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Abstract: This paper proposes a method for recognizing the origin of Saposhnikovia divaricata using
the IResNet model to achieve computer vision-based classification. Firstly, we created a small sample
dataset and applied data augmentation techniques to enhance its diversity. After that, we introduced
the hierarchical residual connection block in the early stage of the original model to expand the
perceptual field of the neural network and enhance the extraction of scale features. Meanwhile, a
depth-separable convolution operation was adopted in the later stage of the model to replace the
conventional convolution operation and further reduce the time cost of the model. The experimental
results demonstrate that the improved network model achieved a 5.03% improvement in accuracy
compared to the original model while also significantly reducing the number of parameters required
for the model. In our experiments, we compared the accuracy of the proposed model with several
classical convolutional neural network models, including ResNet50, Resnest50, Res2net50, RepVg-
gNet_B0, and ConvNext_T. The results showed that our proposed model achieved an accuracy of
93.72%, which outperformed ResNet50 (86.68%), Resnest50 (89.38%), Res2net50 (91.83%), RepVg-
gNet_B0 (88.68%), and ConvNext_T (92.18%). Furthermore, our proposed model achieved the highest
accuracy among the compared models, with a transmission frame rate of 158.9 fps and an inference
time of only 6.29 ms. The research methodology employed in this study has demonstrated the ability
to reduce potential errors caused by manual observation, effectively improving the recognition ability
of Saposhnikovia divaricata based on existing data. Furthermore, the findings of this study provide
valuable reference and support for future efforts to develop lightweight models in this area.

Keywords: computer vision; artificial intelligence and machine learning; Saposhnikovia divaricata;
convolutional neural networks; IResNet model; origin identification

1. Introduction

The cultivation of Chinese herbal medicine is the cornerstone of the industrialization
of traditional Chinese medicine [1], and the authenticity of herbs is a crucial indicator of
the level of development of traditional medicine. “Authentic” herbs have been clinically
used in Chinese medicine for an extended period and are cultivated in a specific region.
These herbs are known for their superior quality and efficacy, and they exhibit consistent
quality compared to those produced in other regions. Recently, the environmental impact
and conservation and development of authentic herbs have emerged as global concerns [2].
The geographical variation of authentic herbs and the increasing deterioration of the
environment have resulted in a significant decline in authentic herbs. As a result, there has
been a sharp decrease in the production and quality of authentic herbs each year. These
factors pose a significant obstacle to the sustainable development of authentic herbs [3].

Saposhnikovia divaricata is a local herb indigenous to Northeast China [4]. The dried
root of the plant, which belongs to the family Umbelliferae, is used to treat various ex-
ternal symptoms, including wind rash and itching, rheumatic paralysis, and pain [5–7].
However, identifying traits in the complex variety of Saposhnikovia divaricata is difficult,
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resulting in many confused products and inaccurate cultivation practices [8–10]. This
lack of precision in cultivation leads to the uneven quality of the herbs, confusing both
production and medicinal use [11]. Currently, the selection of herbs is still made through
manual observation. For minority herbs like Saposhnikovia divaricata, the identification
process still heavily relies on manual observation compared to more commonly known
herbs. This traditional method is time-consuming and subject to the subjective judgment of
professionals, resulting in a relatively high margin of error.

Deep learning is a branch of artificial intelligence that utilizes the properties of the
human brain to analyze and recognize objects through a multilayer neural network. This
approach enables computers to learn and identify various features of objects, including
their appearance, sound, and other characteristics. The application of deep learning in
the classification and recognition of plants has already yielded many promising results.
Krizhevsky et al. [12] developed the AlexNet network for fine-grained image recognition
in a large visualization database, known as the ImageNet project, which has been widely
used in research related to visual object recognition software Over the last decade, the
field of deep learning has seen an influx of talented scholars who have proposed classical
convolutional neural networks, including VGGNet [13], GoogLeNet [14], ResNet [15],
and DenseNet [16]. These networks have been widely used in image classification tasks,
including plant classification [17,18]. For instance, Liu et al. [19] utilized GoogLeNet
to classify complex background images of 50 Chinese herbal medicines under natural
conditions. This model has significant application value as it can be effectively used for
fine-grained recognition of Chinese herbs, leading to improved accuracy and stability of
recognition. Gui Yue [20] achieved an impressive accuracy of 95.62% by utilizing ResNet-50
in combination with an attention mechanism and cross-layer bilinear pooling algorithm
to classify and recognize 12 plant images. Pei et al. [21] achieved a remarkable accuracy
of 99.26% by utilizing ResNet18 as the base model, replacing the fully-connected layer
with a convolutional layer, and incorporating a mixed-domain attention mechanism to
classify through the Softmax layer. This model was utilized to classify 1360 images into
17 categories of flowers by building a multilayer convolutional neural network and using
data enhancement and stochastic gradient descent techniques. Yanjiao Liu [22] achieved an
impressive correct classification rate of 94.7% and 86.7% for ten succulent images and nine
Saxifrage images, respectively. This was accomplished by leveraging the AlexNet deep
model and migration learning technology, utilizing 15,336 images. The trained models
could classify succulent and lithophytic images with an accuracy rate of 94.7% and 86.7%,
respectively, with an average recognition time of approximately 6 s per image. Yi Zhao [23]
and the team were able to classify and recognize 12 different weeds with an impressive
accuracy rate of 95.47% by utilizing the VGG16 convolutional neural network model.

Ting Zhou [24] proposed an innovative ResNet-based ethnomedicinal plant image
recognition method to classify eight common Tibetan medicines. The method involved an
improvement strategy in network structure and loss function, such as replacing the first
layer of a convolutional kernel of ResNet34 with a cascaded small convolutional kernel,
adding a nonlinear activation layer, utilizing self-adaptive normalization method, Dropout,
and optimizing Focal loss function instead of the cross-entropy loss function. Ultimately,
this method achieved an accuracy rate of 91.18%.

This paper presents a new convolutional neural network model for the origin iden-
tification of authentic herbs by improving and analyzing the capabilities of the IResNet
network proposed by C. Duta [25] and others. The new model incorporates the hierarchical
residual connection block to enhance the feature extraction and network representation
abilities of the IResNet. By leveraging a small number of herbal samples and embedding
the hierarchical residual connection block, the model expands and strengthens the neural
network’s perception field to extract scale features. Additionally, the model incorporates
deep separable convolution operations in the later stages of the network to reduce time
costs and further enhance feature extraction capabilities. The research not only focuses on
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the classification of Saposhnikovia divaricata but also deepens existing studies’ theoretical
and practical foundations, providing a reference for future applications in mobile fields.

2. Materials and Methods
2.1. Image Dataset Acquisition and Pre-Processing of Saposhnikovia divaricata

According to the 2010 edition of “Pharmacopoeia of the People’s Republic of China”,
we selected Saposhnikovia divaricata samples from Jilin, Hebei, Gansu, Northeastern Inner
Mongolia, and Heilongjiang provinces. The samples used in this study were obtained from
the Central Laboratory of Chinese Herbal Medicine Research Institute of Jilin Agricultural
University. They were from the same batch of authentic Saposhnikovia divaricata [26–28].
To capture images of the samples based on their origins, we utilized small HD folding
studio boxes for photography. The images of Saposhnikovia divaricata were captured from
various angles and backgrounds with varying image details, with each image having a high
resolution of 4000× 3000 pixels. The dataset consisted of a total of 2001 images, comprising
408 images from Gansu origin, 427 from Hebei origin, 392 from Heilongjiang origin,
406 from Jilin origin, and 368 images from Northeastern Inner Mongolia. Considering the
differences in quality, lighting, and categories of the samples, we considered all these factors
during data processing. To improve the model’s generalization ability and simulate a real-
world environment, we utilized the Imgaug Library in Python for data pre-processing.
Techniques such as affine transformation, horizontal flip, random crop, and color change
were applied to the dataset images to enhance the data samples and create a more diverse
dataset (Figure 1) [29–31].
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2.2. Data Set Division of Saposhnikovia divaricata

To address the many uncertainties in the experiments, each model was trained using a
5-fold cross-validation method. This involved dividing the entire Saposhnikovia divaricata
dataset into training and validation sets at an 8:2 ratio using a Python dataset partitioning
script, as presented in Table 1. The script divides the dataset into five parts based on the
geographic origin of genuine Saposhnikovia divaricata and performs random homogenization
for each part. This ensures that the ratio of the training set to the validation set is always
8:2 during the network model training. Due to the small number of samples, the validation
set was also used as a test set to test the results. Therefore, the final experimental results in
this paper were based on the average of the results of five experiments.

Table 1. Data set division of Saposhnikovia divaricata.

Place of Origin Training Set Validation Set Totals

Gansu 327 81 408
Hebei 342 85 427

Heilongjiang 314 78 392
Jilin 325 81 406

Northeast Inner Mongolia 295 73 368

3. Building the Model
3.1. IResNet Model

IResNet (Improved Residual Networks) is a backbone model proposed by C. Duta
et al. in 2020, improving the traditional ResNet-v2 architecture. Compared to traditional
residual networks, the IResNet model has a more rational structure, enabling better infor-
mation extraction and stronger learning ability. Since the differences in the appearance
of Saposhnikovia divaricata from different origins are relatively small, we need to extract
phenotypic features of Saposhnikovia divaricata from multiple angles. The IResNet model can
effectively reduce information loss and extract more comprehensive feature information
when extracting phenotypic features of Saposhnikovia divaricata. Additionally, it can prevent
the model from generating gradient dispersion and reduce the need for hyperparameters.
For these reasons, we used the IResNet model as the backbone for the origin identification
of Saposhnikovia divaricata.

3.2. Improved IResNet Model
3.2.1. Hierarchical Residual Connection Block (HRC Block)

The extraction of phenotypic multiscale features of Saposhnikovia divaricata is crucial
for the task of origin identification presented in this paper. To achieve this, we need to
extract phenotypic features at a finer level of granularity using macro receptive fields. S.-H.
Gao [32] proposed a simple and effective multi-scale feature processing CNN module
called the hierarchical residual connection block (HRC block), as shown in Figure 2.

The HRC block structure replaces a generic single 3 × 3 convolution kernel by con-
structing similar residual connections with a hierarchy within a single residual block. With
each 3 × 3 convolution operation, all feature information to its left can be potentially
accepted, and each output can increase the receptive field. As a result, each HRC block can
acquire a different number and combination of features with different receptive field sizes,
thereby increasing the scale at which the output features can represent information.

Yi =


x... i = 1;
. . . i = 2;

Ki
(
xi + yi−1

)
2 < i ≤ s.

(1)

At the first 1 × 1 After convolution, the input is divided into s subsets, defined as xi, i
∈ {1,2,...,s}. Each feature has the same scale size, but the channel is 1/s of the input feature.
Except for x1, other sub-features have corresponding 3 × 3 Convolution kernel, defined as
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Ki, whose output is yi. The sub-feature xi is added to Ki-1 and then entered into Ki. The
3 × 3 convolution of x1 is omitted to increase s while decreasing the parameters.Agronomy 2023, 13, x FOR PEER REVIEW 5 of 16 
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Unlike most existing approaches to multiscale feature learning through hierarchical
representation in neural networks, the HRC block structure improves the multiscale rep-
resentation of neural networks at the image classification level. It exploits the multiscale
potential at a finer granularity level by introducing a new dimension, scale, depth, width,
and cardinality dimensions in existing network factors. In the HRC block structure, s is
used as a control parameter for the scale dimension. A larger s allows for more features
and sensory fields to be learned, which is orthogonal to existing approaches that utilize
hierarchical operations.

In summary, we incorporate the HRC block into the Saposhnikovia divaricata identifica-
tion model to increase the multiscale feature extraction capability.

3.2.2. Improved IResStage Structure (IIR Stage)

Although IResNet effectively reduces the problem of gradient dispersion to a certain
extent, its network depth is the same as conventional residual networks. Moreover, the
conventional convolution operation applied to this network consumes more time and
computational resources due to its high computational effort. To reduce the computation
and time expenditure of the network model, we replace the conventional convolution with
the Depthwise Separable Convolution (DS conv) operation proposed by Chollet [33]. This
operation helps to reduce the overall consumption of the network model while ensuring
the feature extraction capability.

When the size of the input feature map is Hf ×Wf ×M and the size of the convolution
kernel is Kh × Kw ×M and the number is L, then the total computation of L regular
convolutions is:

Hf ×Wf ×Kh ×Kw ×M× L (2)

The total calculation for DS conv is:

Hf ×Wf ×Kh ×Kw ×M + M× L× 1× 1 (3)

The ratio of the computational effort of DS conv to the normal convolution is:

1
L
+

1
Kh ×Kw

(4)

The above study shows that using DS conv allows for deeper neural network layers
while reducing the time cost of the network and ensuring the same input. Therefore,
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we replaced the 3 × 3 conventional convolution operation inside the original IResStage
structure with a 3 × 3 DS conv to construct a new IIR stage (Figure 3).

Agronomy 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

Hf × Wf × Kh × Kw × M × L (2) 

The total calculation for DS conv is: 

Hf × Wf × Kh × Kw × M + M × L × 1 × 1 (3) 

The ratio of the computational effort of DS conv to the normal convolution is: 

1

L
+

1

Kh × Kw
 (4) 

The above study shows that using DS conv allows for deeper neural network layers 

while reducing the time cost of the network and ensuring the same input. Therefore, we 

replaced the 3 × 3 conventional convolution operation inside the original IResStage struc-

ture with a 3 × 3 DS conv to construct a new IIR stage (Figure 3). 

 

Figure 3. IIRStage structure. 

3.3. Saposhnikovia divaricata Based Origin Classification Model 

To improve the accuracy of the origin recognition model of Saposhnikovia divaricata, 

we introduced the HRC block module in the early network stage. This enhances the multi-

scale feature extraction capability of the model, strengthens the correlation between 

Figure 3. IIRStage structure.

3.3. Saposhnikovia divaricata Based Origin Classification Model

To improve the accuracy of the origin recognition model of Saposhnikovia divaricata, we
introduced the HRC block module in the early network stage. This enhances the multi-scale
feature extraction capability of the model, strengthens the correlation between different
regions and features within the same residual block, and avoids errors in recognition of
different origins of Saposhnikovia divaricata. The HRC stage comprises HRC blocks, which
differ from the traditional method of extracting scale features by hierarchical scale feature
extraction modules. Instead, hierarchical building blocks are used to enhance the scale
feature extraction ability and expression of the whole model, increasing the perceptual field
of each network layer. This enables the extraction of phenotypic features of anti-fungal at a
finer granularity. Furthermore, as the channels are split, the number of parameters does
not increase much, which avoids negative problems in model training due to oversized
network parameters.

The IIR stage significantly enhances the ability of feature extraction and information
propagation. Adjusting the position of the batch normalization layer (BN) and the non-
linear activation function (ReLU) effectively avoids the negative impact of information
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propagation caused by the non-linear activation function. Additionally, the conventional
convolution operation is replaced by the DS conv operation, which significantly reduces the
amount of computation and the number of parameters that can cause the network model
to become too large, leading to high computational costs. The improved network model is
shown in Figure 4.
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4. Experimental Environment Configuration and Result Analysis
4.1. Experimental Environment Configuration

The experimental configuration environment was a laptop GPU with a processor
of AMD Ryzen9 5900HX with RadeonGraphics 3.30 GHz and a graphics card of Nvidia
GeForce RTX 3070 LaptopGPU, with a windows11 operating system, software configura-
tion installed as Anaconda3-2021.11-windows version, and given a Pytorch1. 1 built-in
Python3.10.1 programming language. 10 deep learning framework, all comparison algo-
rithms were run in the same environment.

4.2. Experimental Hyperparameter Setting

Table 2 provides information on the specific experimental parameters used in train-
ing the new network model proposed in this paper. We set the input size of the 2001
Saposhnikovia divaricata dataset to 224 × 224, the number of training rounds to 120, and the
initial learning rate to 0.01. The original MultiStep Learning Rate Decay (MultiStepLR) strat-
egy was replaced with an adaptive learning rate decay strategy (Reduce LR On Plateau).
The training set loss is used as the adaptive criterion. When the training set loss stops
decreasing for six consecutive rounds (i.e., the number of tolerated rounds is six), the
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learning rate decay is automatically adjusted. This enables the determination of the optimal
value of the learning rate at the current stage, according to the network training, thus
improving the accuracy and precision of the network model training.

Table 2. Training hyperparameter information.

Set of Parameter Value or Name

Input Size 224 × 224
Number of samples 2001
Number of epochs 120

Optimizer SGD
Learning rate 0.01

Learning rate scheduler Reduce LR On Plateau
Number of patience rounds 6

4.3. Experimental Results and Analysis
4.3.1. Comparison Experiments of Different Models

To verify the effectiveness and advancement of the new network model, we used
model accuracy, model loss, model inference time, frames per second transmission, number
of model parameters and corresponding arithmetic power as evaluation indexes for model
performance. We compared the new network model with four classical convolutional neural
networks, namely ResNet50, Resnest50, Res2net50, RepVggNet_B0 and ConvNext_T. The
results are presented in Table 3, Figures 5 and 6.

Table 3. Comparison experiments of different models.

Model Accuracy Loss Params FLOPs Inference
Time FPS

ResNet50 86.68% 0.3738 23.52 M 4.12 GMac 8.41 ms 100.93 fps
ResNest50 89.38% 0.6024 25.44 M 5.41 GMac 17.6 ms 57.01 fps
Res2Net50 88.68% 0.4019 23.66 M 4.29 GMac 9.14 ms 109.41 fps

RepVggNet_B0 92.18% 0.3212 17.06 M 3.76 Gmac 11.16 ms 89.61 fps
ConvNext_T 91.83% 0.6002 27.82 M 4.47 Gmac 7.12 ms 140.17 fps
Our model 93.72% 0.2192 16.16 M 3.32 Gmac 6.29 ms 158.9 fps

Agronomy 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 5. Visualization results of the accuracy of different model comparison experiments. 

 

Figure 6. Visualization results of the loss of different model comparison experiments. 

The comparison experiments show that the network model proposed in this paper 

achieves a recognition accuracy of 93.72% on this dataset, with an inference time of only 

6.29 milliseconds (ms), a transmission frame rate of 158.9 fps and the lowest loss value 

compared to other models at 0.2192. The model also has the shortest training time per 

round, allowing fast convergence to find the optimal value. This proves the superior per-

formance of the model, which converges quickly to find the best value. 

In summary, the accuracy of the models proposed in this study is higher than that of 

other convolutional neural network models. In addition, the models are relatively smaller, 

reducing computational costs while ensuring improved feature extraction. This also re-

duces network consumption and the time cost. However, in the accuracy visualization 

Figure 5. Visualization results of the accuracy of different model comparison experiments.



Agronomy 2023, 13, 1199 9 of 15

Agronomy 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 5. Visualization results of the accuracy of different model comparison experiments. 

 

Figure 6. Visualization results of the loss of different model comparison experiments. 

The comparison experiments show that the network model proposed in this paper 

achieves a recognition accuracy of 93.72% on this dataset, with an inference time of only 

6.29 milliseconds (ms), a transmission frame rate of 158.9 fps and the lowest loss value 

compared to other models at 0.2192. The model also has the shortest training time per 

round, allowing fast convergence to find the optimal value. This proves the superior per-

formance of the model, which converges quickly to find the best value. 

In summary, the accuracy of the models proposed in this study is higher than that of 

other convolutional neural network models. In addition, the models are relatively smaller, 

reducing computational costs while ensuring improved feature extraction. This also re-

duces network consumption and the time cost. However, in the accuracy visualization 

Figure 6. Visualization results of the loss of different model comparison experiments.

The comparison experiments show that the network model proposed in this paper
achieves a recognition accuracy of 93.72% on this dataset, with an inference time of only
6.29 milliseconds (ms), a transmission frame rate of 158.9 fps and the lowest loss value
compared to other models at 0.2192. The model also has the shortest training time per
round, allowing fast convergence to find the optimal value. This proves the superior
performance of the model, which converges quickly to find the best value.

In summary, the accuracy of the models proposed in this study is higher than that of
other convolutional neural network models. In addition, the models are relatively smaller,
reducing computational costs while ensuring improved feature extraction. This also reduces
network consumption and the time cost. However, in the accuracy visualization images of
the different model comparison experiments, the accuracy curves of the network models
proposed in this paper fluctuate, possibly due to the uncertainty of the decay of the adaptive
learning rate as the model accuracy increases.

4.3.2. Comparison Experiments for Image Enhancement

To ensure that the augmented Saposhnikovia divaricata samples had a practical effect
on the model, the original IResNet model was used as the basis for this study and the
experimental parameters were kept in the same settings. After using the sample data
augmentation strategy, the recognition accuracy of the model was improved by 2.85%.
This demonstrates that using the data enhancement strategy can effectively expand the
diversity of Saposhnikovia divaricata samples and enhance the model’s generalization ability.
Therefore, the next ablation experiments were conducted using the data-enhanced herbal
samples. The recognition accuracy of the model under the data enhancement strategy is
shown in Table 4.

Table 4. Model recognition accuracy under data enhancement strategies.

Data Enhancement Strategy Accuracy of Models

Yes 88.69%
No 85.84%
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4.3.3. Ablation Experiments
The Effect of Introducing DS Conv on the Origin Identification Model of the
Saposhnikovia divaricata

This study replaces the conventional convolution operation by introducing the DS
conv operation with a lightweight idea. Compared with the original model, the accuracy
improvement is only 0.72%. However, by reconstructing the residual blocks, the number
of parameters and the overall arithmetic power of the model is reduced while ensuring
a small increase in accuracy, which effectively improves the model’s inference time and
the number of frames per second transmitted. The overall results of the model after the
introduction of DS conv are shown in Table 5.

Table 5. Effect of introducing DS conv into the model.

Model Accuracy Inference Time FPS Params FLOPs F1score

Iresnet 88.69% 8.32 ms 120.1 fps 23.52 M 4.16 GMac 88.3%
Iresnet +
IIR stage 89.41% 6.17 ms 162.7 fps 15.51 M 3.04 GMac 89.1%

The Effect of Embedding the Hierarchical Residual Connection Block on the Origin
Identification Model of Saposhnikovia divaricate

To evaluate the effect of the hierarchical residual connection block on the recognition
accuracy of this model, we embedded the HRC stage in the pre-network model. The model
effects of embedding the HRC block are shown in Table 6.

Table 6. Effect of the model with embedded HRC block.

Model Accuracy Inference Time FPS Params FLOPs F1score

Iresnet 88.69% 8.32 ms 120.1 fps 23.52 M 4.16 GMac 88.3%
Iresnet +

HRC stage 90.25% 6.34 ms 149.4 fps 24.11 M 4.95 GMac 90.5%

Compared with the original model, the model with the HRC stage embedded increased
in accuracy by 1.56% and inference time by 1.98 milliseconds (ms), while the transmission
frame rate decreased to 149.4 fps. As recognition accuracy rose, the number of parameters
and arithmetic power increased accordingly. This is due to the embedded hierarchical
residual connection block, which increases the network complexity as the model feature
extraction capability increases.

Final Model for Origin Recognition of Saposhnikovia divaricate

The accuracy of the improved model for identifying the origin of Saposhnikovia divaricata
improved by 5.03%, as shown in Table 7. The inference time was reduced by 2.03 mil-
liseconds (ms), and the frames per second (fps) were increased by 38.8 fps. The model
with the hierarchical residual connection block achieved a further significant improvement
in recognition accuracy at the cost of a small increase in inference time and a number of
parameters. A visual comparison of the accuracy before and after model improvement is
shown in Figure 7.

Table 7. Comparison results before and after model improvement.

Model Accuracy Inference
Time FPS Params FLOPs F1score

Iresnet 88.69% 8.32 ms 120.1 fps 23.52 M 4.16 GMac 88.3%
Iresnet + IIR stage

+ HRC stage 93.72% 6.29 ms 158.9 fps 16.16 M 3.32 GMac 93.4%
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The visualization images obtained by the Grad-CAM [34] tool provide a more intuitive
view of the regions of interest in the feature maps of each model layer before and after
the improvements. Figure 8 shows that the improved model has a significantly enhanced
feature extraction capability for Saposhnikovia divaricata, effectively analyzing more valu-
able information. The improved feature extraction capability of the model is particularly
important due to the little change in the appearance of Saposhnikovia divaricata.
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Figure 8. Visualization comparison of the thermal characteristic maps of different layers of the
network model before and after improvement.

From the above experimental results, we found that embedding the hierarchical
residual connection block enhanced the feature extraction and refinement capabilities of
the model for the Saposhnikovia divaricata data set. Additionally, the DS conv operation,
which introduces the idea of lightness, not only ensures the feature extraction capability of
the network model for deeper layers but also effectively reduces the number of network
model parameters and inference time.

4.3.4. Model Evaluation

• Analysis of model evaluation indicators
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To verify the effectiveness of the enhanced network model in identifying the origin of
Saposhnikovia divaricata from the five production areas, we utilized Precision, Recall, and F1
score to analyze the model before and after the enhancement.

Precision refers to the proportion of samples predicted to be positive that belong to
the positive category.

Precision =
TP

TF + FP
(5)

The recall is the proportion of all positive samples correctly identified as positive
categories. That is, it is the proportion of identified predicted positive categories to actual
positive categories.

Recall =
TP

TP + FN
(6)

The F1 score is the average of the sum of precision and recall. It measures the bal-
ance between the two and reflects the stability of the model performance, as well as the
generalization ability of the prediction model.

F1 = 2× (Precision× Recall)÷ (Precision + Recall) (7)

The F1 score for the Jilin region increased by 5.5%, while the F1 score for the North-
eastern Inner Mongolia region reached a perfect score of 100% with an increase of 0.9%.
The improved model for identifying Saposhnikovia divaricata production areas exhibited
increased accuracy and recall rates. This confirmed that the proportion of correctly classi-
fied positive samples was effectively increased, and the improved model demonstrated a
more significant improvement in identification accuracy than the previous model. Table 8
shows the evaluation indexes for the model’s recognition performance before and after
the improvement.

Table 8. Comparison of model recognition performance evaluation metrics.

Place of Origin
Precision Recall F1 Score

Before After Before After Before After

Gansu 0.8 0.882 0.381 0.714 51.6% 78.9%
Hebei 0.727 0.818 0.711 0.8 71.9% 80.9%

Heilongjiang 0.894 0.962 0.974 0.987 93.2% 97.4%
Jilin 0.867 0.927 0.894 0.944 88% 93.5

Northeast Inner Mongolia 0.991 1.0 0.992 1.0 99.1% 100%

• Visual comparative analysis of model confusion matrices

Table 9 displays the corresponding labels of the confusion matrix, while Figure 9
illustrates the visual images of the confusion matrix for the improved network model
before and after the enhancement.

To verify the recognition ability of the original identification model proposed in
this paper, the confusion matrix visualization results analysis shows that the improved
network model incorrectly identifies one and twelve Saposhnikovia divaricata from the Gansu
production area as the Hebei production area and the Jilin production area. In contrast, the
improved network model only incorrectly identifies six Saposhnikovia divaricata from the
Gansu production area as the Jilin production area and does not incorrectly identify them
as the Hebei production area.

In conclusion, the enhanced network model significantly reduced the original error
rate, improved the model’s accuracy, and proved more effective in identifying the origin of
Saposhnikovia divaricata. Furthermore, further in-depth analysis using the confusion matrix
of the improved network model revealed that the model did not misidentify samples from
the northeastern Inner Mongolia production area. However, there were still relatively large
errors in identifying samples from the Jilin and Hebei production areas.
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Table 9. Corresponding labels and origin.

Label Place of Origin

0 Gansu
1 Hebei
2 Heilongjiang
3 Jilin
4 Northeast Inner Mongolia
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5. Conclusions

This study aims to enhance the original model of the IResNet network by incorporat-
ing the concept of lightweight through the use of deep separable convolution operation (DS
conv) instead of the traditional convolution operation. This approach reduces the number
of parameters and inference time of the model while enhancing the network’s refinement
extraction ability and overall recognition capacity. Additionally, the study embeds the
layered residual connection module (HRC block) to enhance the multi-scale feature extrac-
tion ability of the network. This integration further expands the scale feature extraction
of the network model and strengthens the network’s expression capacity. Combining the
features of these two distinct modules and conducting experiments on a dataset from five
production areas demonstrate that the proposed method’s accuracy is as high as 93.72%.
Compared with the original network model, the proposed model in this paper’s accuracy
rate is improved. In contrast, the arithmetic power, and the number of parameters of the
model are significantly reduced, the number of transmitted frames is increased, and the
model’s performance is greatly improved. By comparing five network models often used
for image classification, ResNet50 Resnest50, Res2net50, RepVggNet_B0 and ConvNext_T,
the network model proposed in this paper is significantly better than the other network
models in terms of performance, and the model complexity is lower, and the requirement
for equipment is lower.

To revolutionize the conventional manual collection method for identifying
Saposhnikovia divaricata, future research aims to introduce a lightweight herb identifica-
tion model that can be integrated with mobile devices, enabling real-time classification of
Chinese herbs using intelligent devices. This will enhance the accuracy and portability of
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Chinese medicine collection and identification and contribute to geographical analysis in
Chinese medicine.
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