
- Božić, D.; Stanković, V.; Gorgievski, M.; Bogdanović, G.; Kovačević, R. Adsorption of Heavy Metal Ions by Sawdust of Deciduous Trees. J. Hazard. Mater. 2009, 171, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Erdem, H. The Effects of Biochars Produced in Different Pyrolsis Temperatures from Agricultural Wastes on Cadmium Uptake of Tobacco Plant. Saudi J. Biol. Sci. 2021, 28, 3965–3971. [Google Scholar] [CrossRef]
- Tordoff, G.M.; Baker, A.J.M.; Willis, A.J. Current Approaches to the Revegetation and Reclamation of Metalliferous Mine Wastes. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- van Herwijnen, R.; Hutchings, T.R.; Al-Tabbaa, A.; Moffat, A.J.; Johns, M.L.; Ouki, S.K. Remediation of Metal Contaminated Soil with Mineral-Amended Composts. Environ. Pollut. 2007, 150, 347–354. [Google Scholar] [CrossRef]
- Islam, M.R.; Talukder, M.M.H.; Hoque, M.A.; Uddin, S.; Hoque, T.S.; Rea, R.S.; Alorabi, M.; Gaber, A.; Kasim, S. Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard Cropping Pattern in an Acidic Terrace Soil. Agriculture 2021, 11, 1070. [Google Scholar] [CrossRef]
- Du, Y.X.; Li, J.; Gao, J.Y.; Liu, H.M.; Peng, M.X.; Li, J.X.; Yue, J.Q. Effect of Combined Application of Organic and Inorganic Fertilizer on Yield and Quality of Lemon. Chin. Agric. Sci. Bull. 2017, 33, 92–97. [Google Scholar]
- Hong, C.O.; Chung, D.Y.; Lee, D.K.; Kim, P.J. Comparison of Phosphate Materials for Immobilizing Cadmium in Soil. Arch. Environ. Contam. Toxicol. 2010, 58, 268–274. [Google Scholar] [CrossRef]
- Wang, Y. Stabilization of an Elevated Heavy Metal Contaminated Site. J. Hazard. Mater. 2001, 88, 63–74. [Google Scholar] [CrossRef]
- Wang, B.L.; Xie, Z.M. Effects of Phosphorus Application on Translocation of Lead, Zinc and Cadmium in the Soil-plant System. Environ. Sci. 2008, 29, 3225–3229. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, A.; Li, T.; Wu, X. Effects of Passivators on Artemisia Selengensis Yield and Cd Stabilizationin a Contaminated Soil. Pol. J. Environ. Stud. 2021, 30, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Reid, B.J.; Li, G.; Zhu, Y.-G. Application of Biochar to Soil Reduces Cancer Risk via Rice Consumption: A Case Study in Miaoqian Village, Longyan, China. Environ. Int. 2014, 68, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahori, A.H.; Mierzwa-Hersztek, M.; Demiraj, E.; Idir, R.; Bui, T.T.X.; Vu, D.D.; Channa, A.; Samoon, N.A.; Zhang, Z. Clays, Limestone and Biochar Affect the Bioavailability and Geochemical Fractions of Cadmium and Zinc from Zn-Smelter Polluted Soils. Sustainability 2020, 12, 8606. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, X.; Qi, L.; Li, L.; Guo, J.; Zhong, H.; Liu, J.; Huang, J. Nitrogen and Phosphorus Fertilizer Increases the Uptake of Soil Heavy Metal Pollutants by Plant Community. Bull. Environ. Contam. Toxicol. 2022, 109, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Inselsbacher, E.; Hinko-Najera Umana, N.; Stange, F.C.; Gorfer, M.; Schüller, E.; Ripka, K.; Zechmeister-Boltenstern, S.; Hood-Novotny, R.; Strauss, J.; Wanek, W. Short-Term Competition between Crop Plants and Soil Microbes for Inorganic N Fertilizer. Soil Biol. Biochem. 2010, 42, 360–372. [Google Scholar] [CrossRef]
- Hamon, R.E.; McLaughlin, M.J.; Cozens, G. Mechanisms of Attenuation of Metal Availability in In Situ Remediation Treatments. Environ. Sci. Technol. 2002, 36, 3991–3996. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Lee, J.; Liu, Y.; Chen, H.; Hu, H. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review. Bull. Environ. Contam. Toxicol. 2016, 97, 303–309. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent—A Critical Review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J.C. Assessing the Influence of Compost and Biochar Amendments on the Mobility and Toxicity of Metals and Arsenic in a Naturally Contaminated Mine Soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Hong, C.; Lu, S. Does Biochar Affect the Availability and Chemical Fractionation of Phosphate in Soils? Environ. Sci. Pollut. Res. 2018, 25, 8725–8734. [Google Scholar] [CrossRef]
- Kamran, M.; Malik, Z.; Parveen, A.; Zong, Y.; Abbasi, G.H.; Rafiq, M.T.; Shaaban, M.; Mustafa, A.; Bashir, S.; Rafay, M.; et al. Biochar Alleviates Cd Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Pak Choi (Brassica chinensis L.) Cultivated in Cd-Polluted Soil. J. Environ. Manag. 2019, 250, 109500. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, X.; Zeng, M.; Liao, B.-H.; Liu, L.; Yang, W.-T.; Wu, Y.-M.; Qiu, Q.-Y.; Wang, Y.-J. Effects of Combined Amendments on Heavy Metal Accumulation in Rice (Oryza sativa L.) Planted on Contaminated Paddy Soil. Ecotoxicol. Environ. Saf. 2014, 101, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.A.; Robinson, C.A.; Parker, D.B. Examples and Case Studies of Beneficial Reuse of Beef Cattle By-Products. In SSSA Book Series; Power, J.F., Dick, W.A., Kashmanian, R.M., Sims, J.T., Wright, R.J., Dawson, M.D., Bezdicek, D., Eds.; Soil Science Society of America: Madison, WI, USA, 2018; pp. 387–407. ISBN 978-0-89118-867-4. [Google Scholar]
- Yoo, M.S.; James, B.R. Zinc Extractability as a Function of pH in Organic Waste-Amended Soils. Soil Sci. 2002, 167, 246–259. [Google Scholar] [CrossRef]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and Applications of Plant Growth Promoting Rhizobacteria to Mitigate Soil Metal Contamination: A Review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-ur-Rehman, M.; Qayyum, M.F.; Ok, Y.S.; Murtaza, G. Effect of Biochar on Alleviation of Cadmium Toxicity in Wheat (Triticum aestivum L.) Grown on Cd-Contaminated Saline Soil. Environ. Sci. Pollut. Res. 2018, 25, 25668–25680. [Google Scholar] [CrossRef]
- Kim, S.U.; Owens, V.N.; Kim, Y.G.; Lee, S.M.; Park, H.C.; Kim, K.K.; Son, H.J.; Hong, C.O. Effect of Phosphate Addition on Cadmium Precipitation and Adsorption in Contaminated Arable Soil with a Low Concentration of Cadmium. Bull. Environ. Contam. Toxicol. 2015, 95, 675–679. [Google Scholar] [CrossRef]
- Rizwan, M.; Meunier, J.-D.; Miche, H.; Keller, C. Effect of Silicon on Reducing Cadmium Toxicity in Durum Wheat (Triticum turgidum L. Cv. Claudio W.) Grown in a Soil with Aged Contamination. J. Hazard. Mater. 2012, 209–210, 326–334. [Google Scholar] [CrossRef]
Treatments | pH | OM (g kg−1) | CEC (cMol kg−1) | TN (g kg−1) | AN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | Total Cd (mg kg−1) | Available Cd (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
LOM | 5.75 | 26.99 | 12.52 | 2.35 | 104.40 | 152.23 | 174.40 | 0.30 | 0.08 |
LSF | 5.54 | 26.31 | 14.52 | 2.11 | 94.53 | 110.81 | 162.40 | 0.30 | 0.09 |
Treatments | Abbreviation | Application Rates (kg plot−1) | ||
---|---|---|---|---|
Inorganic Fertilizers | Lime | Organic Materials | ||
Control | CK | 17.2 | 0 | 0 |
Lime + Rape Seed Cake | L + RSC | 17.2 | 17.2 | 17.2 |
Lime + Mushroom Residue | L + MR | 17.2 | 17.2 | 17.2 |
Lime + Straw | L + S | 17.2 | 17.2 | 17.2 |
Lime + Sawdust | L + SD | 17.2 | 17.2 | 17.2 |
Lime + Corn Cobs | L + CC | 17.2 | 17.2 | 17.2 |
Treatments | Abbreviation | Application Rates (kg plot−1) | |||
---|---|---|---|---|---|
Inorganic Fertilizers | Nitro-Compound Fertilizer | Lime | Sawdust | ||
Control | CK | 17.2 | 0 | 0 | 0 |
Nitro-compound Fertilizer | F | 17.2 | 17.2 | 17.2 | 0 |
Nitro-compound Fertilizer + Lime | F + L | 17.2 | 17.2 | 17.2 | 0 |
80%Nitro-compound Fertilizer + Sawdust | 80%F + SD | 20.6 | 13.8 | 0 | 17.2 |
80%Nitro-compound Fertilizer + Lime + Sawdust | 80%F + L + SD | 20.6 | 13.8 | 17.2 | 17.2 |
70%Nitro-compound Fertilizer + Sawdust | 70%F + SD | 22.4 | 12.1 | 0 | 17.2 |
70%Nitro-compound Fertilizer + Lime + Sawdust | 70%F + L + SD | 22.4 | 12.1 | 17.2 | 17.2 |
LOM Treatments | Available Cd (μg kg−1) | BCF | BA | DIM | HRI | THQ |
---|---|---|---|---|---|---|
CK | 42.330 ± 1.186 a | 0.543 ± 0.036 a | 0.154 ± 0.008 a | 0.00000568 a | 0.00568 a | 0.668 |
L + RSC | 29.330 ± 2.841 b | 0.500 ± 0.010 a | 0.125 ± 0.011 ab | 0.00000452 b | 0.00452 b | 0.532 |
L + MR | 18.670 ± 2.228 d | 0.403 ± 0.021 b | 0.086 ± 0.010 c | 0.00000337 c | 0.00337 c | 0.397 |
L + S | 26.330 ± 2.333 bc | 0.416 ± 0.007 b | 0.121 ± 0.006 ab | 0.00000348 c | 0.00349 c | 0.410 |
L + SD | 21.670 ± 0.720 cd | 0.374 ± 0.011 b | 0.093 ± 0.003 bc | 0.00000338 c | 0.00338 c | 0.398 |
L + CC | 33.330 ± 1.361 b | 0.418 ± 0.019 b | 0.148 ± 0.010 a | 0.00000365 c | 0.00365 c | 0.430 |
LSF Treatments | Available Cd (μg kg−1) | BCF | BA | DIM | HRI | THQ |
---|---|---|---|---|---|---|
CK | 42.330 ± 1.186 a | 0.534 ± 0.036 a | 0.154 ± 0.010 a | 0.00000568 a | 0.00568 a | 0.668 |
F | 29.670 ± 1.440 bc | 0.432 ± 0.006 b | 0.129 ± 0.008 ab | 0.00000373 b | 0.00373 b | 0.439 |
F + L | 23.670 ± 2.126 bcd | 0.431 ± 0.023 b | 0.110 ± 0.015 bc | 0.00000363 b | 0.00363 b | 0.427 |
80%F + SD | 27.330 ± 2.325 bc | 0.442 ± 0.027 b | 0.129 ± 0.015 ab | 0.00000363 b | 0.00363 b | 0.427 |
80%F + L + SD | 22.000 ± 2.160 cd | 0.433 ± 0.018 b | 0.103 ± 0.011 bc | 0.00000358 b | 0.00358 b | 0.421 |
70%F + SD | 30.330 ± 1.785 cd | 0.426 ± 0.004 b | 0.136 ± 0.008 ab | 0.00000368 b | 0.00368 b | 0.433 |
70%F + L + SD | 18.670 ± 1.963 d | 0.419 ± 0.023 b | 0.085 ± 0.010 c | 0.00000356 b | 0.00356 b | 0.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Gao, Z.; Li, X.; Duan, Z. Cadmium Accumulation and Immobilization by Artemisia selengensis under Different Compound Amendments in Cadmium-Contaminated Soil. Agronomy 2023, 13, 1011. https://doi.org/10.3390/agronomy13041011
Wang H, Gao Z, Li X, Duan Z. Cadmium Accumulation and Immobilization by Artemisia selengensis under Different Compound Amendments in Cadmium-Contaminated Soil. Agronomy. 2023; 13(4):1011. https://doi.org/10.3390/agronomy13041011
Chicago/Turabian StyleWang, Huiyan, Zhou Gao, Xun Li, and Zengqiang Duan. 2023. "Cadmium Accumulation and Immobilization by Artemisia selengensis under Different Compound Amendments in Cadmium-Contaminated Soil" Agronomy 13, no. 4: 1011. https://doi.org/10.3390/agronomy13041011
APA StyleWang, H., Gao, Z., Li, X., & Duan, Z. (2023). Cadmium Accumulation and Immobilization by Artemisia selengensis under Different Compound Amendments in Cadmium-Contaminated Soil. Agronomy, 13(4), 1011. https://doi.org/10.3390/agronomy13041011