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Abstract: The structure of the maize kernels plays a critical role in determining maize yield and
quality, and high-throughput, non-destructive microscope phenotypic characteristics acquisition and
analysis are of great importance. In this study, Micro-CT technology was used to obtain images of
maize kernels. An automatic CT image analysis pipeline was then developed to extract 20 traits related
to the three-dimensional structure of kernel, embryo, endosperm, and cavity. The determination
coefficients for five volume-related traits (embryo, endosperm, silty endosperm, embryo cavity,
and endosperm cavity) were 0.95, 0.95, 0.77, 0.73, and 0.94, respectively. Further, we analyzed the
phenotypic variations among a group of 303 inbred lines and conducted genome-wide association
studies (GWAS). A total of 26 significant SNP loci were associated with these traits that are closely
related to kernel volume, and 62 candidate genes were identified. Functional analysis revealed that
most candidate genes corresponding to cavity traits encoded stress resistance proteins, while those
corresponding to embryo and endosperm traits encoded proteins involved in regulating plant growth
and development. These results will improve the understanding of the phenotypic traits of maize
kernels and will provide new theoretical support for in-depth analysis of the genetic mechanism of
kernel structure traits.

Keywords: maize kernel; micro-CT; three-dimensional structure; deep learning; microscopic
phenotype; GWAS

1. Introduction

Maize is one of the field crops with the highest yield in the world and one of the
three major staple foods in China. The maize kernel contains internal structures such
as embryo, endosperm, and cavity, among which endosperm can be divided into silty
endosperm and horny endosperm according to hardness. Quantitative analysis of maize
kernel structure and components is crucial for the precise breeding of maize varieties and
for improving the edible and market value of maize varieties. Different types of maize
kernels have significant differences in morphology and internal structure. For example,
the endosperm of popped maize kernels is larger, the specific surface area of sweet maize
is larger, while the embryo volume of ordinary maize is smaller [1]. In the process of
kernel development, the size and proportion of the internal structure and components
of maize kernel constantly change. For example, 4 days after maize pollination, maize
kernels consist of ovules, pericarp, endosperm, and embryo; therein, the endosperm and
embryo are embedded in the nucleus. As the kernel gradually develops to maturity, the
nucleus recedes, and the embryo and endosperm gradually diverge. At the same time, the
pericarp becomes thinner [2]. Embryo, endosperm, and cavity are important components
and structures of maize kernels. The embryo develops into a seedling, and the endosperm
provides nutrients for the development of the embryo. There is a complex nutrient exchange
between the embryo and the endosperm [3]. The cavity is related to mechanical properties
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such as hardness and crushability [4]. Thus, the high-throughput, non-destructive micro
phenotypic characteristics acquisition and analysis of kernels are of great importance.

The traditional maize kernel testing work is measured by manual counting and mea-
surement, and it is costly, subjective, and error-prone. In recent decades, image processing
and machine vision technologies have been widely used to solve the problem of object
detection, recognition, and measurement; size-related traits such as kernel length and
kernel width can be calculated from RGB images of kernels. However, this kind traits of
maize kernel are difficult to represent the internal structures and components. Micro-CT
is a non-destructive 3D imaging technology that can clearly, accurately, and intuitively
reveal the internal structure, composition, material, and defect status of maize kernels in
the form of two-dimensional or three-dimensional images. At present, Micro-CT has been
widely used in phenotyping research of maize kernel to achieve non-destructive detection
of the internal structure of the kernel. Micro-CT was used to obtain CT images of different
varieties of maize kernels, and it found that the distribution of embryo, endosperm, and
cavity of different varieties of maize was significantly different [1]. The embryo, endosperm,
cavity, and other structural components of kernels on different ear positions were obtained
through Micro-CT and used to explore the effect of ear kernel position [5]. Moreover, Micro-
CT was utilized to study the relationship between kernel structure parameters and kernel
cultivar breakage and revealed the breakage rate is closely related to subcutaneous cavity
volume as well as kernel density [6]. Among the above-mentioned studies, CT is becoming
a powerful tool for non-destructively imaging the internal structure of kernels. However,
manually processing these images using contouring or semi-automatic software can be
time-consuming and labor-intensive. Automatic image analysis is of great significance for
the accurate identification of kernel anatomical structure.

With the rapid development of various imaging sensors, multidimensional phenotype
data resulting from spectroscopy, UAV images, and point clouds are more and more widely
applied for genome-wide association analysis (GWAS). Some morphological traits by
manual measurement or image-based traits are usually used for GWAS analysis of crop
phenotypes. The geometrical parameters of maize kernel by manual measurement [7]
consisted of kernel length, kernel width, kernel thickness, etc. To measure the true embryo
volume, it is necessary to carefully dissect the embryo from the kernel using a razor blade,
followed by measurement using a centrifuge tube [8]. Image-based traits extracted from
RGB images were used to calculate the color traits of maize kernel [9], geometrical traits of
sorghum ear [10], and leaf traits (such as leaf curl, water content, and drought resistance
coefficient) of rice [11].

In this study, Micro-CT technology was used to obtain images of maize kernels.
In addition, we developed an automated CT image analysis pipeline to extract three-
dimensional traits of kernel structure and components. Based on the abundant phenotypic
indicators of kernel, embryo, endosperm, and cavity, we analyzed the phenotypic variations
among a group of 303 inbred lines and further conducted GWAS to reveal the genetic
architecture of kernel structure traits.

2. Materials and Methods
2.1. Experimental Materials and Data Acquisition

The experimental materials used in this study were derived from inbred lines of the
maize association analysis population, which were previously described by Yang et al. [12].
A total of 303 inbred lines were selected for this study (Table S1). According to the Q-matrix
of population structure, the 303 inbred maize lines were divided into four subgroups: Stiff
stalk (SS) with 19 lines, non-stiff stalk (NSS) with 89 lines, tropical-subtropical (TST) with
130 lines, and an admixed group (Mixed) with 65 lines. These materials were planted at the
Sanya Experimental Station of the Beijing Academy of Agriculture and Foresting Sciences
in Hainan, China, in 2018. After harvesting, three plump kernels of similar size from the
middle of the ear (one ear per inbred line) were used for CT scanning.
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These kernels were fixed onto a foam board using double-sided tape and spaced
apart as much as possible. During scanning, a projection image was generated at each
rotation angle, and CT tomographic images were generated using Skyscan recon soft-
ware (version 1.6.9.4). Each scan produced 700 tomographic images with a resolution of
2000 × 2000 pixels.

2.2. Kernel Phenotyping Pipeline

To improve the efficiency of kernel scanning and imaging, we conducted one-time
scanning and imaging for multiple kernels. Then, a simple image processing strategy was
used to extract each independent kernel (there is no contact between kernels). First, the
average threshold of the CT image was calculated and applied to the binary CT image
sequence. Second, the region growth technology was performed to assign an individual
label and color for each connected volume of the 3D image. Finally, the bounding box of
each connected volume was calculated and used to extract each individual kernel from the
original 3D data.

We constructed a phenotyping pipeline based on a two-dimensional U-Net network
to segment the embryo structure of kernels (Figure 1). The feature extraction backbone was
VGG16 without the fully connected layer that enhances the feature extraction performance
of U-Net. A data set that contained a total of 428 images of 30 kernel scanning was used
for annotation (Figure 1a). Then effective interactive segmentation (EISeg) was used to
outline embryo regions of these images manually. After the U-Net segmentation network
was trained 100 epochs, the dice accuracy of the model reached 97.6%.
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Figure 1. The flow chart of batch kernel treatment pipeline. Note: (a) CT image sequence. (b) U-
Net network. (c) Segment embryo and kernel masks. (d) Extract a single kernel with an embryo.
(e) Generate endosperm, embryo, and silty endosperm with cavities. (f) Visualize the 3D structures
of endosperm, embryos, and cavities. Yellow box represents a single kernel that is automatically
extracted for phenotyping and visualization.

Based on this U-Net model, the original CT images were segmented slice by slice
into embryo masks (Figure 1b). The entire kernel masks were generated by the Otsu algo-
rithm and used to extract each individual kernel and its embryo from the original images
(Figure 1c). Then, the kernel and embryo masks were used to generate the endosperm mask
by an XOR operation. It’s worth noting that it is a challenge to accurately separate silty
endosperm and horny endosperm from endosperm images using the Otsu threshold due
to the ambiguous pixel boundaries between them (Figure 1d). In this study, the gray-level
image of the endosperm was first enhanced by the contrast ratio by a Gaussian filter and
then binarized by the Otsu algorithm to obtain a silty endosperm mask. Due to the very
low intensity of the cavity, a simple threshold operation based on the gray-level image was
used to identify the cavities from these masks (Figure 1e). Thus, the extracted cavities could
be divided into four types according to their positions for phenotypic analysis, i.e., the
cavities of the embryo, endosperm, whole kernel, and subcutaneous cavity. Further, these
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masks of endosperm, embryo, and cavities could be reconstructed as three-dimensional
surface models using the Marching Cube algorithm (Figure 1f). Therefore, some basic
morphological parameters, such as length, surface area, and volume, were calculated based
on these three-dimensional models. The developed pipeline can extract 20 phenotypic
traits (Table 1) from CT images of an individual kernel within 5 s.

Table 1. The description of maize kernel traits in this study.

Type Traits Unit Description

Kernel

K_Length mm Kernel length
K_Width mm Kernel width
K_Thick mm Kernel thickness
K_Volume mm3 Kernel volume
K_Area mm2 Kernel surface area
K_SSA mm2/mm3 Specific surface area
K_Sph / Kernel sphericity

Embryo
EM_Volume mm3 embryo volume
EM_Ratio / EM_Volume/K_Volume
R_EM2EN / EM_Volume/EN_Volume

Endosperm

EN_Volume mm3 Endosperm volume
EN_S_Volume mm3 Silty endosperm volume
EN_H_Volume mm3 Horny endosperm volume
R_S2H / EN_S_Volume/EN_H_Volume
EN_Ratio / EN_Volume/K_Volume

Cavity

C_Volume mm3 Cavity volume
C_P_V mm3 Subcutaneous cavity
C_EM_V mm3 Embryo cavity
C_EN_V mm3 endosperm cavity
C_Ratio / C_Volume / K_Volume

2.3. Genome-Wide Association Analysis

The FarmCPU (Fixed and random model Circulating Probability Unification) method [13]
was used to perform GWAS analysis on kernel structure traits using the GAPIT3 R
package [14]. This method iterates between fixed-effect and random-effect models to
maintain computational efficiency while controlling false positives and negatives. The
kinship matrix and PCA covariates were also calculated using GAPIT3. Maize geno-
type data were obtained from MaizeGO (http://www.maizego.org/Resources.html, https:
//pan.baidu.com/s/1E65xZP4ChSspGy_0Sft6wQ#list/path=%2F), and after quality con-
trol, 839,375 SNPs with MAF (minimum allele frequency) >0.05 and call rate >0.9 were
used for GWAS with a genome-wide threshold of p = −log(0.05/total number of SNPs)
= 7.22. Results were visualized using QQ and Manhattan plots, and genes within 50 kb
upstream or downstream of significant SNPs were identified as candidate genes.

2.4. Functional Analysis of Candidate Genes

Functional annotation of candidate genes was performed through the NCBI GENE
database (https://www.ncbi.nlm.nih.gov/gene), and candidate gene codes were queried
through the STRING database (https://www.string-db.org/) protein interaction network.
GO enrichment analysis was performed on all genes in the protein interaction network by
the clusterProfiler package of R. The GO annotation file used by the clusterProfiler package
is downloaded from AnnotationHub, and the index number is AH55736.

3. Result
3.1. Phenotypes Accuracy Evaluation

The accuracy of the phenotyping pipeline’s segmentation was evaluated by manually
segmenting the embryo, endosperm, and cavity structures of 48 kernel samples using

http://www.maizego.org/Resources.html
https://pan.baidu.com/s/1E65xZP4ChSspGy_0Sft6wQ#list/path=%2F
https://pan.baidu.com/s/1E65xZP4ChSspGy_0Sft6wQ#list/path=%2F
https://www.ncbi.nlm.nih.gov/gene
https://www.string-db.org/
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ITK-SNAP (3.6.0) [15] to calculate their volumes from CT images. Figure 2 shows several
visualizations of the embryo, endosperm, and cavity segmentation results produced by the
phenotyping pipeline. The computation accuracy of volumes was evaluated using R2 (Co-
efficient of Determination; Formula (1)) and RMSE (Root Mean Square Error; Formula (2)).

R2 = 1 − ∑i (xi − yi)
2

∑i (xi − y)2 (1)

RMSE =

√
∑i (xi − yi)

2

n
(2)

Figure 2. The visualization of the segmentation results of the embryo, endosperm, and cavity. Note:
(a) The segmentation results of embryo and endosperm. Red, pink, and green represent embryo,
horny endosperm, and silty endosperm, respectively; each column represents a kernel sample, and
rows 1 to 4 represent cross-sectional, coronal, sagittal, and 3D reconstruction results, respectively.
(b) The segmentation results of the cavity. Cyan, yellow and blue represent the subcutaneous cavity,
embryonic cavity, and endosperm cavity, respectively; each column represents a kernel sample, and
rows 1 to 4 represent the cross-sectional, coronal, sagittal, and 3D reconstruction results, respectively.

Therein, x represents the volumes calculated using ITK-SNAP, and y represents the
volumes calculated using the phenotyping pipeline.

To evaluate the measurement accuracy of the phenotyping pipeline, the volumes of
the silty endosperm, embryo, endosperm cavity, endosperm, and embryo cavity were man-
ually measured using the ITK-SNAP. Correlation analysis was performed to compare the
measurement results of five traits (EN_S, EM_Volume, C_EN_V, EN_Volume, and C_EM_V)
by the presented method and manual measurement. The coefficient of determination was
0.77, 0.95, 0.94, 0.95, and 0.73, respectively, and RMSE was 33.68, 1.36, 0.35, 87.03, and
0.08 mm3, respectively. The embryo cavity and silty endosperm had relatively lower R2,
most likely due to their smaller proportion of voxels relative to the whole kernel.
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3.2. Statistical Analysis of Kernel Phenotypes

The kernel phenotypic traits of the maize population were analyzed statistically. Z-
SCORE normalization was applied to all maize kernel phenotypic traits before performing
KMEANS cluster analysis. Our experiments showed that setting the cluster number to
3 resulted in better clustering with clear boundaries between the three categories (Figure 3a).
The three types of kernels had distinct clustering centers, and each clustered kernel was
characterized by the same traits with different weights. These weights largely determined
the characteristics of each kernel type (Figure 3b).

Figure 3. Results of cluster analysis of kernel traits for the maize association analysis population.
Note: (a) the results of the cluster analysis of kernel traits. (b) the weights of phenotypic parameters
for cluster centers.

Figure 4 shows the correlation analysis of kernel phenotypic traits. The results revealed
that the volumes of the entire kernel and its components (embryo, endosperm, and cavity)
were positively correlated with correlation coefficients of 0.61, 0.9, and 0.28, respectively.
The correlation between the kernel and endosperm volumes was the strongest, while the
correlation between the kernel and cavity volumes was the weakest, indicating that cavity
volume probably has a distinct role in characterizing kernel features. Kernel geometry
descriptors (length, width, and thickness) were positively correlated with volumes (kernel,
embryo, and endosperm). Total cavity volume had a high positive correlation with the
subcutaneous cavity and endosperm cavity (0.79 and 0.76, respectively) but was almost
irrelevant to the endosperm cavity (0.06). In the entire kernel, subcutaneous and endosperm
cavities accounted for most of the total cavity volume, while the proportion of embryo
cavities was very low.
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Then, statistical analysis was performed on the phenotypic traits of maize kernels
for the maize association analysis population (Table 2). There are abundant phenotypic
variations in the structural traits of individual kernels. According to the degree of variability,
the 20 kernel traits are divided into three categories according to the variability degrees:
the first category (variability degrees are larger than 50%) includes all cavity-related traits,
endosperm hardness, and silty endosperm volume; the second category (variability degrees
are between 15 and 50) consists of kernel volume, surface area, specific surface area,
sphericity, embryo volume, embryo fraction, endosperm ratio, endosperm volume, and
horny endosperm Volume; the third category (variability degree are less than 15) contains
kernel length, kernel width, kernel thickness, and endosperm ratio. To visually observe the
variation of the entire kernel and its components, the ray-casting algorithm was used to
visualize typical maize kernels of different varieties in the association analysis population,
as shown in Figure S3. The frequency distribution of each phenotypic trait is also shown
in Figure S2. Most of the frequency distributions are bell-shaped and approximately
normal distribution.

Statistical analysis was conducted on the phenotypic traits of maize kernels for the
maize association analysis population (Table 2). There were abundant variations in indi-
vidual kernel structural traits. Based on the degree of variability, the 20 kernel traits were
divided into three categories: the first category (with variability degrees larger than 50%)
included all cavity-related traits, endosperm hardness, and silty endosperm volume; the
second category (with variability degrees between 15 and 50) consisted of kernel volume,
surface area, specific surface area, sphericity, embryo volume and fraction, endosperm ratio
and volume, and horny endosperm volume; the third category (with variability degrees
less than 15) contained kernel length, width, and thickness as well as endosperm ratio. To
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visually observe variations in entire kernels and their components, a ray-casting algorithm
was used to visualize typical maize kernels of different varieties in the association analysis
population (Figure S3). The frequency distribution of each phenotypic trait is shown in
Figure S2. Most frequency distributions were bell-shaped and approximately normal.

Table 2. Results of descriptive statistical analysis for kernel phenotypic traits.

Traits Range Mean Standard
Deviation Skewness Kurtosis Coefficient of

Variation cv/%

K_Length 5.93–12.16 9.78 0.98 −0.08 0.11 10.02
K_Width 3.73–10.44 8.23 0.80 −0.50 2.77 9.7
K_Thick 3.21–7.64 5.28 0.71 0.33 −0.11 13.4

K_Volume 31.06–319.95 200.08 41.45 0.07 0.30 20.7
K_Area 59.07–636.33 259.26 65.71 1.80 6.16 25.3
K_SSA 0.97–2.65 1.32 0.27 1.92 3.65 20.5
K_Sph 0.21–0.69 0.42 0.09 0.26 −0.26 21.4

EM_Volume 3.80–67.45 25.30 7.27 1.31 4.84 28.7
EM_Ratio 0.09–0.25 0.12 0.03 1.83 4.44 25.0
R_EM2EN 0.11–0.37 0.17 0.05 2.03 5.23 29.4

EN_Volume 22.05–239.08 150.13 32.68 0.06 0.20 21.7
EN_S_Volume 0.76–182.68 46.23 27.56 1.55 3.42 59.6
EN_H_Volume 21.29–173.96 103.91 27.81 −0.25 −0.10 26.8

R_S2H 0.17–28.74 3.48 2.85 3.55 22.37 81.9
EN_Ratio 0.63–0.83 0.75 0.03 −1.02 1.70 4.0
C_Volume 0.36–16.12 3.52 2.34 2.01 6.56 66.5

C_P_V 0.02–13.49 1.95 1.78 2.36 8.38 91.3
C_EM_V 0.05–3.63 0.98 0.58 1.41 2.96 59.2
C_EN_V 0.00–11.81 1.01 1.63 3.05 12.05 163
C_Ratio 0.002–0.08 0.017 0.011 2.13 7.48 64.7

3.3. Significant SNPs and Candidate Genes Identified by GWAS

Six kernel structure traits closely related to volume, i.e., EM_Volume, EM_Ratio,
EN_Volume, EN_Ratio, C_Volume, and C_Ratio, were selected as key kernel traits for
GWAS. As a consequence, a total of 26 significant SNPs were identified for these six traits
(Figure S1, Table S2). Among them, eight SNPs located on chromosomes 4, 5, 6, 7, 8, and
9 were associated with EM_Volume (Figure S1a), one SNP located on chromosome 8 was
associated with EM_Ratio (Figure S1b), seven SNPs located on chromosome 3, 4, 5 and 8
were associated with C_Volume (Figure S1c), four SNPs located on chromosome 1, 3, 5 and
10 were associated with C_Ratio (Figure 1d), and six SNPs located on chromosome 3, 5, 7, 8
and 9 were associated with EN_Ratio (Figure 1f). However, there was no SNP identified
that was significantly associated with EN_Volume (Figure S1e).

Based on the significant SNPs of six kernel structure traits, a total of 62 candidate
genes were obtained. Among them, the candidate genes for EM_Volume, EM_Ratio,
EN_Ratio, C_Volume, and C_Ratio were 19, 3, 18, 16, and 6, respectively. These Genes were
further retrieved in the NCBI Gene database, and 15, 3, 15, 11, and 4 candidate genes were
functionally annotated for EM_Volume, EM_Ratio, EN_Ratio, C_Volume, and C_Ratio,
respectively (Table S3).

3.4. Functional Enrichment and Network Analysis of Candidate Genes

Protein–protein interaction (PPI) network of candidate genes was analyzed by STRING
(Figure S2). In the network analysis results, a total of 24 protein interaction networks of
candidate genes for embryo- and endosperm-related traits were obtained in the STRING
database. Among them, there were three protein interaction networks interacting with each
other. The first network consisted of Simk1, tdsgR56G10, and GRMZM2G021624 played a
role in signal transduction and protein phosphorylation; the second network consisted of
GRMZM2G173684 and GRMZM2G411956 played a role in ribosome synthesis and protein
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metabolism, and the third network consisted of GRMZM2G374309 and GRMZM2G009045
played a role in ion transmembrane transport and ATP transport. Moreover, two protein
interaction networks composed of 12 candidate genes for cavity-related traits were obtained.
One of them consisted of GRMZM2G048763 and CID11, and genes in this network played
a role in mRNA splicing, protein folding, and transport. The other network consisted
of GRMZM2G099483 and pco129760 mainly played a role in protein metabolism and ion
transmembrane transport.

In order to further explore the function of candidate genes, GO enrichment analy-
sis was conducted for candidate genes and their related genes in the PPI network. For
embryo- and endosperm-related traits networks (Figure 5a), multiple candidate genes
enriched in the transferase activities of various bases in substrate metabolism, such as
Si605019d10 and GRMZM2G411956. Among them, GRMZM2G149617, GRMZM2G039919,
GRMZM2G470010, and GRMZM2G374309 were enriched in the hexosyltransferase process
(GO: 0016758, p < 0.05), Simk1, GRMZM2G149662, and GRMZM2G149639 were enriched
in phosphoric ester hydrolase activity of energy metabolism (GO: 0042578, p < 0.05), GR-
MZM2G173684 and GRMZM2G167892 were enriched in RNA and DNA catalytic activities
in transcription and translation processes (GO: 0140098, p < 0.05, GO: 0140640, p < 0.01),
gigz1A, Si946084h12, GRMZM2G077008 and GRMZM2G149639 were enriched in signaling
receptor activity (GO: 0038023, p < 0.05) and small GTPase binding process (GO: 0031267,
p < 0.05). For cavity-related traits networks (Figure 5b), GRMZM2G048763 and co129760
were enriched in the energy generation-related ATP hydrolysis activity (ATP hydrolysis
activity, GO: 0016887, p < 0.01), pyrophosphatase (GO: 0017111, p < 0.05) and nucleoside
triphosphatase activity (GO: 0016462, p < 0.05). In addition, GRMZM2G099483 and GR-
MZM2G083394 were enriched in polyubiquitin modification-dependent protein binding
(GO: 0031593, p < 0.01) and damaged DNA binding (GO: 0003684, p < 0.01). Notably,
Pco085810 and EREB185 were enriched in processes such as oxidoreductase activity, acting
on NAD(P)H (GO: 0016651, p < 0.05) that caused cell and tissue damage. These processes
were related to intracellular energy, protein metabolism, and cell damage, suggesting that
genes involved in this GO term might be involved in the formation of cavities within maize
kernel endosperm.
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4. Discussion and Conclusions

The structure of the maize kernels plays a critical role in determining maize yield
and quality, and high-throughput, non-destructive microscope phenotypic characteristics
acquisition and analysis are of great importance. Micro-CT has a significant advantage in
the nondestructive acquisition of kernel internal structure information. However, methods
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and tools for the automatic extraction of valuable traits from CT images are still lacking.
The quality of kernel CT images can often be compromised by the presence of significant
noise, characterized by gray values between 0–50. Thus, it is a challenge to determine the
optimal threshold for noise removal is a challenge that prevents accurate identification of
complete kernel boundaries. In this study, we developed a semantic segmentation model
based on U-Net architecture to extract maize kernels and embryo structures accurately.
However, it is still difficult to identify a clear boundary between the silty and horny en-
dosperm components due to their similar intensity values. Our research has shown that
the silty endosperm can be effectively approximated by applying Gaussian filtering to the
endosperm regions, followed by binarization using the Otsu method. Additionally, by
utilizing a thresholding technique on the structures of the embryo and endosperm, it is pos-
sible to extract the total cavity, embryo cavity, and endosperm cavity of the kernel from the
CT images. As a result, 20 traits related to individual maize kernels and internal embryos,
endosperm, and cavity structures could be obtained with an efficiency of 5 s per kernel. The
coefficients of determination for silty endosperm, embryo, endosperm cavity, endosperm,
and embryo cavity volumes were 0.77, 0.95, 0.94, 0.95, and 0.73, respectively. The presented
method can greatly improve the accuracy and efficiency of kernel phenotyping analysis
and provide novel and valuable anatomical traits of the kernel for phenotype–genotype
analysis. However, it is no denying that acquiring data using CT technology is relatively
expensive, and the specific traits often require customized development of the phenotyping
analysis pipeline.

The development of the embryo and endosperm of maize kernel is a complex dynamic
process and is influenced by abiotic stresses and hormones. Most of the candidate genes as-
sociated with them are signaling receptors that play a role in adversity stress and regulation
of growth and development. For example, the bHLH-transcription factor had been reported
to control seed development and size in wheat [16], and GRMZM2G114873 was identified
as a candidate gene of EN_Ratio in our study. In addition, another EN_Ratio candidate gene
GRMZM2G359397, the GDP-L-galactose phosphorylase [17], was reported that catalyzed
the synthesis of ascorbic acid in Arabidopsis, which was essential for the development
of Arabidopsis seeds and seedlings. For EM_Volume, candidate gene GRMZM2G167892
coding the seed maturation protein [18] had been reported that abundantly expressed at
the late stage of seed development, GRMZM2G065696 coding PLAC8 family protein [19]
was shown that could increase plant and organ size when overexpressed in plants, GR-
MZM2G077008 as an ethylene receptor [20] coding gene was revealed that could induce
endosperm cell death in maize kernels, protect embryos and promote embryo development,
and GRMZM2G040161 coding 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase su-
perfamily protein [21] had been reported to be involved in multiple metabolic processes of
plant growth and development, such as gibberellin biosynthesis and catabolism, ethylene
processes of biosynthesis, steroid glycoalkaloid biosynthesis, and flavonoid metabolism.
For EN_Ratio, candidate genes LOC109945391 and GRMZM2G058954 regulated RNA tran-
scription and protein synthesis, such as transfer RNA isoleucine and DNA recombination
family protein.

It’s worth noting that kernel cavities are influenced not only by environmental factors
such as external temperature and moisture but also by seed water content and cellular
state. It has been reported that candidate genes associated with cavity traits were mostly re-
lated to stress resistance and cell death, such as polyadenylate-binding domain-containing
proteins that cause chlorosis and growth inhibition of tobacco leaves when expressed in
tobacco [22]. In this study, GRMZM2G069816 as a candidate gene of C_Volume, coding
Polyadenylate-binding protein-interacting protein might lead to the necrosis of endosperm
cells, which in turn leads to the formation of endosperm cavity. In addition to C_Volume,
LOC103654295, the LOR family genes in soybean played a role in abiotic stress, such as salt
stress. GRMZM2G069687 coding SCAR-like protein [23] could regulate the metabolism of
water loss in rice, and knocking out the gene can lead to leaf drought and premature senes-
cence. LOC100286109, coding the dehydration-responsive element-binding protein [24],
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is abundantly expressed in maize under drought and salt stress, and this gene could be
transferred to Arabidopsis to improve drought tolerance. LOC113687179, coding DCD
domain protein, that proteins containing this domain can control cell development and
apoptosis [25]. In addition, GRMZM2G028969, an AP2/EREBP transcription factor gene,
can improve drought tolerance in Arabidopsis. For C_Ratio, GRMZM5G896731, coding
peptidyl-tRNA hydrolase [26], it had been reported that it inactivated at temperatures
higher than 43 ◦C, affecting protein synthesis. These results will provide new theoretical
support for in-depth analysis of the genetic mechanism of kernel structure traits. Our
work demonstrates the feasibility of using CT-characterized three-dimensional information
on maize kernel internal structures for gene mining. While GWAS can identify genes
with strong statistical associations to traits, further biological experiments are necessary
for validation. In the future, we will conduct gene editing and validation work for these
valuable traits.
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of C_Ratio. e GWAS analysis of EN_Volume. f GWAS analysis of EN_ Ratio. Figure S2: Map of
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