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Abstract: Human activities and global climate change have greatly increased nitrogen (N) and
phosphorus (P) inputs and altered precipitation patterns in alpine meadows. Functional genes are im-
portant indicators of microorganisms that drive the nitrogen cycling process; however, the functional
gene responses of soil nitrogen cycling to soil N and P availability and drought remain unclear. Sepa-
rate or combined treatments of nitrogen and phosphorus fertilization and drought were conducted on
the Zoige Wetland in the Qinghai-Tibet Plateau, and the abundances of nitrification functional genes
AOA amoA and AOB amoA and denitrification functional genes nirS, nirK, and nosZ were measured
to explore the response of functional genes to these treatments. Seven treatments, including control
(CK), N addition (N), P addition (P), 50% reduction in precipitation (D), N and P addition (NP), N
addition with drought (ND), and NP addition with drought (NPD), were investigated. The results
indicated that N application significantly increased AOB amoA abundance, while P application and
drought had no significant effects on the abundance of functional genes. The combined treatment of
N and P addition and drought increased AOB amoA abundance but did not significantly affect AOA
amoA abundance, suggesting that AOB amoA was more responsive to soil N and P availability and
moisture change than AOA amoA. However, the abundance of denitrification functional genes was
not affected by these treatments. Denitrification functional genes were less sensitive to soil N and
P availability and moisture change than nitrification functional genes. The integrated effects of N
addition, P addition, and drought did not affect the abundance of the above N cycling functional
genes. These results indicate that AOB amoA may play a more critical role in the process of ammonia
oxidation than AOA amoA in alpine meadows, and the denitrification genes (nirK, nirS, and nosZ)
were better than ammoxidation genes (AOA and AOB) at adapting to the soil environmental changes
caused by increasing N and P deposition and drought in alpine meadows.

Keywords: differential response; drought; interaction effect; N cycling functional gene; nitrogen
addition; phosphorus addition

1. Introduction

The response of nitrification and denitrification genes that regulate the N cycle to
changes in nitrogen, phosphorus, and precipitation patterns in soil has received extensive
attention [1–3]. Although many studies have revealed the influence of N and P nutrient
increases and precipitation changes on N cycling functional genes, most of them are limited
to the response of functional genes to single or two resources, such as N and P addition [4],
N and precipitation [5], and P and precipitation [6]. However, there are few studies on the
interaction and mechanism of various soil resource changes on soil N cycling functional
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genes [7,8]. Many studies have shown that precipitation affects functional gene abundances
by changing the availability of oxygen in soil [9], but the mechanism by which N and P
nutrient application impact microorganisms in the case of precipitation decrease remains
to be studied.

Nitrification and denitrification processes complete the N cycle in the soil. Ammoxida-
tion is the first step of nitrification and is catalyzed by two functional microbial communities:
ammoxidation archaea (AOA amoA) and ammoxidation bacteria (AOB amoA). The reduc-
tion of NO2

− to NO is the first step in the denitrification process and is catalyzed by two
different nitrite reductases encoded by the nirK or nirS gene. NO is further converted
to N2O, and N2 is produced under the catalysis of nitrous oxide reductase encoded by
nosZ. Most N addition experiments in alpine meadows changed the abundance of AOB
amoA, while AOA amoA abundance remained constant, indicating that AOB amoA was
more responsive to N fertilization than AOA amoA [10]. AOB amoA is an active nitrifying
bacterium and plays a more critical role in the ammonia oxidation process [11]. Most
studies have shown that ammonia oxidation in acidic soils is dominated by AOA amoA [12],
and recent research has also indicated that AOB amoA is dominant [13]. N application alone
did not affect functional gene abundance, while P application significantly changed the
abundance of most N cycling functional genes, and the promoting effect of P was offset
by N when P was applied together with N [4]. AOA amoA was more active and abundant
than AOB amoA when P and N were applied in the alpine meadow [14]. The abundance of
nirS, nirK, and nosZ may be decreased [15], increased [16], or insensitive [11,17] to N and
P fertilization, which are not easily affected in alpine meadows [11]. Decreased precipi-
tation may reduce microbial richness [18] and inhibit N2O emissions, which may mean
a positive impact on nosZ abundance [19], and N deposition may exacerbate the effects
of drought [20]. Compared with nitrification, denitrification is rarely studied because it is
difficult to quantify the final products of denitrification [17]. The response difference of N
cycling functional genes to changes in N, P, and precipitation needs to be further studied.

The application of N significantly affected functional gene abundance by changing
soil properties, mainly ammonia substrate concentration and pH [21]. P addition may
accelerate N mineralization and thus promote ammonia oxidation [6]. Precipitation af-
fects the abundance of functional genes by changing the soil microbial activities [22] and
species diversity [23], nutrient limitation [24], and soil microclimate [25]. The increase in
precipitation can alleviate the negative impact of N fertilizer on soil pH reduction [26], and
the input of N counteracts the promoting effect of P by reducing the availability of P [4].
Song et al. noted that pH and soil-dissolved organic carbon (DOC) determine the role of
AOA and AOB in ammoxidation [27]. AOA amoA was thought to have a better affinity for
ammonia substrates, to be more adaptable to acidic environments, and to dominate in moist
soils [28], whereas, under long-term fertilization, AOB amoA appeared to be more resistant
to acidification and to occupy a broader ecological niche [7]. Denitrification functional
genes were more affected by water content because of anaerobic conditions. The abundance
of denitrification functional genes decreased with increasing water and N [22]. Watering
increased the abundance of nirS in temperate semiarid grassland [29]. A meta-analysis
showed that the impact of precipitation change on nirS and nosZ abundances was U-shaped
with soil moisture [18]. Studies have shown that the abundance of denitrification functional
genes is significantly correlated with soil organic carbon (SOC) and pH [30]. In addition,
ecosystem type [31] and the form [32], and duration [33] of fertilization are also important
reasons for the difference in response to nutrient and environmental changes between
ammonia-oxidizing bacteria and archaea. However, the joint mechanism of the response to
N, P, and precipitation reduction remains unclear. Therefore, we studied the effects of N, P,
and precipitation changes on functional genes of the N cycle and their interaction effects to
understand the future N cycle under environmental changes.

Since the mid-20th century, the Tibetan Plateau has experienced unprecedented human
disturbances, including grazing and fertilization [34], and the P and N sedimentation of
the Qinghai-Tibet Plateau affected by human factors has continued to increase [34]. With
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the increase in human activities on the Qinghai-Tibet Plateau, many studies have paid
attention to the influence of N and P fertilization on N cycling functional genes. Most
studies showed that AOB amoA abundance was changed by nitrogen application, while
other cycling functional genes were not affected [10]. Although the effects of N and P
fertilization on soil N cycling genes on the Tibetan Plateau have been investigated [14], few
experiments have been conducted to explore the interaction between P and N application
and precipitation reduction. The response and sensitivity of denitrification functional genes
to environmental changes in alpine meadows remain to be explored.

In this study, the interaction of N and P addition and drought on N cycling genes
and their interaction in alpine meadows were examined. The abundances of AOA amoA,
AOB amoA, nirS, nirK, and nosZ were measured. In addition, the soil’s physical-chemical
characteristics, soil temperature (ST), and soil water content (SWC) were determined. The
objectives of the study were to investigate (1) the response and difference in N cycling func-
tional gene abundances to changes in multiple resources and (2) the response mechanism
of N cycling functional gene abundances to multiple resource changes and the reasons for
the differences in response.

2. Materials and Methods
2.1. Experimental Area and Experimental Design

The research was carried out in the Sichuan Zoige Alpine Wetland Ecosystem National
Observation and Research Station (32◦49′59′′ N, 102◦34′53′′ E, and 3490 m above sea
level) in Hongyuan County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan
Province. The study area has a continental plateau cold temperate semihumid monsoon
climate. According to the record of the Hongyuan climatological station, the average
annual temperature at the experimental site is 1.4 ◦C, and the average annual precipitation
is 650–750 mm. The area is dominated by alpine meadow and swamp soil and is covered
with alpine meadow vegetation [35,36]. The soil water content is 34.74%, and the soil pH
is 5.96.

The experimental design was completed in May 2017 and was included in two global
standard network trials of the Nutrient Network and Drought Network in 2018. A ran-
domized block experimental design was adopted, which included 7 treatments: control
(CK), N fertilization (N), P fertilization (P), drought (D), N and P combined fertilization
(NP), N fertilization and drought (ND), and NP fertilization and drought (NPD), in which
drought refers to a 50% precipitation reduction. A sketch map of the location of research
sample plots and the layout of experimental plots have been shown by Fu et al. [37]. Each
treatment was repeated 4 times for a total of 28 plots measuring 4 m × 4 m, with a distance
of 2 m between each plot. The addition of nitrogen and phosphorus was 10 g/(m2·a), the
nitrogen fertilizer was resin-coated urea (N content is 46.6%), and the phosphorus fertilizer
was calcium superphosphate (P2O5 content is 12.0%). The fertilization concentration and
drought treatment were consistent with those of the Nutrient Network [38] and Drought
Network [39]. At the beginning of May every year, continuous rainy days were selected to
evenly spread nitrogen and phosphorus fertilizers in the corresponding treatment plots.
Resin transparent PVC board (light transmittance: 99%) was built on the steel frame struc-
ture greenhouses with a length and width of 6 m and a height of 3 m for 50% precipitation
reduction (D) treatment.

2.2. Soil Sampling and Physico-Chemical Analysis

On a rain-free day in the middle of August 2020, a soil sampler with a diameter of
3 cm was used to gather soil samples at a depth of 20 cm. Each plot was sampled 3 times at
random and then mixed thoroughly. Then, the mixed soil was sifted through a 2 mm mesh
and packed into 2 plastic self-sealing bags. One of the samples was prepared to analyze
physical and chemical properties and stored at −20 ◦C, and the other was used for DNA
extraction and soil microbial assays and stored at −80 ◦C.
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Ten grams of each sample was soaked in 40 mL 0.5 M K2SO4 and then filtered [29]. The
NO3

−-N and NH4
+-N contents (mg/kg) of the filtered liquid were measured with a flow

analyzer (AA3, Bran Luebbe, Germany), and the DON content (mg/kg) was measured with
a TOC analyzer (TOC-L CPN, Shimadzu, Kyoto, Japan, ) [40]. The soil samples were air-
dried and ground, sifted with a 0.25 mm sieve, and the total nitrogen (TN) content (mg/g)
was obtained with an elemental analyzer (Vario MAX CN, Elementar, Hanau, Germany).
The soil was pickled with 10% HCl to determine the content of total organic nitrogen (TON,
mg/g). Ten grams of each sample was fumigated with chloroform for approximately 24 h
and then soaked in 40 mL 0.5 M K2SO4 and then filtered [41]. The extract was analyzed with
a TOC analyzer (TOC-L CPN, Shimadzu, Kyoto, Japan). The determination result divided
by the coefficient 0.54 is the microbial biomass nitrogen (MBN, mg/kg) content. After the
air-dried soil (10 g) and distilled water (40 mL) were mixed uniformly and then left to settle,
the pH of the suspension was measured with a pH analyzer (PB-10). Soil temperature (ST,
◦C) was measured at a depth of 0–10 cm using a Li-6400 portable temperature probe, and
soil water content (SWC) was measured at a depth of 0–10 cm using a TDR hydrometer
(TDR350, Aurora, IL, USA). The ST and SWC used in this analysis are the average values of
the annual growing season measured twice a month from May to September 2020.

2.3. DNA Extraction and Real-Time PCR

The sample was stored at −80 ◦C and then thawed, and 0.5 g of each sample was
weighed. A FastDNA TM SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) was
used to extract the total DNA of soil according to the instructions. A spectrophotometer
(Nanodrop Technologies, Wilmington, DE, USA) was used to measure the concentration
and purity of the obtained DNA. The abundances of 5 N cycle genes nirK, nirS, nosZ,
AOA amoA, and AOB amoA were determined with a real-time PCR instrument (7500 Fast
Real-Time PCR, Thermo Fisher Scientific, Waltham, MA, USA). The plasmid synthesis
and PCR procedure were described by Tang et al. [32,41] and the 10-fold continuously
diluted plasmids of each gene were used in qPCR to generate a standard curve. The DNA
extracts were tested for inhibitory effects of coextracted substances by series dilution before
quantification [42]. The DNA negative controls, sample replication, and standard series
were performed in 96 well plates. A total of 0.2 µL of the forward primer, 0.2 µL of the
reverse primer (20 mM), 10 µL of TaKaRa Premix (TaKaRa), 1 µL of the DNA sample and
8.6 µL of ddH2O constituted the 20 µL qPCR mixture. The R2 values were greater than
0.995, and the PCR efficiency was between 85% and 110%. The gene primers and the
temperature and time of the qPCR reaction have been described by Zhang et al. [29], and
more information about standard curves have been explained by Tang et al. [41].

2.4. Data Analysis

Before analysis, the abundances of genes were log-transformed to satisfy the homo-
geneity of variance assumption. One-way ANOVA was used to analyze the effects of
N addition, P addition, and drought on soil physical and chemical properties and gene
abundance. Three-way ANOVA was used to analyze the interactions of N addition, P
addition, and drought on gene abundance. Pearson correlation analysis and a mixed linear
model were applied to search for the main factors explaining the abundance of functional
genes. Variance analysis and Pearson correlation analysis were conducted with IBM SPSS
Statistics27 (SPSS, Armonk, New York, NY, USA), and the mixed linear model was gener-
ated with the lmerTest and lme4 packages in R Studio. The figures were generated using
Origin2018.

3. Results
3.1. Effects of Different Treatments on the Abundances of Functional Genes

N and P addition and drought treatment exerted modest effects on the functional
gene abundances, significantly affecting the abundance of AOB amoA and AOA + AOB.
One-way ANOVA results showed that the AOB amoA abundance in NPD-treated soil
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was significantly higher than that in D-treated and CK soil, and the total abundance of
AOA + AOB in N-treated soil was greater than that in D-treated and CK soil (p < 0.05,
Figure 1). Moreover, the AOA amoA abundance in D-treated soil was significantly less
than that in N-treated soil, but the abundance of AOA amoA was not significantly different
between different treatments and CK. The total abundance of AOA amoA and AOB amoA
in NPD-treated soil was significantly greater than that in D-treated soil (p < 0.05, Figure 1).
However, there was no significant difference in the ratio of AOA amoA abundance to AOB
amoA abundance among the different treatments (Figure 1), so the relative abundance of
AOA amoA and AOB amoA may not be affected by N treatment, P treatment, D treatment,
or their combinations. Denitrification functional gene abundances were insensitive to these
treatments, as different treatments had no significant effects on the copy numbers of nirS,
nirK, and nosZ (Figure 2). The abundance of nirK + nirS and the ratio of the nirK to nirS gene
abundance did not change significantly under these different treatments (Figure 2). Three-
way ANOVA suggested that N addition had a significant influence on the abundance of
AOB amoA and AOA amoA + AOB amoA (p < 0.05, Table 1). Other experimental treatments
did not significantly affect the abundance of functional genes, and the interaction of N, P,
and D treatments was not significant (Table 1).
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addition (P), nitrogen and drought combined (ND), nitrogen and phosphorus combined (NP), and
nitrogen, phosphorus, drought combined (NPD).
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Table 1. Results of three-way ANOVA of gene abundance.

Treatment AOA amoA AOB amoA AOA amoA
+AOB amoA

AOA amoA
/AOB amoA nirK nirS nirK+nirS nirK/nirS nosZ

N n.s. 0.031 0.013 n.s. n.s. n.s. n.s. n.s. n.s.
P n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
D n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

N*P n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
N*D n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

N*P*D n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Note: n.s. = not significant, p > 0.05. * The interactive effect of treatments. Treatments: nitrogen addition (N),
phosphorus addition (P), drought (D).

3.2. Relationships between the Soil Physico-Chemical Properties and the Abundance of
Functional Genes

Pearson correlation analysis demonstrated that the abundance of AOA amoA was
positively related to TON and NO3

−-N but negatively related to soil temperature (ST)
(p < 0.05). AOB amoA abundance had a significantly positive correlation with NO3

−-N
(p < 0.01) and NH4

+-N (p < 0.05). The abundance of nitrification genes (AOA amoA + AOB
amoA) was significantly positively correlated with NH4

+-N (p < 0.05) and NO3
−-N (p < 0.01).

Among the denitrification functional genes, nirS gene abundance and NO3
−-N showed

a significant positive correlation (p < 0.05). The ratio of ammonia-oxidizing archaea to
bacteria, the numbers of nosZ, nirK, and nirS + nirK, and the ratio of nirK to nirS abundance
had no significant correlation with these environmental factors (Figure 3).
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3.3. Main Influencing Factors of Gene Abundance

Mixed linear model analysis results showed that AOA amoA abundance was positively
affected by pH (p < 0.1) and that AOB amoA abundance was significantly related to NO3

−-N,
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pH, and ST. AOB amoA abundance was positively affected by ST (p < 0.05) and NO3
−-N

(p < 0.001), while pH was negatively affected (p < 0.01). The nitrification gene abundance
(AOA amoA + AOB amoA) was positively affected by NO3

−-N (p < 0.001). The ratio of
ammonia-oxidizing archaea to bacterial abundance was positively affected by pH (p < 0.05)
(Figure 4). The abundance of nirS was significantly affected by pH and NO3

−-N, negatively
affected by pH (p < 0.05) and positively affected by NO3

−-N (p < 0.05). The ratio of nirK to
nirS abundance was influenced by soil pH, DON, and ST (p < 0.05), and all had positive
effects. The abundances of the nosZ and nirK genes were not significantly affected by these
factors (Figure 5).
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4. Discussion
4.1. Responses of Nitrification Functional Genes to Changes in Three Resources

N addition induced an increase in the total number of ammonia-oxidizing bacteria
and archaea (Figure 1) and significantly affected AOB amoA abundance (Table 1) but did
not significantly affect AOA amoA abundance. This is consistent with the research results
showing that AOB amoA abundance increases with N application, while the abundance
of AOA amoA stays relatively stable [14]. This confirms the view that AOB amoA is
sensitive to high soil nitrogen availability, whereas AOA amoA has a weak response to N
availability [43,44]. This could be explained because AOA amoA is physiologically more
adaptable to low concentrations of amino substances [45], whereas AOB amoA may be
favored by a higher N level [46]. This indicates that the increase in N clearly led to an
increase in the population size of the ammonia oxidizers [31] and that AOB amoA was
more sensitive to N fertilization. The abundance of AOB amoA in the NPD-treated soil
was significantly more than that in CK soil (Figure 1), while the results of three-way
ANOVA showed that N addition, P addition, and drought had no significant interaction
effect (Table 1), indicating that N had a more significant promotion effect on AOB amoA
abundance in the case of P increase and water decrease.

It has been reported that the application of P can accelerate N mineralization and
ammonia oxidation [6], alleviate phosphorus limitation and create a more suitable en-
vironment for denitrification bacteria [15]. It has also been noted that the addition of
P/NP can reduce the abundance of AOA amoA in temperate steppes [47] and alpine mead-
ows [48]. In this study, however, the addition of phosphorus alone or in combination did
not significantly affect the gene abundance. This may be because P fertilization alone is
not sufficient to cause changes in gene abundance, and the effect of P application on the
abundance of functional genes is overwhelmed by an increase in N when N and P are
added simultaneously [4].

Compared with that of the CK, the nitrification functional gene abundances in the
D-treated soil decreased, but it was not significant. This may be attributed to the fact that
the wetter the ecosystem is, the weaker the impact of drought [18], and the study area is
an alpine meadow in the Zoige Wetland, so it is less affected by drought. In addition, N
addition may exacerbate the effects of drought by improving plant productivity [20], which
was confirmed by the fact that the AOA amoA abundance and AOA + AOB abundance
in D-treated soil were significantly less than those in N-treated soil. We observed that
although the difference was not significant compared with the control, D-treated and its
combination treatments reduced AOA/AOB to less than 1, indicating that drought altered
the relative importance of AOA amoA and AOB amoA and made AOB amoA play a more
critical role in the ammoxidation process. The variation in gene abundance was explained
by substrate concentration, including NO3

−-N and NH4
+-N, and environmental factors,

including pH, ST, and DON (Figure 6). N and its combination treatment acidified the soil
and increased the nitrification substrate NH4

+-N (Table S1), and AOB amoA abundance was
negatively correlated with pH, so it increased significantly. Different treatments reduced
ST and pH overall (Table S1), and AOA amoA abundance did not change significantly
due to the positive and negative effects of pH and ST offset (Figure 6) or because it was
insensitive to environmental changes. The significantly positive relationship between the
nitrogen content (NH4

+-N and NO3
−-N) and the abundance of nitrifying genes (AOA amoA

+ AOB amoA) suggested that nitrogen content was an important reason for the increase
in nitrification genes [16]. It has been reported that soil pH may determine the relative
importance of ammonia-oxidizing archaea and bacteria [15] and that N fertilization can
affect the abundance of ammonia-oxidizing bacteria and archaea by changing the soil pH
by acidifying the soil [45]. In a nitrogen addition study of alpine meadows, AOB amoA
was negatively correlated with pH [14], which was in agreement with the research results.
In the research results, AOA amoA abundance was positively correlated with pH, but the
gene abundance did not change significantly, which may indicate that AOB amoA was more
active and sensitive than AOA amoA in alpine meadows.
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4.2. Responses of Denitrification Functional Genes to Changes in Three Resources

The results showed that the different treatments did not significantly affect nirK, nirS,
and nosZ gene abundances. Similar results were reported in another study of N application
in an alpine grassland on the Tibetan Plateau [11]. It was also confirmed that the abundance
of nirK and nirS did not change with N and P addition [14]. Notably, we found that the
ratio of nirK to nirS was greater than 20 in all the treated samples, and there were no
distinct results among the different treatments, indicating that nirK was dominant in alpine
grassland and was not affected by environmental changes. These results indicated that
denitrification genes could better adapt to future alpine meadow resource changes under
N and P subsidence and drought.

The negative effect of pH on nirS abundance, the positive effect of NO3
−-N on nirS

abundance, and the increase in the denitrification substrate NO3
−-N could theoretically

increase the abundance of denitrification genes. However, the analysis results suggested
that the abundance of denitrification functional genes did not change significantly, possibly
because the substrate concentration reduction and gas loss during denitrification offset
the above possible increase or because special anaerobic soil conditions are key factors
adjusting the copy numbers of the nirS, nirK, and nosZ genes [11]. This could also be due to
the short duration of the experiment. A meta-analysis has shown that the susceptibility of
functional genes to N and P fertilization and precipitation change is positively correlated
with experimental time [33], and some reports have clearly indicated that it takes at least
eight [49] or even ten years [50] for microorganisms to produce a significant response to
fertilization. Denitrification bacteria are positively influenced by DON, which may be
attributed to the fact that most denitrification bacteria are heterotrophic and dependent on
organic matter.

4.3. Differences in the Response of Functional Genes to Environmental Changes

The sensitivity of ammonia-oxidizing archaea and bacteria to N addition was different.
The results showed that AOB amoA was more responsive to N substrate availability than
AOA amoA, which was consistent with the results of some soil samples from grassland,
farmland, and forest ecosystems [16,32]. A meta-analysis showed that AOB amoA was
more responsive to N increase than AOA amoA [31], and another study on the alpine
grassland of the Tibetan Plateau also showed that AOB amoA plays a leading role in the
ammonia oxidation process [11]. This could be due to the viewpoint that AOB amoA and
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AOA amoA occupy different ecological niches [46]. On the other hand, ammonia-oxidizing
archaea have a high affinity for ammonia and can tolerate environments with high or low
N contents [31]. AOB amoA has a higher ribosome content [51], so it may be more suitable
for a nutrient-rich environment, and an appropriate amount of N addition can make it a
more active and competitive [16].

The nitrifier and denitrifier abundances responded differently to environmental
changes caused by different treatments. The results suggested that the reaction of ni-
trifying functional genes was more significant than that of denitrification functional genes,
which might be related to the aerobic or anaerobic nature of the functional genes and the
steps they participated in [16,52]. In most cases, ammoxidation is an aerobic process [53],
and denitrification bacteria are anaerobic [54], so denitrification bacteria are more adapt-
able to the anaerobic environment of alpine meadows. AOA and AOB participate in the
first step of the nitrification process and are directly affected by the increase in substrate
concentration. Nitrate is the first substrate of denitrification, while nirK and nirS participate
in the second step of denitrification. Due to the processes of plant absorption and leaching,
the substrate concentration decreases [55], which may buffer the impact of NO3

−-N on
nirK and nirS abundances [56]. Moreover, nosZ participates in the last step of denitrification
and can adapt to various soil environments better than other genes [57], and because of the
emission of NO and N2O, nosZ is less affected by environmental factors.

5. Conclusions

Nitrogen addition, phosphorus addition, drought, and their combined treatments
affected gene abundance by changing the substrate concentration (NO3

−-N, NH4
+-N)

and environmental factors (pH, ST, DON) (Figure 6). N addition significantly affected
AOB amoA abundance and multiplied the total abundance of AOA + AOB. NPD signif-
icantly increased AOB amoA abundance, but all treatments showed no significant effect
on denitrification functional gene abundances. N and P fertilization and drought had
no interactive effect on gene abundance. Nitrifying genes were more responsive to en-
vironmental changes than denitrification genes, and AOB amoA was more responsive to
environmental changes than AOA amoA. The differences in AOA amoA and AOB amoA are
attributed to their different ecological niches and affinities for ammonia substrates. The
differences in nitrifying genes and denitrification genes are mainly related to their aerobic
or anaerobic nature and the steps involved in the nitrification and denitrification processes.
The results indicated that ammonia-oxidizing bacteria might play a more critical role in
soil microbial nitrogen cycling in alpine meadows, and denitrification functional genes
can better adapt to environmental changes caused by intensified N and P deposition and
reduced rainfall in alpine meadows in the future. The interactive effects of various resource
changes on the abundances of N-cycling functional genes and the responses of functional
gene communities and structures under future global environmental changes need to be
further studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy13041041/s1, Table S1: Effects of different treatments
on soil physical and chemical properties.
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