Use of a Pair of Pulse-Charged Grounded Metal Nets as an Electrostatic Soil Cover for Eradicating Weed Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Species
2.2. Instrument to Generate Arc Discharge between Two Metal Nets
2.3. Construction of the EDWZ
2.4. Assay of Damages on Plant Seedlings Caused by Arc-discharge Exposure
2.5. Practical Application of the EDWZ to Control Weed Seedlings Emerging in a Crop Field
2.6. Statistical Analysis
3. Results and Discussion
3.1. Determination of Arcing Distance
3.2. Ability of the EDWZ to Eradicate Mono- and Dicotyledonous Plant Seedlings
3.3. Practical Application of the EDWZ
3.3.1. Successful Grounding of the EDWZ
3.3.2. Leveling-Off of Soil for Preferential Arcing of Plant Seedlings
3.3.3. Effects of a Change in Weather on EDWZ Functioning
3.3.4. Practical Application of the EDWZ for Weed Control in Crop Fields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, A.S.; Frisvold, G.B. Are herbicides a once in a century method of weed control? Pest Manag. Sci. 2017, 73, 2209–2220. [Google Scholar] [PubMed]
- Green, J.M. Current state of herbicides in herbicide-resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [PubMed]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018, 74, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Alqarawi, A.A.; Allah, E.F.A.A. Bioherbicides: Current knowledge on weed control mechanism. Ecotoxic. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. [Google Scholar]
- Anese, S.; Rial, C.; Varela, R.M.; Torres, A.; Molinillo, J.M.G.; Macías, F.A. Search of new tools for weed control using Partocrat rotundifolia, a dominant species in the Cerrado. J. Agric. Food Chem. 2021, 69, 8684–8694. [Google Scholar]
- Macías, F.A.; Mejías, F.J.; Molinillo, J.M. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef]
- Sharma, S.; Pandey, L.M. Prospective of fungal pathogen-based bioherbicides for the control of water hyacinth: A review. J. Basic Microbiol. 2022, 62, 415–427. [Google Scholar] [CrossRef]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef]
- Catton, H.A.; Lalonde, R.G.; De Clerck-Floate, R.A. Differential host-finding abilities by a weed biocontrol insect create within-patch spatial refuges for nontarget plants. Environ. Entomol. 2014, 43, 1333–1344. [Google Scholar] [CrossRef]
- Catton, H.A.; Lalonde, R.G.; De Clerck-Floate, R.A. Nontarget herbivory by a weed biocontrol insect is limited to spillover, reducing the chance of population-level impacts. Ecol. Appl. 2015, 25, 517–530. [Google Scholar] [CrossRef]
- Morin, L. Progress in Biological Control of Weeds with Plant Pathogens. Annu. Rev. Phytopathol. 2020, 58, 201–223. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Zalai, M.; Bogdányi, F.T.; Ferenc Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil. Plants 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Sun, X.; Long, B.; Li, F.; Yang, C.; Chen, J.; Ma, C.; Xie, D.; Wei, Y. Green production of biodegradable mulch films for effective weed control. ACS Omega 2021, 6, 32327–32333. [Google Scholar] [CrossRef]
- Mainardis, M.; Boscutti, F.; Cebolla, M.D.M.R.; Pergher, G. Comparison between flaming, mowing and tillage weed control in the vineyard: Effects on plant community, diversity and abundance. PLoS ONE 2020, 5, 0238396. [Google Scholar] [CrossRef]
- Nagura, A.; Tenma, T.; Sakaguchi, Y.; Yamano, N.; Mizuno, A. Destruction of weeds by pulsed high voltage discharges. J. Inst. Electrostat. Jpn. 1992, 16, 59–66. [Google Scholar]
- Lati, R.N.; Rosenfeld, L.; David, I.B.; Bechar, A. Power on! Low-energy electrophysical treatment is an effective new weed control approach. Pest Manag. Sci. 2021, 77, 4138–4147. [Google Scholar] [CrossRef]
- Fennimore, S.A.; Cutulle, M. Robotic weeders can improve weed control options for specialty crops. Pest Manag. Sci. 2019, 75, 1767–1774. [Google Scholar] [CrossRef]
- Ekeleme, F.; Dixon, A.; Atser, G.; Hauser, S.; Chikoye, D.; Korie, S.; Olojede, A.; Agada, M.; Olorunmaiye, P.M. Increasing cassava root yield on farmers’ fields in Nigeria through appropriate weed management. Crop. Prot. 2021, 150, 105810. [Google Scholar] [CrossRef]
- Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of electric discharge for simultaneous control of weeds and houseflies emerging from soil. Insects 2020, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Takikawa, Y.; Kakutani, K.; Nonomura, T.; Okada, K.; Kusakari, S.; Toyoda, H. Use of pulsed arc discharge exposure to impede expansion of the invasive vine Pueraria montana. Agriculture 2020, 10, 600. [Google Scholar] [CrossRef]
- Burke, M.; Odell, M.; Bouwer, H.; Murdoch, A. Electric fences and accidental death. Forensic Sci. Med. Pathol. 2017, 13, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Pres. 2018, 2, 15–20. [Google Scholar]
- Kakutani, K.; Takikawa, Y.; Matsuda, Y. Selective arcing electrostatically eradicates rice weevils in rice grains. Insects 2021, 12, 522. [Google Scholar] [CrossRef]
- Kaiser, K.L. (Ed.) Air breakdown. In Electrostatic Discharge; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Moore, K., Well, J., Blumet, D., Felsenfeld, S., Martin, T., Rappaport, A., Wagner, C., Lai, B., Taylor, R., Eds.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Kakutani, K.; Matsuda, Y.; Toyoda, H. A simple and safe electrostatic method for managing houseflies emerging from underground pupae. Agronomy 2023, 13, 310. [Google Scholar] [CrossRef]
- Pl@ntNet. 10000 Most Identified Plant Species. Available online: https://plantnet.org/en/ (accessed on 2 March 2022).
- National Fire Protection Association. About the NEC®/Grounding & Bonding. Available online: https://www.nfpa.org/NEC/About-the-NEC/Grounding-and-bonding (accessed on 21 April 2022).
- Nor, N.M.; Rajab, R.; Ramar, K. Validation of the calculation and measurement techniques of earth resistance values. Am. J. Appl. Sci. 2008, 5, 1313–1317. [Google Scholar] [CrossRef]
- Jonassen, N. (Ed.) Abatement of static electricity. In Electrostatics, 2nd ed.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 101–120. [Google Scholar]
Types of Cotyledon | Common Name | Scientific Name |
---|---|---|
Dicotyledons | Chickweed | Stellaria media (L.) Vill. |
Narrow-leaved Vetch | Vicia sativa L. subsp. nigra (L.) Ehrh. | |
Philadelphia Fleabane | Erigeron philadelphicus L. | |
White Clover | Trifolium repens L. | |
Monocotyledons | Green Bristlegrass | Setaria viridis (L.)P. Beauv |
Southern Crabgrass | Digitaria ciliaris (Retz.) Koel | |
Indian Goosegrass | Eleusine indica (L.) Gaertn | |
Annual Bluegrass | Poa annua L. | |
Shortawn Foxtail | Alopecurus aequalis Sobol. | |
Wild Oat | Avena sativa L. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuda, Y.; Takikawa, Y.; Shimizu, K.; Kusakari, S.-i.; Toyoda, H. Use of a Pair of Pulse-Charged Grounded Metal Nets as an Electrostatic Soil Cover for Eradicating Weed Seedlings. Agronomy 2023, 13, 1115. https://doi.org/10.3390/agronomy13041115
Matsuda Y, Takikawa Y, Shimizu K, Kusakari S-i, Toyoda H. Use of a Pair of Pulse-Charged Grounded Metal Nets as an Electrostatic Soil Cover for Eradicating Weed Seedlings. Agronomy. 2023; 13(4):1115. https://doi.org/10.3390/agronomy13041115
Chicago/Turabian StyleMatsuda, Yoshinori, Yoshihiro Takikawa, Kunihiko Shimizu, Shin-ichi Kusakari, and Hideyoshi Toyoda. 2023. "Use of a Pair of Pulse-Charged Grounded Metal Nets as an Electrostatic Soil Cover for Eradicating Weed Seedlings" Agronomy 13, no. 4: 1115. https://doi.org/10.3390/agronomy13041115
APA StyleMatsuda, Y., Takikawa, Y., Shimizu, K., Kusakari, S. -i., & Toyoda, H. (2023). Use of a Pair of Pulse-Charged Grounded Metal Nets as an Electrostatic Soil Cover for Eradicating Weed Seedlings. Agronomy, 13(4), 1115. https://doi.org/10.3390/agronomy13041115