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Abstract: Fertilizer management is one of the easiest and most practical ways of combating salt
stress. This study was done to evaluate the alleviative effects of nitrogen and phosphorus on the
growth and salt tolerance of salt-affected sorghum. A controlled study organized in a randomized
block design with three replications was conducted, testing three nitrogen rates (N0: 0 kg ha−1, N1:
180 kg ha−1, N2: 360 N kg ha−1) and phosphorus rates (P0: 0 P2O5 kg ha−1, P1: 60 P2O5 kg ha−1,
P2: 120 P2O5 kg ha−1). Nitrogen and phosphorus application had positive effects on morphological
indexes (plant height, stem diameter), some physiological and biochemical attributes (the content
of proline and soluble protein, and the activities of superoxide dismutase, catalase, peroxidase,
and ascorbate peroxidase), and aerial biomass (fresh and dry weight) of sorghum grown in saline
soils. Reactive oxygen species accumulation and cell membrane damage were decreased with the
application of nitrogen and phosphorus. Compared with sole fertilizer, the combined application
of nitrogen and phosphorus showed better performance in alleviating salt damage on sorghum.
Despite the fact that the maximum of most of the measured parameters and the minimum of reactive
oxygen species accumulation and cell membrane damage were generally obtained at N1P1 and N2P2
treatment, N1P1 was recommended to be the suitable treatment considering economic benefits and
environmental protection.

Keywords: fertilizer management; biomass; cell membrane damage; antioxidant defense;
salt tolerance

1. Introduction

Sorghum is widely cultivated in Asia, Africa and North America [1,2]. At present, the
sorghum planting area in the world is about 44.8 million hectares, and it ranks fifth among
cereal crops [3]. Sorghum is used for poultry feed, sugar extraction, biofuels, and fiber
extraction [4,5]. It is estimated that the annual demand for sorghum exceeds 20 million
tons [6]. However, environmental changes bring about huge losses to agricultural pro-
duction around the world [7]. Sorghum growth and production are usually influenced by
various abiotic stresses such as salinity, temperature, drought, and heavy metal toxicity [8].

Salinity stress is the second largest abiotic factor limiting crop yield, which poses a
major threat to global sustainable agricultural production and hinders accomplishing a
goal of “zero hunger” [9]. Previous studies showed that salinity leads to reductions in
plant growth and crop production in many cultivated areas, resulting in a loss of 65%
of crop yield [10,11]. Plants under salt stress undergo morphological changes, including
decreased germination, seedling growth, and yield, as well as related physiological and
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molecular changes which hinder plant growth and development [12]. Salinity brings about
the excessive production of reactive oxygen species (ROS), such as hydrogen peroxide
(H2O2) and superoxide anion (O2

−), which damage cell membranes, nucleic acids, and
proteins [13,14]. The peroxidation of cell membrane under salt stress results in leakage
of essential cellular electrolytes such as Ca2+, K+, and Ma2+, affecting plant growth and
metabolism [15].

The phenotypes of sorghum seedlings changed significantly under salt stress. Plant
growth was restricted seriously, and the leaves of sorghum gradually turned yellow and
wilted with enhancing duration of salt stress, suggesting that the photosynthetic system
of sorghum plant was damaged [16]. Kaur et al. also revealed that sorghum germina-
tion percentage and speed, shoot and root length, and seedling fresh and dry weight
reduced remarkably with increasing salinity levels [17]. Decrease in germination percent-
age, emergence rate, fresh and dry biomass, seedling length, vigour I, and vigour II, as
well as distribution of photosynthates to harvestable economic parts, declined both the
grain and fodder yield productivity of sorghum [18]. Moreover, marked physiological
changes of sorghum induced by salt stress were also observed. Wang and Wei found
significant decreases in chlorophyll content, stomatal conductance (Gs), photosynthetic rate
(Pn), actual photochemical efficiency (ΦPSII), and photosynthetic electron transport rate
(ETR), and remarkable enhancements in O2

− content under salt stress [19]. Salt stress also
caused a significant reduction in the ratio of plastidic lipids in sorghum leaves, especially
phosphatidylglycerol (PG) and monogalactosyldiacylglycerol (MGDG), which may greatly
impair photosynthetic membrane stability and chloroplast function [16]. Therefore, it
is essential to implement reasonable cultivation and management measures to improve
sorghum growth and salt tolerance.

The adverse effects resulting from salt stress can be mitigated by the application of
fertilizer [20]. Under saline conditions, the optimum application rate of fertilizer improves
nutritional quality and crop yield by improving mineral balance and reducing Na+ toxic-
ity [21–23]. Nitrogen and phosphorus are essential macronutrients for plant growth and
development. Ahanger et al. reported that the application of nitrogen increased antioxidant
accumulation and osmotic substance metabolism of wheat plants and mitigated the growth
inhibition resulting from salt stress [24]. Kaci et al. pointed out that phosphorus fertilizer
played a role in alleviating salt stress and improving soil quality for higher yield and
symbiosis efficiency of chickpea [25].

However, so far, the effects of nitrogen and phosphorus have been largely investigated
in isolation while numerous works in the literature indicate that these elements interact
at some levels of integration [26]. We hypothesized that the application of nitrogen and
phosphorus at suitable rates can alleviate the adverse effects of salt on sorghum, and their
interaction has better performance. Therefore, the aims of this study were to investigate
the effects of nitrogen and phosphorus as well as their interaction on the growth and salt
tolerance of sorghum grown in saline soils.

2. Materials and Methods
2.1. Plant Materials and Experimental Site

This research was carried out using sorghum variety ‘Jitian 3′ provided by Hebei
Academy of Agriculture and Forestry Sciences at Dafeng Coastal Forest Farm, Yancheng
City, China (Latitude: 33◦20′ N; Longitude: 120◦47′ E) from May to November 2021. Soil
sample was collected before seeding from the depth of 0–20 cm to analyze physical and
chemical properties. The soil pH, electrical conductivity (EC), and organic matter content
was 8.8, 10.87 mS cm−1, and 19.75 g kg−1, respectively. Total nitrogen, available phosphorus,
and potassium were 0.72 g kg−1, 1.45 mg kg−1, and 279 mg kg−1, respectively.

2.2. Experimental Design

Two experimental factors, nitrogen and phosphorus, with three levels, respectively,
(N0: 0 kg ha−1, N1: 180 kg ha−1, N2: 360 N kg ha−1; P0: 0 P2O5 kg ha−1, P1: 60 P2O5 kg ha−1,
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P2: 120 P2O5 kg ha−1) were used in the study. Nitrogen used in this study was in the form
of urea. The experiment was conducted in a randomized block design, using three replicate
field plots of 30 m2 (15 m × 2 m) per treatment. Three seeds were burrowed in each hole,
maintaining 15 cm× 50 cm spacing between sorghum plants. All phosphorus fertilizer was
applied as the base fertilizer. Nitrogen fertilizer was applied as base fertilizer (40%), jointing
fertilizer (30%), and booting fertilizer (30%), respectively. Water management and controls
of weeds, diseases, and pests were carried out in conformity with local recommendations.

2.3. Observations and Measurements

Five sorghum plants were selected randomly from each plot at seedling, jointing, and
maturity stage, respectively. The plant height was measured with a tape meter, and the
stem diameter was measured with a vernier caliper. Subsequently, fresh weight (FW) was
measured. The sample was dried in an oven at 105 ◦C for 30 min to inactivate enzymes
and at 80 ◦C until a constant weight for dry weight (DW) determination.

At the same sampling date, the top-third leaves of five random sorghum plants were
collected. Part of these leaves were used for the determination of relative conductivity
according to the method of Zhang et al. [27], and the others were immersed in liquid
nitrogen for 15 min, and then stored in −80 ◦C refrigerator for determination of the content
of malonaldehyde (MDA), hydrogen peroxide (H2O2), superoxide anion (O2

−), proline,
and soluble protein, and the activities of superoxide dismutase (SOD), peroxidase (POD),
catalase (CAT) and ascorbate peroxidase (APX).

MDA content (µmol g−1 FW) and SOD activity (U g−1 FW h−1) were measured
followed the method of Gao [28]. Proline content (µg g−1) was measured according to the
method of Li [29]. Soluble protein content (mg g−1) was determined as described by Liu
and Zhang [30]. POD activity (U g−1 FW min−1) was determined according to Zhang and
Qu [31]. CAT activity (U g−1 FW min−1) was measured as described by Zou [32]. APX
activity (µmol g−1 FW min−1) was measured following the method of Zhao and Cang [33].
The content of H2O2 (µmol g−1) and O2

- (µmol g−1) were measured by using assay kits
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, China).

2.4. Statistical Analysis

Data obtained in this study were processed by SPSS 22.0 for analysis of variance
(ANOVA). Significant differences were tested using Duncan 0.05 method for multiple
comparisons. All graphs were constructed with Origin 2022b.

3. Results

Nitrogen and phosphorus significantly affected plant height and stem diameter of
sorghum plants, but their interactive effects on stem diameter at jointing and maturity
stages were not remarkable (Table 1). With the increase in application rate of nitrogen and
phosphorus, plant height and stem diameter were enhanced, but there were no significant
differences between P1 and P2 treatment on these two parameters at most stages. Compared
with sole fertilizer application, combined application of nitrogen and phosphorus showed
better performance on plant height and stem diameter. The highest plant height was
recorded at N1P1 treatment (increased by 46.6% at seedling stage, 43.0% at jointing stage,
and 33.2% at maturity stage as compared with the N0P0 treatment). For the sole fertilizer
application treatments, the largest value was observed at N0P1 (enhanced by 20.9%, 27.8%
and 17.6% at seedling, jointing, and maturity stage, respectively, as compared with the
N0P0 treatment). During the whole growth period, stem diameter showed a relatively
stable increasing trend while the largest increase in plant height was observed from jointing
stage to maturity stage.
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Table 1. Effects of nitrogen and phosphorus on plant height and stem diameter of sorghum plants
grown in saline soils at the three growing stages of seedling, jointing, and maturity.

Nitrogen Phosphate Height (cm) Stem Diameter (mm)
Seedling Jointing Maturity Seedling Jointing Maturity

N0 P0 53.5 e 80.7 f 258.5 f 5.31 d 9.6 d 16.8 d

P1 64.6 cd 103.1 cd 304.0 c 5.98 cd 11.3 bc 17.1 d

P2 61.2 d 95.6 e 288.3 de 5.76 d 10.7 cd 19.8 bc

N1 P0 65.0 cd 101.9 cd 299.1 cd 5.52 d 12.1 ab 19.2 bc

P1 78.4 a 115.3 a 344.3 a 7.83 a 12.2 ab 21.1 ab

P2 73.3 b 109.1 b 331.9 b 6.72 bc 12.4 ab 22.1 a

N2 P0 62.4 cd 97.8 de 277.1 e 5.42 d 10.4 cd 18.5 cd

P1 66.5 c 105.3 bc 321.3 b 7.17 ab 12.4 ab 20.2 bc

P2 71.0 b 107.2 bc 329.9 b 8.03 a 12.8 a 19.5 bc

Within each sampling date, the data followed by different letters are statistically different at the 0.05 probabil-
ity level.

Aerial fresh and dry weight were significantly affected by nitrogen and phosphorus
application (Table 2). These two parameters were enhanced by increasing nitrogen rate.
Phosphorus had similar effects on fresh and dry weight but the values were higher at
P1 than those at P2. Among the four sole fertilizer treatments, N0P1 ranked first over
the growth period, with fresh and dry weight increased by 17.8% and 11.6% at maturity
stage, respectively. However, better improvements were recorded with combined fertilizer
applications and the largest increase percentages were generally observed at N2P2 and
N1P1 (29.6% and 26.9% on aerial fresh weight, and 22.9% and 21.0% on aerial dry weight).
Throughout the growth stages, aerial biomass increased rapidly from jointing to maturity
stage while the growth rate was low before jointing stage.

Table 2. Effects of nitrogen and phosphorus on aerial fresh and dry weight of sorghum plants grown
in saline soils at the three growing stages of seedling, jointing, and maturity.

Nitrogen Phosphate Aerial Fresh Weight (g) Aerial Dry Weight (g)
Seedling Jointing Maturity Seedling Jointing Maturity

N0 P0 7.93 e 47.8 e 424.1 d 1.77 e 9.9 e 156.0 e

P1 9.10 d 55.4 cd 499.7 bc 2.00 cd 11.1 c 174.1 c

P2 9.06 d 53.4 d 472.0 c 1.88 de 10.3 d 164.1 d

N1 P0 8.89 d 54.7 cd 475.1 c 1.94 d 10.7 c 166.5 d

P1 10.26 ab 59.3 b 538.2 a 2.23 a 12.0 a 188.7 ab

P2 9.70 c 57.0 bc 509.5 b 2.08 bc 11.6 b 183.2 b

N2 P0 8.74 d 53.4 d 475.8 c 1.91 d 10.9 c 170.3 cd

P1 9.98 bc 59.2 b 523.9 ab 2.13 ab 12.0 a 186.8 ab

P2 10.54 a 62.1 a 549.5 a 2.26 a 12.3 a 191.7 a

Within each sampling date, the data followed by different letters are statistically different at the 0.05 probabil-
ity level.

The application of nitrogen and phosphorus had remarkable effects on relative conduc-
tivity and MDA content of sorghum grown in saline soils (Table 3). Relative conductivity
with no fertilizer application was higher than that treated with nitrogen or phosphorus,
whereas the differences between N1 and N2 and between P1 and P2 were not significant.
Similar results were observed on MDA content, but N2 had higher MDA content than N1
despite still being lower than the control. Combined fertilizer application reduced the MDA
content of sorghum to a larger extent than sole fertilizer treatment. For relative conductivity,
N1P0 had the lowest values among four sole fertilizer treatments, while N2P2 produced
the lowest values among four combined fertilizer applications, decreasing by 25.1%, 21.3%,
and 18.5% at seedling stage, jointing, and maturity stage, respectively. For MDA content,
the minimum values were obtained at N1P1 treatment (8.4 µmol g−1 at seedling stage,
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10.9 µmol g−1 at jointing stage, and 22.4 µmol g−1 at maturity stage). With the growth of
sorghum, both relative conductivity and MDA content enhanced, reaching their maximum
at maturity stage.

Table 3. Effects of nitrogen and phosphorus on relative conductivity and malonaldehyde (MDA)
content of sorghum plants grown in saline soils at the three growing stages of seedling, jointing,
and maturity.

Nitrogen Phosphate Relative Conductivity (%) MDA (µmol g−1 FW)
Seedling Jointing Maturity Seedling Jointing Maturity

N0 P0 48.9 a 56.4 a 74.3 a 19.5 a 20.1 a 38.3 a

P1 42.4 b 50.2 cd 68.7 bc 15.2 cd 16.9 bcd 30.9 c

P2 43.0 b 52.0 bc 72.5 a 16.2 bc 17.3 bc 33.3 b

N1 P0 41.9 bc 49.4 cd 67.9 bc 14.6 de 16.1 cd 34.1 b

P1 37.9 de 45.0 f 62.3 de 8.4 h 10.9 f 22.4 f

P2 39.2 d 46.3 ef 63.9 de 11.9 g 14.3 e 27.3 d

N2 P0 43.7 b 53.0 b 70.6 ab 16.7 b 18.5 ab 34.9 b

P1 39.9 cd 48.2 de 65.3 cd 12.3 fg 12.1 f 25.2 e

P2 36.6 e 44.4 f 60.5 e 13.4 ef 15.3 de 29.6 c

Within each sampling date, the data followed with different letters are statistically different at the 0.05 probabil-
ity level.

O2
− and H2O2 contents of sorghum grown in saline soils were significantly affected

by the addition of nitrogen and phosphorus (Table 4). With the increase in nitrogen and
phosphorus rate, these two characteristics decreased despite the reduction at high fertilizer
levels (N2 and P2) not being statistically significant compared with low fertilizer levels
(N1 and P1). At seedling and jointing stages, O2

− and H2O2 reduced with increasing
phosphorus rate at N0 and N2 while at N1, P2 had larger O2

− and H2O2 contents. At
maturity stage, these two attributes decreased first and then increased with the application
of phosphorus at N0 and N1, whereas they reduced with the increase of phosphorus rate at
N2 and the smallest values were recorded at N2P2 (decreased O2

− by 37.9% and H2O2 by
47.1%, respectively). Among three sampling stages, the greatest decrease percentages in
O2
− caused by the addition of nitrogen and phosphorus were observed at jointing stage.

H2O2 experienced a trend of enhancement before reduction during the growth period.

Table 4. Effects of nitrogen and phosphorus on superoxide anion (O2
−) and hydrogen peroxide

(H2O2) content of sorghum plants grown in saline soils at the three growing stages of seedling,
jointing, and maturity.

Nitrogen Phosphate O2− (µ mol g−1) H2O2 (µ mol g−1)
Seedling Jointing Maturity Seedling Jointing Maturity

N0 P0 0.75 a 0.84 a 0.95 a 12.6 a 23.1 a 15.7 a

P1 0.72 ab 0.62 b 0.80 bc 10.2 bc 19.1 bc 11.6 cde

P2 0.65 bc 0.53 bcd 0.85 ab 9.0 cd 17.2 bc 13.2 bc

N1 P0 0.69 abc 0.52 bcd 0.86 ab 11.6 ab 20.0 ab 12.6 bcd

P1 0.55 de 0.50 bcd 0.64 de 5.7 e 9.9 d 9.8 ef

P2 0.61 cd 0.52 bcd 0.70 cd 7.5 d 16.5 bc 11.1 de

N2 P0 0.67 abc 0.60 bc 0.75 bc 10.9 ab 18.5 bc 13.6 b

P1 0.60 cd 0.48 cd 0.62 de 8.4 cd 15.6 c 10.2 ef

P2 0.48 e 0.46 d 0.59 e 5.0 e 9.1 d 8.3 f

Within each sampling date, the data followed by different letters are statistically different at the 0.05 probabil-
ity level.

There were remarkable effects of nitrogen and phosphorus on proline and soluble
protein content of sorghum grown in saline soils (Table 5). These two indexes with nitrogen
and phosphorus treatments were higher than the control. Among sole fertilizer applications,
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N0P2 produced the highest proline content, followed by N2P0, while the largest soluble
protein was recorded at N2P0. Combined fertilizer application had greater improvement
on both indexes than the application of sole fertilizer. At the same nitrogen level, proline
and soluble protein generally rose with the increase in phosphorus rate. N2P2, among
all treatments, promoted both indexes to the highest level (increased by 24.3% and 29.8%
at maturity stage, respectively). Proline content decreased slightly from seedling stage
to jointing stage and then experienced a sharp reduction, while soluble protein content
decreased to the minimum after the first increase over the growth period.

Table 5. Effects of nitrogen and phosphorus on proline and soluble protein content of sorghum plants
grown in saline soils at the three growing stages of seedling, jointing, and maturity.

Nitrogen Phosphate Proline (µg g−1) Soluble Protein (mg g−1)
Seedling Jointing Maturity Seedling Jointing Maturity

N0 P0 35.3 e 32.1 e 22.3 f 11.0 e 13.4 g 8.5 e

P1 38.8 d 35.8 d 23.4 de 11.9 d 15.0 de 10.0 d

P2 43.2 c 39.5 bc 24.6 c 12.4 d 14.3 f 9.6 d

N1 P0 39.2 d 37.2 cd 23.1 ef 12.1 d 14.7 ef 9.9 d

P1 46.3 b 41.5 ab 26.2 b 14.0 b 15.8 bc 10.6 bc

P2 47.8 ab 41.9 a 27.1 ab 14.5 b 16.4 ab 10.9 ab

N2 P0 42.4 c 38.9 c 24.2 cd 13.3 c 15.0 de 10.4 c

P1 48.8 a 44.0 a 26.5 b 14.2 b 15.6 cd 10.7 abc

P2 50.0 a 42.5 a 27.7 a 15.2 a 16.5 a 11.1 a

Within each sampling date, the data followed by different letters are statistically different at the 0.05 probabil-
ity level.

Nitrogen and phosphorus significantly influenced the activities of SOD, CAT, POD,
and APX of sorghum grown in saline soils (Figures 1–4). SOD and APX activities enhanced
with increasing nitrogen and phosphorus rate, while high fertilizer rates (N2 and P2)
produced lower POD and CAT activities than low fertilizer rates (N1 and P1). Except for
CAT activity, three other antioxidant enzymes showed higher activities with phosphorus
application compared to applying nitrogen only. The largest increase percentages of POD
and CAT activities were recorded at N1P1 (68.9% and 92.0% at maturity stage, respectively),
and for SOD and APX activities, the maximum values were generally obtained at N2P2
(increased by 41.3% and 91.9% at maturity stage, respectively). Among four antioxidant
enzymes, the improvement of fertilizer application on APX activities ranked first, followed
by CAT and POD activities.
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Figure 1. Effects of nitrogen and phosphorus on superoxide dismutase (SOD) activity of sorghum
plants grown in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seedling
stage; (B) Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different
letters are statistically different at the 0.05 probability level.



Agronomy 2023, 13, 1020 7 of 12

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 1. Effects of nitrogen and phosphorus on superoxide dismutase (SOD) activity of sorghum 
plants grown in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seed-
ling stage; (B) Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by 
different letters are statistically different at the 0.05 probability level. 

 
Figure 2. Effects of nitrogen and phosphorus on peroxidase (POD) activity of sorghum plants grown 
in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seedling stage; (B) 
Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different letters 
are statistically different at the 0.05 probability level. 

 
Figure 3. Effects of nitrogen and phosphorus on catalase (CAT) activity of sorghum plants grown 
in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seedling stage; (B) 
Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different letters 
are statistically different at the 0.05 probability level. 

According to Pearson correlation analysis, significant and positive correlations were 
observed within aerial biomass, height, stem diameter, proline and soluble protein con-
tent, SOD, POD, CAT, and APX activities, as well as within MDA content, relative con-
ductivity, O2−, and H2O2 (Figure 5). Reversely, MDA, relative conductivity, O2−, and H2O2 
were negatively correlated with other characteristics. Among all correlations, stem 
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(B) Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different
letters are statistically different at the 0.05 probability level.
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Figure 3. Effects of nitrogen and phosphorus on catalase (CAT) activity of sorghum plants grown
in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seedling stage;
(B) Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different
letters are statistically different at the 0.05 probability level.
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Figure 4. Effects of nitrogen and phosphorus on ascorbate peroxidase (APX) activity of sorghum
plants grown in saline soils at the three growing stages of seedling, jointing, and maturity. (A) Seedling
stage; (B) Jointing stage; (C) Maturity stage. Within each sampling date, the data followed by different
letters are statistically different at the 0.05 probability level.

According to Pearson correlation analysis, significant and positive correlations were
observed within aerial biomass, height, stem diameter, proline and soluble protein content,
SOD, POD, CAT, and APX activities, as well as within MDA content, relative conductivity,
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O2
−, and H2O2 (Figure 5). Reversely, MDA, relative conductivity, O2

−, and H2O2 were
negatively correlated with other characteristics. Among all correlations, stem diameter
had the smallest correlation coefficient with other parameters. In terms of aerial biomass
of sorghum grown in saline soils and all the measured physiological and biochemical
properties, the strongest positive correlation (0.86) was found between aerial biomass and
soluble protein, followed by proline and APX, while the strongest negative correlation was
recorded between aerial biomass and O2

−, with a correlation coefficient reaching −0.91.
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4. Discussion

Soil salinization is a main environmental salt stressor, which enhances the osmotic
stress and ionic toxicity of plants, leading to the reduction of plant growth and function [34].
Previous studies showed that rational utilization of fertilizer could improve plant growth
under salt stress [22,35]. In this study, we investigated the effects of nitrogen and phospho-
rus fertilizer as well as their combined effects on the growth of salt-affected sorghum.

One of the major consequences of salt stress is stunted growth and biomass reduction
in planta, which usually decreases the yield of most plants [36]. In our study, the utilization
of nitrogen and phosphorus promoted plant height, stem diameter, and aerial fresh and dry
weight of sorghum grown in saline soils. Our results were in agreement with those found
by Abdelkhalik et al., who reported that the application of high nitrogen levels alleviated
the salt-induced damages to the growth and yield of hot pepper [37]. Kaci et al. also found
that phosphorus fertilizer played a role in mitigating salt stress and improving soil quality
to increase chickpea yield and symbiotic efficiency [25]. Over the whole growth period,
stem diameter increased steadily, while plant height and aerial biomass both experienced a
sharp increase from jointing to maturity, indicating that increased plant height is one of
the main reasons for the increase in sorghum biomass. This was also confirmed by the
correlation coefficients between aerial biomass and other measured indexes.

The photo-oxidation reactivity induced by salinity enhanced the biosynthesis of re-
active oxide species (ROS), including H2O2 and O2

−, which hinder the shoot growth and
root growth, as well as biomass production of plants [38]. Excessive ROS can also destroy
intracellular redox homeostasis and bring about damage to carbohydrates, lipids, proteins,
and DNA, eventually resulting in oxidative stress [39–41]. Pearson correlation analysis
indicated that the correlations between sorghum biomass and ROS accumulation were
the strongest (Figure 5). Wang and Wei also found that salt stress remarkably increased
O2
− and H2O2 content of sorghum leaves and caused damage to the seedlings [19]. In

this study, salt-affected sorghum plants treated with fertilizers showed lower content of
H2O2 and O2

−, indicating lesser oxidative damage and higher tolerance to salt stress in
comparison to the control.
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Excessive ROS have many negative effects on plants, of which membrane lipid peroxi-
dation and cell membrane integrity damage are two of the most common [42,43]. MDA
caused by lipid peroxidation of cell membrane is usually used as an indicator of oxidative
and salt damage [44]. Relative conductivity is a vital harbinger of cell membrane perme-
ability. Our results showed that the application of nitrogen and phosphorus decreased
MDA content and relative conductivity of sorghum plants grown in saline soils. This
may indicate that nitrogen and phosphorus could alleviate the damage of salt on sorghum
growth by maintaining the membrane permeability and cell integrity. In the present study,
both MDA content and relative conductivity are positively correlated with O2

− and H2O2
content, suggesting that the reduction in cell membrane damage might be caused by down-
regulating the accumulation of ROS in the tissues. These results were in accordance with
previous findings reported by Kaya et al. and Tian et al. [45,46].

Enzymatic antioxidant systems, including SOD, POD, APX, CAT, and other scavengers,
are key enzymes for plants to scavenge ROS [47]. SOD is considered the first enzymatic
defense line against oxidative stress in plants, which exists in every cell. The main function
of this enzyme is to disassociate or convert toxic O2

- into molecular oxygen and H2O2 [48].
POD is mainly located in the vacuoles and apoplastic space and plays a significant role in
catalyzing H2O2 to O2

- and H2O [49]. CAT and APX are other important scavengers of
H2O2. In our research, the supplement of nitrogen and phosphorus-mediated improved
antioxidant potential led to the alleviation of salt-induced oxidative damage to a remarkable
level. This was also supported by the decrease in ROS content. Similar results were obtained
in Brassica napus [46]. However, Kaci et al. found that phosphorus application decreased
CAT activity of Cicer arietinum L. growing under salinity [25]. This difference between
our results might be due to the varied species and growth conditions. In this study, the
optimal mitigation effect was not always observed at the largest application rate of nitrogen
and phosphorus. The fertilizer treatments for obtaining the best performance for different
antioxidant enzymes were different.

The changes in content of proline and soluble protein are also interesting to note in
the present study, especially when those are treated with combined fertilizers. Osmotic
regulation is an essential mechanism allowing plants to tolerate salt stress [50]. Proline
and soluble protein are known effective osmotic protectants which accumulate in some
species under stress. They have the essential function that can maintain the integrity of cell
membrane [51,52]. Our results indicated that the content of those two osmotic regulators
increased with the application of nitrogen and phosphorus. The accumulation of soluble
protein and proline in cytoplasm can rapidly reach a high level and play a more efficient
role in balancing the vacuolar osmotic potential. Furthermore, since protein is not only
osmotic, but is also a storage mechanism for nitrogen that is required for plant growth [53],
our results indicated a possible limitation of high application rates of phosphorus without
nitrogen for further biomass increase.

5. Conclusions

Nitrogen and phosphorus application significantly counteracted the adverse effects of
salt on sorghum plants. On the one hand, sorghum grown in saline soils enhanced their
tolerance to salt by accumulating osmoregulation substances (proline and soluble protein).
On the other hand, the activities of antioxidant enzymes including SOD, CAT, POD, and
APX were improved to alleviate the toxic effects produced by ROS by scavenging O2

−

and H2O2 (Figure 6). The combined application of nitrogen and phosphorus had better
performance on alleviating salt damage on sorghum than applying nitrogen or phosphorus
alone. Among all measured traits, the largest values of growth, osmotic regulation, and
antioxidant defense, and the smallest damage were generally obtained in the N1P1 and
N2P2 treatments.
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