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Abstract: The study of soil–plant–machine interaction (SPMI) examines the system dynamics at
the interface of soil, machine, and plant materials, primarily consisting of soil–machine, soil–plant,
and plant–machine interactions. A thorough understanding of the mechanisms and behaviors of
SPMI systems is of paramount importance to optimal design and operation of high-performance
agricultural machinery. The discrete element method (DEM) is a promising numerical method that
can simulate dynamic behaviors of particle systems at micro levels of individual particles and at
macro levels of bulk material. This paper presents a comprehensive review of the fundamental
studies and applications of DEM in SPMI systems, which is of general interest to machinery systems
and computational methods communities. Important concepts of DEM including working principles,
calibration methods, and implementation are introduced first to help readers gain a basic understand-
ing of the emerging numerical method. The fundamental aspects of DEM modeling including the
study of contact model and model parameters are surveyed. An extensive review of the applications
of DEM in tillage, seeding, planting, fertilizing, and harvesting operations is presented. Relevant
methodologies used and major findings of the literature review are synthesized to serve as references
for similar research. The future scope of coupling DEM with other computational methods and
virtual rapid prototyping and their applications in agriculture is narrated. Finally, challenges such
as computational efficiency and uncertainty in modeling are highlighted. We conclude that DEM is
an effective method for simulating soil and plant dynamics in SPMI systems related to the field of
agriculture and food production. However, there are still some aspects that need to be examined in
the future.

Keywords: DEM; soil–plant–machine interactions; soil dynamics; machinery systems; numerical
modeling

1. Introduction

The world’s growing population and limited land resources require the agriculture
industry to increase its productivity and efficiency to provide ample food and nutrition.
The shortage of manpower available for farming operations in modern society signifi-
cantly hinders the agriculture industry in meeting the food demand of society. Hence,
agricultural mechanization has grown in popularity in the past few decades. Agricultural
machinery is an extremely vital part of high-efficiency food production and field operations
including tillage, planting, seeding, spraying, fertilizing, and harvesting. The effectiveness
and efficiency of this agricultural machinery are of key interest to researchers, engineers,
producers, practitioners, and others. Tillage involves wear and tear of the soil-engaging
tools, huge tractive efforts, and high wheel slippage during soil–machine interaction. The
performance of a soil-engaging tool is evaluated using resultant soil dynamic attributes
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(such as soil displacement and cutting forces) and residue incorporation characteristics
(such as residue cutting and sizing). A high-performance soil-engaging tool is one that
creates the optimal soil and residue conditions for crop production while minimizing
energy requirements. Inaccurate or inconsistent metering mechanisms in seeders would
result in significant field losses, which need to be studied in consideration of seed–machine
interaction characteristics. A combine harvester deals with several operations including
cutting, conveying, threshing, separating, and cleaning, consuming a significant amount of
energy. High efficiency in any of these operations would lead to reductions in grain losses
and damages. As conservation tillage gains popularity in fields, high levels of crop residue
may cause plugging of traditional tillage and seeding equipment, which can adversely
affect crop emergence and yield. The study of the implements that interact with crop
residues has also become a topic of interest. Therefore, it is clear that the performance of the
machines is largely dependent on the interactions of machine components with soil, seed,
crops, residue, and other plant materials. A thorough understanding of the mechanisms
and behaviors of soil–plant–machine interactions (SPMI) is of paramount importance for
the optimal design and operation of high-performance agricultural machinery.

Investigation of SPMI systems has been carried out through two approaches: experimental
and modeling studies (Figure 1). Experimental study can be further di-vided into laboratory
study and field study. Laboratory study typically utilizes a soil bin to perform small-scale exper-
iments in a controlled environment on a year-round basis to study the relationship between
tillage tools, traction equipment, and the soil. Soil bin facilities consist of soil boxes, mobile tool
carriers, motion control systems, power sources and drive systems, data acquisition and analysis
systems, soil conditioning equipment, lifting systems, and various soil-engaging tools [1]. Crop
residues have also been incorporated in soil bin studies to investigate soil–tool–residue interac-
tions [2]. The field study offers a more realistic representation of the soil and field conditions and
allows full-scale and large implements to be tested. Results of experimental studies have been
used for design, modeling, prediction, performance evaluation, and optimization of various
agricultural machines directly or via generating empirical models and equations that are related
to soil and tool variables (e.g., [3]).
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Measurements of dynamic behaviors of SPMI systems are time-consuming, labor-
intensive, and cost-prohibitive. Some measurements, for example soil particle movement
in tillage and grain kernel damage in harvesting, are difficult, if not impossible. Therefore,
modeling approaches have been used to simulate the system dynamic behaviors of SPMI.
Generally speaking, modeling approaches could be categorized into analytical, mathe-
matical, and numerical simulations. Analytical and mathematical modeling predict soil
dynamic properties based on certain assumptions of soil failure patterns and simplifica-
tions of tool geometry (e.g., [4]). The universal earthmoving equation (UEE) is a prevalent
classical soil mechanics model that was developed by several researchers based on the
theory of passive soil fracture [5–7]. UEE predicts soil cutting forces by considering tool
working depth and speed, soil shear strength, soil wedge, friction parameters, and inertial
effects of the soil [5,6,8–12]. The analytical method has proven to be simple to use and
fairly accurate. However, it is challenging to incorporate some variables involved in SPMI
systems, such as complex tool geometry and varying working speed, and it is also difficult
to provide information on soil deformations and displacements, due to a simplified soil
failure pattern. It was also observed from reviewing the literature that complex problems
of soil–soil, soil–plant, and plant–tool interactions have rarely been investigated using
analytical or mathematical methods.

Several numerical methods, including the discrete element method (DEM), compu-
tational fluid dynamics (CFD), and the finite element method (FEM), have been used for
modeling SPMI systems in agriculture. Generally speaking, numerical methods can be
divided into two groups: mesh-based or continuum modeling approaches and particle-
based or discontinuous modeling approaches. Continuum modeling methods including
FEM and CFD have been used to predict soil resistance on tillage tools (e.g., [10,13,14]), soil
failure patterns [15], pressure distribution on tool surface and its effect on the wear of the
tool [16], soil disturbance area [17], and interaction of the tool with residue stubble [18].
Although the success of FEM and CFD has been seen in some aspects of SPMI research,
the two continuum numerical simulation methods fail to deal with large displacements of
soil and plant materials, which are common in SPMI systems. On the other hand, DEM
was developed to model behavior of granular materials [19]. It is suitable for modeling soil
and its interactions with rigid or flexible bodies [20]. It aims at modeling soil at particle
levels without limitations on magnitudes of particle displacement and shapes of the tools.
DEM has emerged from infant stage to a rapidly developing stage and has the potential
to become a robust simulation tool in the field of SPMI dynamics. Using DEM, dynamic
behaviors of SPMI systems can be monitored at micro levels of individual particles and at
macro levels of bulk material.

The objective of this paper is to comprehensively review and collect the existing
published research that used DEM as a numerical technique for simulating SPMI systems
related to the agricultural field. Firstly, this review sets the stage by briefly discussing
principles involved and calibration approaches and software commonly used in DEM.
Secondly, fundamental studies of DEM related to SPMI systems are summarized focusing
on the discussions of contact model selection and model parameter determination. Thirdly,
the paper introduces applications of DEM in SPMI systems including tillage, seeding and
planting, fertilizing, and harvesting. Relevant simulating methodologies and significant
findings of these applications are discussed in some detail. Finally, the main challenges
and promising research topics for future studies are discussed.

2. Discrete Element Method
2.1. Principles

DEM is an explicit numerical method of modeling dynamic behaviors of distinct
particles moving independently. The domain of interest in a physical system is modeled as
an assemblage of particles that interact at contact. Forces arise at the contact points between
particles, either homogenous or heterogenous, causing displacement of the particles. The
magnitude of the contact force is determined by the particle properties (such as stiffness)
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and the overlap between particles in contact. Certain contact laws based on particle
kinematics govern particle displacement. Different contact laws can be chosen to reflect the
dynamic behavior of the material to be modeled.

From a technological perspective, DEM can be defined as a technique that comprises
finite-sized bodies having the capability of relative displacement, and therefore the contact
topology and force system can be updated during the computer simulation. Modeling
requires input of parameters of particles and accurate incorporation of the contact model.
DEM estimates forces acting on the particles through contact mechanics and a contact
detection algorithm, and thereby, acceleration, velocity, and displacement are computed
using Newton’s law of motion. Different contact detection techniques are employed in
algorithms to reduce the computational load. In the body-based search technique, which
is a hyperlinear contact detection algorithm, each particle is considered separately for the
analysis. Most DEM code follows this approach wherein the computational time increases
exponentially as the number of particles in the domain increases. In contrast, with the
space-based search technique, the whole domain is divided into several windows, and they
are analyzed in consequence to gain computational efficiency. Assigning model parameters
is a major part of modeling. Some of the particle parameters may be readily available
either from the literature or direct measurements. However, in case of nonavailability, those
parameters need to be obtained through calibrations. Computational time depends on the
algorithm chosen for the domain, and model accuracy highly depends on the selection of
proper contact model and associated parameters. A general working flow chart is shown
in Figure 2.

Agronomy 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

particle kinematics govern particle displacement. Different contact laws can be chosen to 
reflect the dynamic behavior of the material to be modeled. 

From a technological perspective, DEM can be defined as a technique that comprises 
finite-sized bodies having the capability of relative displacement, and therefore the con-
tact topology and force system can be updated during the computer simulation. Modeling 
requires input of parameters of particles and accurate incorporation of the contact model. 
DEM estimates forces acting on the particles through contact mechanics and a contact de-
tection algorithm, and thereby, acceleration, velocity, and displacement are computed us-
ing Newton’s law of motion. Different contact detection techniques are employed in algo-
rithms to reduce the computational load. In the body-based search technique, which is a 
hyperlinear contact detection algorithm, each particle is considered separately for the 
analysis. Most DEM code follows this approach wherein the computational time increases 
exponentially as the number of particles in the domain increases. In contrast, with the 
space-based search technique, the whole domain is divided into several windows, and 
they are analyzed in consequence to gain computational efficiency. Assigning model pa-
rameters is a major part of modeling. Some of the particle parameters may be readily 
available either from the literature or direct measurements. However, in case of nonavail-
ability, those parameters need to be obtained through calibrations. Computational time 
depends on the algorithm chosen for the domain, and model accuracy highly depends on 
the selection of proper contact model and associated parameters. A general working flow 
chart is shown in Figure 2. 

 
Figure 2. DEM modeling flow chart. 

2.2. Calibration Approaches 
As discussed, the determination of the appropriate contact model and model param-

eters in a DEM model plays a vital role in ensuring accurate representations of the physical 
model. DEM parameters include particle parameters and contact parameters. The selec-
tion of particle parameters is a difficult task. The selection of input parameters required 
for contact models makes the task more challenging. Though there is no standard proce-
dure to calibrate DEM parameters, two approaches are commonly followed. The first 
method is the direct measurement approach. Although, in most cases, microscopic param-
eters of DEM are not measurable, attempts have been made to quantify a material’s phys-
ical parameters directly measured on a particle. Ease of measurement depends on particle 
scale and size [21]. It was found that the accuracy level of the DEM model may vary even 
though the input parameters have been measured accurately [22,23]. This method is gen-
erally most suitable where friction among particles is the dominant force, for example, in 
granular particle systems. The direct measurement approach will be accurate only if the 

Figure 2. DEM modeling flow chart.

2.2. Calibration Approaches

As discussed, the determination of the appropriate contact model and model parame-
ters in a DEM model plays a vital role in ensuring accurate representations of the physical
model. DEM parameters include particle parameters and contact parameters. The selection
of particle parameters is a difficult task. The selection of input parameters required for
contact models makes the task more challenging. Though there is no standard procedure
to calibrate DEM parameters, two approaches are commonly followed. The first method
is the direct measurement approach. Although, in most cases, microscopic parameters
of DEM are not measurable, attempts have been made to quantify a material’s physical
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parameters directly measured on a particle. Ease of measurement depends on particle scale
and size [21]. It was found that the accuracy level of the DEM model may vary even though
the input parameters have been measured accurately [22,23]. This method is generally
most suitable where friction among particles is the dominant force, for example, in granular
particle systems. The direct measurement approach will be accurate only if the particle
size and shape are modeled accurately and if an accurate representation of physical contact
behavior is ensured [24]. The measurement of particle microscopic parameters is arduous, if
not impossible in some cases. Therefore, the second method, calibrating model parameters
by measuring and matching macroscopic parameters of bulk materials, has been a more
popular method among researchers.

The latter calibration approach compares the macro response of the bulk material with
the measured results through an iterative procedure [25]. First, a laboratory experiment
is typically conducted to measure material properties of interest. Then, the laboratory
experiment is replicated numerically with a proper code of conduct. This does not assure
alignment of the measured result with the predicted one. In such cases, critical DEM
parameters need to be varied until a reasonable match between predicted and measured
values is achieved, following the trial-and-error approach. It was noted that a macroscopic
property can be matched with different combinations of microscopic particle parameters,
which suggested that another macroscopic property should be considered as a second
factor to ensure the uniqueness of calibrated parameter sets [26].

2.3. Implementation

Several DEM-modeling software, either proprietary or open source, are available for
implementing simulations of varieties of problems dealing with particle interface. Common
commercial software includes EDEM, PFC, and Rocky DEM; open-source software includes
MercuryDPM, LIGGGHTS, and YADE. They are basically developed on the same principles,
executing common steps of simulation including particle contact identification, implementation
of contact model, and application of laws of motion and mechanics. Major differences among
software include contact detection technique, user interface, post-processing capabilities, and
computation performance. For example, EDEM has a three-step graphical user interface
including pre-processing, simulation, and post-processing; PFC can solve the system with a
combination of spheres and polyhedra having variable contact detection algorithms; Rocky
DEM offers more accelerated simulation by integrating GPU cards into the computation process;
and LIGGGHTS uses command line interface for pre-processing and simulation, while post-
processing needs to be performed on another platform such as PARAVIEW.

3. Fundamental Studies of DEM in Soil–Plant–Machine Interactions
3.1. Contact Models

The particle–particle and particle–boundary contact models of DEM have three main
components including normal force, tangential force, as well as rolling resistance models
(Figure 3). Following the displacement-driven formulation suggested by Cundall and
Strack [27] for DEM simulations, different methods for calculating normal and tangential
displacements can be identified. Generally, elastic, plastic, viscous, cohesive, and adhesive
interactions between neighboring particles are considered. The major difference between
these interactions is the role of various forms of energy including molecular energy, kinetic
energy, body energy, surface energy, boundary work, and their transformation in contact
behavior. In the case of elastic contact, it is considered that energy and momentum are
conserved. As for the rest of the contact types, the energy is dissipated in various ways
through the contact points or affected areas between particles.

Biological materials in SPMI systems have tremendous variability in terms of proper-
ties and applications. As a result, the selection of an appropriate contact model to represent
material behaviors in specific applications becomes a challenge. An attempt was made to
classify common contact models being studied and used in applications of SPMI systems, as
shown in Figure 4. A discussion of different contact models and their common applications
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is narrated in the following section to guide in determining which contact model is most
suited for a specific application.
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3.1.1. Normal Force Model

The elastic contact model is the most common model used to calculate normal force.
The elastic contact model has two types: linear and nonlinear elastic models, where the lin-
ear elastic model represents a spring, and the nonlinear normal elastic model is commonly
known as the Hertzian model [27,29–31]. The Hertzian model has demonstrated promising
results in the simulation of compression tests and in determining the modulus of elasticity
of agricultural grains [28]. In this approach of elastic modeling, the energy loss through
contact points of particles is not taken into consideration.

The elastic–Plastic contact model contrasts with the elastic model where the plastic
component introduces a plastic deformation about the contact area, thereby simulating the
energy dissipation [32]. An adaptive model of elastic-ideal plastic behavior of particles was
introduced by Thornton [33] and is a more advanced and realistic extension of the Hertzian
elastic model. This model can be applied to dry granular material such as crop seeds with
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elastic behavior in the normal direction [34]. This model is also suitable for the contact
mechanics study of soft biological material under high-impact velocity [35].

The visco-elastic contact model consists of a spring and a dashpot where the spring
represents linear elastic behaviors, and the dashpot reflects nonlinear viscous dissipa-
tion behaviors. This model has been validated by the results of impact experiments of
seeds [36,37]. This model provides the best solutions to energy dissipation mechanisms at
impact velocities below the critical value for wet rapeseeds and soft biological materials
such as apples and tomatoes [38]. This model is also found to be suitable in the case of
rapeseed, which has considerable hardness [34].

3.1.2. Tangential Force Model

The linear elastic-frictional model, also known as the linear spring Coulomb model,
combines the linear elastic spring and friction coefficient in describing static and dynamic
tangential behaviors [39]. This model can determine tangential contact force during particle
sliding as well as non sliding. This model was found to be suitable for simulating the
pneumatic separation of bagasse particles [40].

The Mindlin–Deresiewicz model was developed based on the Mindlin–Deresiewicz
contact theory, which calculates the entire past loading history, the initial state of loading,
and the instantaneous relative rates of the force change for the tangential force [41]. Vu-
Quoc and Zhang [32] improved and extended the theory by elaborating the tangent force-
displacement model for the elastic frictional contact of particles. The model can be applied
to many special and complex cases of loading histories, and it has been used for the
simulation of soybean-inclined chute interaction [42].

3.1.3. Adhesion and Cohesion Model

The Johnson–Kendall–Roberts (JKR) model, a nonlinear model, incorporates the adhe-
sive forces in the Hertzian contact area while considering stored elastic energy and surface
energy losses [43]. The adhesive inter-particle forces are mainly related to the van der
Waals force or electrostatic force. However, other inter-particle forces, such as liquid bridge,
a result of surface tension force and capillary pressure, may also be simulated in behavior
studies of the particles having a size in the range of millimeters [44,45]. The model can
effectively analyze various situations of adhesion. Anand et al. [46] simulated particle
discharge from a container with the adhesion resulting from the liquid bridge in the contact
model. It is suggested that the cohesive behavior of the particles needs to be accounted
for in the case of biological material with a higher level of moisture content. Therefore,
this model offers a good solution in the studies of moist soil–tool interaction, plant–root
interaction, and grains at high moisture levels.

Cohesive materials are often modeled using the bonded particle model (BPM), which
approximates the mechanical behavior of continuum material by representing it as a
cemented granular material as proposed by Potyondy and Cundall [47]. The bonds of finite
stiffness exist at contacts to carry forces and moments. A bond can deform and will break
if the threshold of force or moment exceeds the specified strength of the bond. In recent
years, this model has shown its ability to simulate biological material such as soil, leaves,
stems, and stalks in the applications of tillage [48] and harvester [49].

3.2. Model Parameters

DEM modeling of SPMI systems mainly involves the study of soil interaction with bio-
logical plant materials and machine components. Specifically, soil–machine, soil–plant, and
plant–machine interactions are commonly considered. Model parameters are categorized
as material parameters and interaction parameters [50]. Material parameters deal with the
physical and mechanical properties of a particle such as its shape, size, density, elasticity,
plasticity, shear modulus, Poisson’s ratio, and yield strength. Interaction parameters deal
with the static and dynamic properties of an interaction system such as adhesion, viscous
damping, and coefficients of static and rolling friction [37,51].
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DEM has been successfully applied to soil–machine interactions in agriculture (e.g., [52–54]).
The major challenges of using DEM involve determining the appropriate contact model and
associated parameters for agricultural soils so that the model reflects the behaviors of the
biological material. Model parameters of the machine component including density, shear
modulus, and Poisson’s ratio of various types of metal materials such as steels, cast irons,
and alloys are relatively straightforward to measure and implement in DEM simulations.
There were a few studies focused on selecting appropriate contact models for agricultural
soils (e.g., [55–58]). The sensitivity of model parameters on model behaviors has been
studied [59,60], providing information for determining which model parameters should
be calibrated. Numerous methods were used for calibrations with the direct measure-
ment of bulk material being the most-used approach as described above. For example,
Asaf et al. [61], Ucgul et al. [57], and Tamás and Bernon [62] simulated the cone penetration
test to calibrate the soil shear modulus and soil-to-soil bond stiffness. Zhang et al. [49]
performed the angle of repose test to calibrate soil–soil contact parameters including the
coefficient of static friction and rolling friction coefficient. Similar studies have been carried
out to calibrate the contact parameters in grain–grain, soil–residue, and soil–grain interac-
tions [50,63–65]. Most existing models employed the contact models implemented in DEM
software. These contact models may not be the best for modeling agricultural soils. For
example, Sadek and Chen [59] used an existing contact model and found that their discrete
element model underestimated soil movement resulting from a blade, possibly attributable
to the contact model used. Researchers are encouraged to explore some user-defined con-
tact models. Inappropriate contact models could be one of the reasons for discrepancies
between simulations and measurements reported by many other researchers. In summary,
robust contact models need to be developed, and appropriate model parameters need to be
determined for successful DEM applications in SPMI system simulations.

4. Applications of DEM in Soil–Plant–Machine Interaction Studies

SPMI systems can be found in all major field operations of agriculture production
ranging from tillage to harvesting. Common biological plant materials considered in SPMI
systems include leaves, roots, grain, fruit, residue, and whole crop plants depending on
the specific field operation. Taking tillage operation as an example, a soil-engaging tool
working in conservation tillage systems, where 30 to 100% of crop residue is left in the fields,
forms a system of soil–residue–machine interactions. SPMI can be depicted as a system
with inputs and outputs, in other words, variables and measurements [66]. The variables
are mainly initial soil conditions, tool configurations, crop information, and operating
conditions. The measurements may include final soil and plant conditions and machine
response depending on the applications. The machine response includes forces and stresses,
energy requirements, and wear. Therefore, the investigation of SPMI can be generalized
as the study of the dynamic relationships between the variables and the measurements
considering various relevant factors and how these variables ultimately affect soil-, plant-,
and machine-related measurements. Using the tillage process as an example again, dynamic
characteristics of the interactions mainly include contact forces (e.g., tool draft, vertical,
and lateral forces), displacement (e.g., soil movement and residue incorporation), and
size reduction (e.g., soil pulverization and residue cutting). The importance of gaining a
comprehensive understanding of soil and plant dynamics involved in SPMI systems is
twofold: (1) It forms the foundation of the contemporary discipline of soil dynamics; (2) It
is a prerequisite for designing high-performance agricultural machinery to attain desired
dynamic characteristics in consideration of real-time existence of biological plant materials.

The dependence among the variables significantly increased the complexity of the
investigation into SPMI systems. The effect of working speed depending on soil conditions
is a good example when studying the affecting variables of draft force in tillage. Draft
force is widely known to have a quadratic relationship with a tool’s working speed [67].
However, the draft–speed relationship depends on the soil moisture content in which the
polynomial curve transforms from a concave shape to a convex shape as the moisture
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content increases [68]. Furthermore, the dependence on moisture content responds in an
opposite direction in the context of clay soil [69]. The relationship between draft force
and speed has also been reported as linear, parabolic, and using exponential functions
under different experimental conditions [70]. To the best of the authors’ knowledge, there
is no well-established theory or robust model that could explain all these interactions.
Furthermore, the heterogeneous nature of soil and plant materials and their nonlinear
behaviors, combined with the large displacement and nonuniform distribution in motion,
cause significant challenges in using continuum-based numerical methods. Thus, DEM is
well positioned to simulate machine performance in field operations involving complex
soil and plant materials.

Previous studies reported the implementation of DEM in examining soil–crop, soil–residue,
or soil–seed interactions along with the interface of different implements [49,63,65,71–75]. For
example, Zeng et al. [65] simulated the emergence dynamics of soybean seedlings through
the soil and quantified cotyledon–soil dynamic characteristics including soil resistance,
number of the contact points between soil particles and cotyledon, and soil kinetic energy.
The soil–seed simulation of seedling emergence and growth is valuable in providing
guidance and recommendations for seedbed preparation and tillage applications [76,77].
Detailed discussion and review of applying DEM in SPMI studies are provided in the
following sections according to their applicable field operations.

4.1. Tillage

Tillage is one of the most important and energy-intensive processes in farming. The
optimization of the tillage tool could improve energy efficiency and working performance.
DEM has demonstrated potential applications in tillage tool development in terms of
soil cutting forces and soil behavior investigation. Many studies have simulated the
performance of different tillage tools at different soil and field conditions, as well as
at different design and operating parameters. In certain complex situations, coupling
DEM with other numerical simulation methods could improve the efficiency and accuracy
of the model. For example, a problem involving structural analysis, fluid dynamics,
and soil dynamics is typically solved by coupling FEM-CFD-DEM for designing more
efficient and lightweight tillage implements. However, the consideration of heterogeneity
and different compaction levels in the soil profile over the depth of the field was hardly
included in previous studies. Researchers have also found that soil parameters such as
soil porosity and particle shape are the most challenging part of parameter determination.
The model parameters of soil, plant, and machine components used in SPMI studies
applicable to tillage are presented in Table 1. Common tillage implements simulated
include sweep (Figure 5a), subsoiler (Figure 5b), wide cutting blade (Figure 5c), moldboard
plow (Figure 5d), rotary blade (Figure 5e), and the inclusion of straw (Figure 5f).

Table 1. Range of parameters used for soil–plant–machine interaction in tillage applications.

Parameters Soil a–k Plant j,k
1 Machine a–k

Particle size (mm) 2.5–30 5 -
Particle density (kg m−3) 1346–2680 0.227–0.24 7800–7865

Shear modulus of particle (MPa) 1–60 1 70,000–79,000
Poisson’s ratio of particle 0.3–0.4 0.4 0.25–0.35
Coefficient of restitution 0.01–0.6 0.28–0.3 0.01–0.5

Coefficient of friction 0.36–0.77 0.3–0.54 0.31–0.7
Coefficient of rolling friction 0.08–0.6 0.01–0.05 -

Note: Superscripts indicate the source of data: a [56]; b [78]; c [79]; d [80]; e [81]; f [82]; g [48]; h [83]; i [71]; j [75];
k [84]; Subscripts indicate the materials included: 1 Straw.
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(c) wide cutting blade [86]; (d) moldboard plow [79]; (e) rotary blade [75]; and (f) straw-sweep [83].

Several studies have focused on soil–sweep tool interactions using DEM. Ucgul
et al. [56] simulated the draft force, vertical force, and furrow profile of a sweep tool.
They found that the simulation with a top layer consisting of smaller particles provided a
more accurate representation of soil flow and furrow profile with a doubled computation
time. Tamas et al. [87] explored the working performance of a sweep in terms of soil
loosening, draft force, and energy requirement. The results showed a very good match
between the measured and calculated draft force. The highest level of loosening was ob-
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tained for the sweep at a rake angle of 45◦. The tillage draft and vertical forces of the sweep
were measured by Ucgul et al. [56]. The results showed that the hysteretic spring contact
model, which considered both the adhesion and cohesion forces, improved the prediction
accuracy of the draft and vertical force. Tekeste et al. [82] investigated the effects of different
sweep design parameters on geometric wear dimensional loss, which could affect soil–tool
dynamics including draft force, vertical force, and soil upward failure distance. The Hertz–
Mindlin with parallel bond model was used in the study. The results showed that the
carbide treatment of the sweep was effective in reducing wear, improving longevity, and
maintaining soil tilth quality performance of the tool. The soil–tool interaction in the sweep
cultivation process was studied by Milkevych et al. [88], who found that the maximum
longitudinal displacement of soil occurred at the tip of the sweep and decreased rapidly to
zero along the transverse direction.

Identification of the soil behavior as it is subjected to subsoiling and the mechanism
of subsoiler–tool interaction are vital to study using DEM simulation. Hang et al. [89]
investigated the effect of tine spacing on soil disturbance in the search for optimal tine
spacing. Hang et al. [78] explored the micromovement and the macro-disturbance behaviors
of the soil under the impact of subsoilers. The results showed that the forces exerted on soil
particles increased as the subsoiler was operated in deeper soil layers, thereby resulting in
a higher level of disturbance. Zhang et al. [85] used Hertz–Mindlin with the JKR contact
model and Hertz–Mindlin with the bonding model to represent tillage layer and plow pan
layer, respectively.

Some investigators have also used DEM simulation to study the interaction between
soil and a wide cutting blade. The energy ratio, strain energy, body energy, deformation, and
elasticity of grains were explored by Asaf et al. [61]. The results showed that the magnitude
of friction energy was comparable to the magnitude of total energy. Kotrocz et al. [90]
observed that the penetration resistance increased as the cross-sectional area of the blade
decreased. Obermayr et al. [91] simulated the draft force of a straight blade moving at a
constant speed through a cohesionless granular material. The results showed that the draft
force increased as the blade width and cutting depth increased.

Recently, some researchers used DEM to simulate the moldboard plow improvement
process. Ucgul et al. [79] carried out soil bin testing to measure the forces and soil movement
and developed a DEM model based on a linear cohesion integrated hysteretic spring contact
model accordingly. The results showed that the DEM model could reproduce the soil bin
test results. In another study, Ucgul et al. [80] carried out full-scale modeling of a moldboard
plow and compared the soil movement and tillage forces with the measured data from a
field test.

The performance of rotary tillage implements in covering rice straw under the soil
surface was analyzed by Zhang et al. [75]. Four different soil particle radii viz. 5 mm,
10 mm, 15 mm, and 30 mm along with straw composed of a 5 mm radius were incorporated
into the model using the Hertz–Mindlin with bonding contact model. They proposed the
optimized structural parameters for the rotary blade based on the simulation results. The
relative errors between the simulation and field test for different parameters were less
than 10%.

The soil–oat-straw-sweep interaction study was carried out by Zeng and Chen [83],
in which the virtual field consisted of a top straw layer and a soil layer underneath with
parallel bond contact model. Model parameters of ball stiffness and clump stiffness were
calibrated, and several parameters including soil and straw moving area, residue cover,
and kinetic energy were monitored. The simulation results were compared with the lab
test results, which showed good agreement with an average relative error of 7.3%.

In applications of DEM modeling in tillage, the existing work focuses more on shank-
type soil-engaging tools, such as sweeps and moldboard plows, than on passive rotary
tools, such as disc plows and rotary vertical tillage tools. The main challenge is that it
is impossible to simulate the ground-driven feature of rotary tools in real life in DEM
modeling. The soil dynamic attributes mostly dealt with are more often soil cutting forces
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than soil disturbance characteristics, which are relatively more difficult to monitor using
DEM. In addition, considering crop residue as a part of a soil–tool/machine system requires
further study, as conservation tillage (with residue cover) is gaining more popularity.

4.2. Seeding and Planting

Soil and residue clogging into the delivery end of the soil-engaging tool or implement
is a major concern in the operation of seeding and planting machines. The clogging
would be exacerbated by the varying levels of residue cover and soil moisture that the
seeding and planting implement is usually dealing with [92]. It is also challenging to
prevent blockage and nonuniformity of the seed-metering device, which has significant
implications for yield and productivity. DEM could be a promising modeling tool to
simulate the performance of the seeding and planting machines working in various types
of soil and residue field conditions [93]. Many studies have focused on seed or seedling
dynamics inside the metering device, such as seed–hopper interaction (e.g., Figure 6a [94]).
However, seed–soil interaction is rarely studied; one such example is from Yan et al. [95] as
shown in Figure 6b. Soil clogging at the seed delivery end is quite frequent and could lead
to serious production losses. In addition, it has been observed during field operations that
seeds are often dislocated or misaligned at the time of delivery into the furrow. DEM could
be used to investigate the possibility of soil clogging, seed missing, and seed dislocation
during the operation. DEM studies on SPMI systems could help to optimize operational
and design parameters to minimize the above losses. Furthermore, to the best of the
authors’ knowledge, the study of soil–seedling–machine interaction in transplanters has
not yet been studied using DEM. In conclusion, an attempt has been made to elaborate the
applications of DEM for modeling different configurations of seed-metering devices and
planters at different soil conditions [84,96–99]. In addition to this, the model parameters
used for SPMI systems in the seeding and planting applications are presented in Table 2.

Table 2. Range of parameters used for soil–plant–machine interaction in seeding and planting applications.

Parameters Soil c–g Plant a–h
1–5 Machine a,c,e–g

Particle size (mm) 2–10 1–30 -
Particle density (kg m−3) 1380–2680 215–1280 7800–7900

Shear modulus of particle (MPa) 1–100 1–760 70,000–79,000
Poisson’s ratio of particle 0.2–0.39 0.2464–0.4 0.3–0.35
Coefficient of restitution 0.15–0.75 0.175–0.668 0.2–0.627

Coefficient of friction 0.1–0.9 0.0338–0.8 0.2–1.2
Coefficient of rolling friction 0.05–0.7 0.0021–0.0782 0.01–0.4

Note: Superscripts indicate the source of data: a [96]; b [64]; c [84]; d [77]; e [95]; f [49]; g [97]; h [100]; Subscripts
indicate the materials included: 1 Maize seed; 2 Wheat seed; 3 Soybean seed; 4 Root; 5 Sugarcane billet.
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Figure 6. DEM simulations of seeding and planting implements: (a) seed-metering process [94];
(b) soybean planting machine [95].

Li et al. [97] reported a DEM simulation study of the wheat seed movement in the
filling-in wheel type variable seed-metering device. The seed-filling performance with
different hole structures, filling postures, and vibration conditions were investigated.
Wang et al. [100] reported the study of a single-bud billet seed-metering device for sugar-
cane planting. Each billet of cylindrical shape was assembled using three spherical particles
with diameters ranging from 25 to 30 mm, and the Hertz–Mindlin (no-slip) contact model
was selected for the particle-to-particle and particle-to-boundary contact. Their DEM model
could predict the experimental results with a relative error of 6.67%.

Yan et al. [95] simulated the soybean planting process, which involves furrow opening,
seed dropping, covering, and compaction of the soil. A detailed analysis of the seed
position, furrow opening, and seed spacing at varying working speeds has been reported.
However, the authors did not report the contact model used in their simulation.

4.3. Fertilizing

A fertilizer applicator is used to apply the desired amount of fertilizer at a prede-
termined rate to crops and fields. Generally speaking, solid and liquid fertilizers, either
organic or mineral, are applied to the soil surface or into the soil at varying depths. In the
case of surface application, DEM simulation could be focused on the study of metering
device and carrier tube (Figure 7a). For example, fertilizer spreading pattern, mass flow
rate, and motion and agglomeration of fertilizer particles are suitable candidates for model
measurements. However, in the case of deep application, the interaction between the
fertilizer delivery tool and the surrounding soil should also be considered (Figure 7b). The
model parameters of soil, fertilizer, and machine components used in SPMI studies related
to fertilizer application are presented in Table 3.

Table 3. Range of parameters used for soil–fertilizer–machine interaction.

Parameters Soil a,d Fertilizer a–d
1–4 Machine a,c,d

Particle size (mm) 6–12 1.27–6 -
Particle density (kg m−3) 1357–2600 62·0–1630 1240–8000

Shear modulus of particle (MPa) 1–50 0.25–35.6 1300–72,700
Poisson’s ratio of particle 0.3–0.4 0.25–28 0.3
Coefficient of restitution 0.2–0.4 0.11–0.6 0.36–0.6

Coefficient of friction 0.4–0.66 0.3–0.65 0.32–0.7
Coefficient of rolling friction 0.18–0.3 0.01–0.15 0.04–0.18

Note: Superscripts indicate the source of data: a [101]; b [102]; c [103]; d [104]; Subscripts indicate the materials
included: 1 Ammonium phosphate; 2 Compound fertilizer; 3 Urea fertilizer; 4 Organic fertilizer.
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fertilizer collection box, 8: base fertilizer, 9: base fertilizer compartment; in the right image: 1: base
fertilizer, 2: starter fertilizer, 3: soil particles, 4: soil bin) [101].

Bangura et al. [102] studied fertilizer discharge characteristics including mass flow
rate, discharge uniformity, and falling velocity of two grooved-wheel metering devices
using DEM. Experimental trials were performed and compared with the simulation results,
which found that the relative errors were less than 10% for all the examined characteristics.
Lv et al. [105] simulated fertilizer spreaders with different structures and sizes using DEM.
A linear visco-elastic model was used to calculate the contact force between fertilizer
particles and spreaders.

Deep fertilization has been an increasingly popular choice for crop nutrient manage-
ment due to its efficient utilization by plants and volatility reduction of nutrients. Several
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studies have simulated deep application of different types of fertilizers including chemical-
granular, organic-granular, and chemical-liquid. The dual-band fertilizer application has
been experimentally studied and numerically simulated by Ding et al. [101]. Different
meter roller lengths, working speeds, and delivery tube spacings were considered in the
simulation. Yuan et al. [104] developed a screw augur with a paddle for mixing organic
fertilizer with soil during transportation, and DEM simulation was carried out using two
distinct contact models including the Hertz–Mindlin with JKR model for organic fertilizer
and the Hertz–Mindlin (no-slip) model for soil. The maximum relative error between the
simulation and experimental results was 8.95%.

4.4. Harvesting

Harvesting is a major and vital step in crop production as poor harvesting practices
and handling techniques of the product would lead to huge losses in the field. Furthermore,
poor design and inefficient mechanisms of harvesters would increase the drudgery and de-
crease the productivity of workers. Therefore, design improvement of critical components
of harvesters including cutting, collecting, separating, and cleaning systems plays an im-
portant role in ensuring a highly efficient and effective harvesting operation. FEM has been
successfully used for the structural design of harvesters to optimize the mechanical compo-
nents for better strength and durability performance. However, crop–machine interaction
needs to be examined for proper material handling in the harvester to increase operational
efficiency. It is thus suggested that the dynamic behavior of crop materials and their interac-
tion with harvesting machine components can be simulated using DEM [106–112]. Several
researchers have reported significant results of DEM modeling of grain crops (Figure 8a),
root crops (Figure 8b), and other plant materials including stalks (Figure 8c) and leaves
(Figure 8d) interacting with machines. The DEM parameters used in the literature for
soil–plant–machine interaction in harvesting applications are presented in Table 4.

Table 4. Range of parameters used for soil–plant–machine interaction in harvesting applications.

Parameters Soil d Plant b,d,e
1–5 Machine b,d

Particle size (mm) - 3 -
Particle density (kg m−3) 2600 380–1540 7800–7850

Shear modulus of particle (MPa) - 420 70,000–79,000
Poisson’s ratio of particle 0.5 0.25–0.4 0.3
Coefficient of restitution 0.123 0.21–0.5 0.1487–0.37

Coefficient of friction 0.3853 0.5–0.7587 0.5–0.6135
Coefficient of rolling friction 0.267 0.01–0.6187 0.25–0.3262

Note: Superscripts indicate the source of data: b [110]; d [113]; e [114]; Subscripts indicate the materials included
1 Rice straw; 2 Rice plant; 3 Citrus fruit stalks; 4 Taro plant; 5 Tobacco leaf.
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Grain crops are typically harvested with combine harvesters following several sequen-
tial operations including stem cutting, seed threshing, separation of grain, cleaning, and
conveying [108,109]. DEM simulation has been used to study performance parameters
of the thresher and baler, such as threshing rate, separation rate, and feeding dynamics.
However, other important parameters of the harvesting process such as straw plugging
rate and grain damage rate are rarely studied. Furthermore, the moisture content in straw
should be considered for accurate simulation. Wang et al. [110] simulated the threshing
process of rice including rice ear and stem. Rice leaves and secondary branches of the rice
ear were neglected. A rice stem is a hollow rod consisting of 93 particles bonded in a line. A
rachis is formed by bonding 62 particles in a line. The rice grains were attached to the rice
spikes through connection particles, not virtual bonds, to ensure that the bonds between
the rice stem particles are not destroyed while rice grains are being knocked down from the
spikes. Mao et al. [107] reported the modeling of a straw–grain separation process using
the bonded particle straw model (BSM) with elastic hollow cylindrical bonds. The model
was experimentally calibrated for compression, bending, stretching, and separation. It was
concluded that the grain particle shape and the moment of inertia of grain particles can be
accurately simulated with BSM.

Root crops such as potato, sweet potato, taro, ginger, onion, and carrot are widely
planted in the world. The harvesting of these crops has been a major concern due to its
high energy consumption and labor demand, as well as the poor working performance of
conventional harvesting machines. Typically, digging blades and conveyor systems were
used to collect and transport root crops to separation systems. Soil shear property and
compaction need to be studied in designing the digging blade and conveying mechanism.
In the case of the clamping and pulling mechanism, the microscopic properties of the
granular soil, clamping resistance, and soil resistance need to be taken into consideration
in the design process. Liu et al. [113] simulated the tiller taro harvesting process using
Hertz–Mindlin with a flexible bonding contact model. The parameters were calibrated
using a single-factor experiment with the Plackett–Burman method. Li et al. [115] designed
and simulated a belt-rod type self-propelled potato harvester. The soil separation mecha-
nism and its soil removal effectiveness were investigated by coupling DEM with the multi
body dynamics (MBD) method. The DEM model was developed using the Hertz–Mindlin
contact model with bonding. The model was validated with field experiments, and the
relative error between results was 3.81%.
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As discussed earlier, the harvesting mechanism design was usually based on the
physical properties of the crop harvested. Therefore, measuring and simulating the physical
and mechanical properties of various parts of crop plant are important for the efficient
design of the harvester. Wang et al. [111] developed a DEM model to simulate the bending
and shearing of citrus fruit stalks having a 3 mm diameter. The simulated mechanical
properties were in good agreement with the experimental results with relative errors of
less than 2%. In a similar type of study, Sadrmanesh and Chen [116] developed a model
to simulate the tensile behavior of the plant fiber. The model was constructed of bonded
spherical particles. They suggested that the fiber should be modeled with an adequate
number of particles and bonds to have a good particle assembly, which can represent the
solid nature of the plant fiber. In another such study, the tensile behavior of tobacco leaves
was simulated by Tian et al. [114], where the tensile fracture was found to be random in the
simulation, similar to real-world observations.

5. Opportunities and Challenges
5.1. Emerging Fields

DEM modeling has been used to study the mechanics of granular material interac-
tions in agriculture productions. The presence of fluids such as air and water in such
granular systems cannot be avoided. Thus, multiphase system simulation coupling parti-
cle mechanics and fluid dynamics is necessary to obtain accurate and realistic modeling
results. The potential of this method also offers interdisciplinary research opportunities
involving soil science, irrigation engineering, soil and water conservation engineering, farm
machinery, fluid power engineering, food process engineering, and much more. Among
many numerical methods, FEM, CFD, and MBD are the most widely used methods for
kinematics, dynamic, and thermal studies of particle–fluid systems. In recent years, many
researchers have successfully coupled these methods with DEM and solved complex engi-
neering problems in agriculture [117–121]. In a DEM–CFD coupled model, the particle flow
characteristics are assigned in the DEM model, and associating fluid flow field is solved
in CFD. Thus, kinematic and physical properties assigned to each particle of the fluid are
linked to the corresponding grid in DEM. DEM has limitations while simulating motion
dynamics of tools such as a rotary blade, conveyor belt, etc. Meanwhile, MBD offers an
accurate solution to simulate the tool dynamics in soil–tool interaction. Thus, a DEM–MBD
coupled model offers solutions to simulate complex tool motion and predict soil reaction
forces on the tool.

In recent years, virtual rapid prototyping has gained interest in modern manufacturing
industries. It involves the construction and testing of a realistic and interactive design,
the so-called e-design, which enables simulations of the product performance through 3D
visual effects [122]. This e-design may include the coupling of CAD, CFD, FEM, and DEM.
For example, in 3D printing rapid prototyping of fiber-reinforced polymer composites,
CAD was used to define the shape and physical characteristics of the product; FEM was
used to study the polymer melt flow and thermal expansion of the material during the
operation; CFD was utilized to simulate the flow characteristics, thermal stress, and heat
transfer mechanism of the product; and DEM was used to simulate the fiber–fiber and
fiber–nozzle interactions, which together helped to predict nozzle clogging, fiber breakage,
and fiber misalignment during the operation [123–125]. Similar coupled virtual rapid
prototyping techniques could be used in the study of SPMI dynamics and assist in the
development of innovative and efficient agricultural implements.

5.2. Future Challenges

It is noted that DEM is a popular and widely accepted tool for simulating the mechani-
cal behaviors of granular materials at the microscopic level. However, in many applications
such as the modeling of soil, a huge number of particles need to be generated, and their
interaction matrices need to be solved in the DEM model to produce a highly accurate
and real-time behavior of the particle system. This leads to the complex computation
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of the model and incurs a significantly high cost of computation, which in turn limits
the application of DEM in complex engineering problems. Attempts have been made to
improve the computational efficiency of DEM, for example, by using optimized model-
ing algorithms [126], parallel computing with multicore processors [127], and multiscale
modeling approaches [128]. The multiscale approach could provide more realistic and
accurate solutions in an efficient way by using coupling continuum (e.g., FEM and CFD)
and discontinuum (DEM) numerical simulation methods to take advantage of different
methods in handling different scales of physical phenomena, i.e., discontinuum-based
larger scale phenomena and continuum-based local scale phenomena. However, multiscale
modeling typically lacks the mechanism of uncertainty quantification. Microstructural
unpredictability, inherent stochasticity, lack of prediction of microstructural phenomena,
and loss of information through discrete-to-continuum upscaling have been identified as
the main sources of uncertainty in discrete-continuum multiscale modeling [129]. Thus,
the development of uncertainty quantification methods is necessary to investigate the
sensitivity of model responses to variability in the microstructure at different levels. In
addition, it is necessary to evaluate the uncertainty propagation through the multiscale
model chains [130,131].

It is observed from the literature review that most of the previous studies either directly
adapted published values or relied on calibration in determining model parameters. In
some instances, the model parameters have been selected from the literature based merely
on whether the experimental conditions fit into their work [71,74,75,97,110]. As a result,
simulation accuracy varied between the referred and proposed studies [96,101]. As for
calibration, different calibration methods and experimental procedures are commonly being
followed for the same material parameter, which clearly indicates the lack of a universal
calibration procedure for specific material parameters. Some researchers also argued in
their review that DEM modeling lacks a widely accepted robust calibration procedure. It is,
thus, an urgent necessity to define the universal calibration method for the determination
of DEM model parameters.

6. Conclusions

This paper reviews DEM modeling and simulation of agricultural field operations
mainly focusing on the interactions at the interface of soil, plant, and machine. The
fundamentals, methodology, and assumptions of DEM modeling as well as its applications
in different SPMI systems including tillage, seeding and planting, fertilizing, and harvesting
are presented. Various calibration strategies in DEM modeling are also summarized in
this paper. It also discusses the selection and determination of different contact models
and their parameters. It was observed that DEM modeling can be effectively used to
study SPMI systems including soil–machine, soil–plant, and plant–machine interactions.
Soil–machine interaction studies have helped to optimize the design parameters of the
machine. Tillage tools including sweep, subsoiler, moldboard plow, and blades were
modeled and simulated using DEM. The effects of operational parameters and tool design
parameters on dependent parameters such as draft force, vertical force, soil disturbance,
and energy consumption have been well documented. The plant–machine interaction
simulations can assist in visualizing real-time operation and behavior of the plant materials
to optimize the process parameters of the machines. Taking harvesting application as
an example, previous studies revealed the effects of harvesting mechanisms on material
handling, cutting forces, effectiveness, and efficiency of the harvesters. In the fields of
fertilizing and seeding application, the particle flow dynamics of fertilizers and seeds
through machine components until their delivery and the interaction of these particles
with the soil were reported in the literature. The soil–plant interaction, commonly found in
tillage and seeding applications and in the process of plant germination and emergence,
was also reported in the literature. In conclusion, besides providing insight into the micro-
and macro-behavior of soil, machine, plants, and their combinations, DEM simulation
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of SPMI systems assists the design engineer in enhancing efficiency and effectiveness in
performing agricultural field operations.
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by centrifugal spreader. Agronomy 2021, 11, 247. [CrossRef]

104. Yuan, Q.; Xu, L.; Ma, S.; Niu, C.; Yan, C.; Zhao, S. The effect of paddle configurations on particle mixing in a soil-fertilizer
continuous mixing device. Powder Technol. 2021, 391, 292–300. [CrossRef]

105. Lv, H.; Yu, J.; Fu, H. Simulation of the operation of a fertilizer spreader based on an outer groove wheel using a discrete element
method. Math. Comput. Model. 2013, 58, 842–851. [CrossRef]

106. González-Montellano, C.; Ramírez, A.; Fuentes, J.M.; Ayuga, F. Numerical effects derived from en masse filling of agricultural
silos in DEM simulations. Comput. Electron. Agric. 2012, 81, 113–123. [CrossRef]

107. Mao, H.; Wang, Q.; Li, Q. Modelling and simulation of the straw-grain separation process based on a discrete element model with
flexible hollow cylindrical bonds. Comput. Electron. Agric. 2020, 170, 105229. [CrossRef]

108. Miu, P.I.; Kutzbach, H.D. Modeling and simulation of grain threshing and separation in threshing units—Part I. Comput. Electron.
Agric. 2008, 60, 96–104. [CrossRef]

109. Miu, P.I.; Kutzbach, H.D. Modeling and simulation of grain threshing and separation in axial threshing units—Part II. Comput.
Electron. Agric. 2008, 60, 105–109. [CrossRef]

110. Wang, Q.; Mao, H.; Li, Q. Modelling and simulation of the grain threshing process based on the discrete element method. Comput.
Electron. Agric. 2020, 178, 105790. [CrossRef]

https://doi.org/10.1016/j.jterra.2018.11.001
https://doi.org/10.1016/j.biosystemseng.2019.01.009
https://doi.org/10.1016/j.compag.2019.105021
https://doi.org/10.1016/j.still.2022.105375
https://doi.org/10.1016/j.still.2007.08.009
https://doi.org/10.1016/j.still.2013.09.001
https://doi.org/10.1016/j.still.2018.05.017
https://doi.org/10.1016/j.biosystemseng.2017.03.008
https://doi.org/10.1016/j.compag.2016.04.023
https://doi.org/10.1016/j.jterra.2011.08.003
https://doi.org/10.3923/jps.2008.43.51
https://doi.org/10.1016/j.apt.2021.03.002
https://doi.org/10.3390/agriculture12091464
https://doi.org/10.3390/agriculture13010023
https://doi.org/10.1016/j.compag.2022.107048
https://doi.org/10.13031/trans.13055
https://doi.org/10.3390/agriculture12070983
https://doi.org/10.1016/j.compag.2018.06.044
https://doi.org/10.1371/journal.pone.0235872
https://doi.org/10.3390/agronomy11020247
https://doi.org/10.1016/j.powtec.2021.06.022
https://doi.org/10.1016/j.mcm.2012.12.017
https://doi.org/10.1016/j.compag.2011.11.013
https://doi.org/10.1016/j.compag.2020.105229
https://doi.org/10.1016/j.compag.2007.07.003
https://doi.org/10.1016/j.compag.2007.07.004
https://doi.org/10.1016/j.compag.2020.105790


Agronomy 2023, 13, 1260 23 of 23

111. Wang, Y.; Zhang, Y.; Yang, Y.; Zhao, H.; Yang, C.; He, Y.; Wang, K.; Liu, D.; Xu, H. Discrete element modelling of citrus fruit stalks
and its verification. Biosyst. Eng. 2020, 200, 400–414. [CrossRef]

112. Zhao, Z.; Huang, H.; Yin, J.; Yang, S.X. Dynamic analysis and reliability design of round baler feeding device for rice straw
harvest. Biosyst. Eng. 2018, 174, 10–19. [CrossRef]

113. Liu, W.; Zhang, G.; Zhou, Y.; Liu, H.; Tang, N.; Kang, Q.; Zhao, Z. Establishment of discrete element flexible model of the tiller taro
plant and clamping and pulling experiment. Adv. Appl. Technol. Plant Prot. Sens. Model. Spray. Syst. Equip. 2023, 257, 16648714.

114. Tian, Y.; Zeng, Z.; Gong, H.; Zhou, Y.; Qi, L.; Zhen, W. Simulation of tensile behavior of tobacco leaf using the discrete element
method (DEM). Comput. Electron. Agric. 2023, 205, 107570. [CrossRef]

115. Li, Y.; Hu, Z.; Gu, F.; Wang, B.; Fan, J.; Yang, H.; Wu, F. DEM-MBD Coupling Simulation and Analysis of the Working Process of
Soil and Tuber Separation of a Potato Combine Harvester. Agronomy 2022, 12, 1734. [CrossRef]

116. Sadrmanesh, V.; Chen, Y. Simulation of tensile behavior of plant fibers using the Discrete Element Method (DEM). Compos. Part A
Appl. Sci. Manuf. 2018, 114, 196–203. [CrossRef]

117. El-Emam, M.A.; Zhou, L.; Shi, W.; Han, C.; Bai, L.; Agarwal, R. Theories and applications of CFD–DEM coupling approach for
granular flow: A review. Arch. Comput. Methods Eng. 2021, 28, 4979–5020. [CrossRef]

118. Li, J.; Xie, S.; Liu, F.; Guo, Y.; Liu, C.; Shang, Z.; Zhao, X. Calibration and Testing of Discrete Element Simulation Parameters for
Sandy Soils in Potato Growing Areas. Appl. Sci. 2022, 12, 10125. [CrossRef]

119. Ma, H.; Zhou, L.; Liu, Z.; Chen, M.; Xia, X.; Zhao, Y. A review of recent development for the CFD-DEM investigations of
non-spherical particles. Powder Technol. 2022, 412, 117972. [CrossRef]

120. Rodriguez, V.A.; Barrios, G.K.P.; Bueno, G.; Tavares, L.M. Coupled DEM-MBD-PRM simulations of high-pressure grinding rolls.
Part 1: Calibration and validation in pilot-scale. Miner. Eng. 2022, 177, 107389. [CrossRef]

121. Tang, Z.; Gong, H.; Wu, S.; Zeng, Z.; Wang, Z.; Zhou, Y.; Fu, D.; Liu, C.; Cai, Y.; Qi, L. Modelling of paddy soil using the CFD-DEM
coupling method. Soil Tillage Res. 2023, 226, 105591. [CrossRef]

122. Zhang, M.; Sui, F.; Liu, A.; Tao, F.; Nee, A. Digital twin driven smart product design framework. In Digital Twin Driven Smart
Design; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–32.

123. Yang, D.; Wu, K.; Wan, L.; Sheng, Y. A particle element approach for modelling the 3D printing process of fibre reinforced polymer
composites. J. Manuf. Mater. Process. 2017, 1, 10. [CrossRef]

124. Zhang, H.; Zhang, L.; Zhang, H.; Wu, J.; An, X.; Yang, D. Fibre bridging and nozzle clogging in 3D printing of discontinuous
carbon fibre-reinforced polymer composites: Coupled CFD-DEM modelling. Int. J. Adv. Manuf. Technol. 2021, 117, 3549–3562.
[CrossRef]

125. Li, X.; Du, Y.; Liu, L.; Mao, E.; Wu, J.; Zhang, Y.; Guo, D. A rapid prototyping method for crop models using the discrete element
method. Comput. Electron. Agric. 2022, 203, 107451. [CrossRef]

126. Podlozhnyuk, A.; Pirker, S.; Kloss, C. Efficient implementation of superquadric particles in Discrete Element Method within an
open-source framework. Comput. Part. Mech. 2016, 4, 101–118. [CrossRef]

127. Shigeto, Y.; Sakai, M. Parallel computing of discrete element method on multi-core processors. Particuology 2011, 9, 398–405.
[CrossRef]

128. Li, M.; Yu, H.; Wang, J.; Xia, X.; Chen, J. A multiscale coupling approach between discrete element method and finite difference
method for dynamic analysis. Int. J. Numer. Methods Eng. 2015, 102, 1–21. [CrossRef]

129. Oden, J.T. Adaptive multiscale predictive modelling. Acta Numer. 2018, 27, 353–450. [CrossRef]
130. Tallman, A.E.; Swiler, L.P.; Wang, Y.; McDowell, D.L. Uncertainty propagation in reduced order models based on crystal plasticity.

Comput. Methods Appl. Mech. Eng. 2020, 365, 113009. [CrossRef]
131. Wang, Y.; McDowell, D.L. Uncertainty quantification in materials modeling. In Uncertainty Quantification in Multiscale Materials

Modeling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–40.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.biosystemseng.2020.10.020
https://doi.org/10.1016/j.biosystemseng.2018.06.014
https://doi.org/10.1016/j.compag.2022.107570
https://doi.org/10.3390/agronomy12081734
https://doi.org/10.1016/j.compositesa.2018.08.023
https://doi.org/10.1007/s11831-021-09568-9
https://doi.org/10.3390/app121910125
https://doi.org/10.1016/j.powtec.2022.117972
https://doi.org/10.1016/j.mineng.2021.107389
https://doi.org/10.1016/j.still.2022.105591
https://doi.org/10.3390/jmmp1010010
https://doi.org/10.1007/s00170-021-07913-7
https://doi.org/10.1016/j.compag.2022.107451
https://doi.org/10.1007/s40571-016-0131-6
https://doi.org/10.1016/j.partic.2011.04.002
https://doi.org/10.1002/nme.4771
https://doi.org/10.1017/S096249291800003X
https://doi.org/10.1016/j.cma.2020.113009

	Introduction 
	Discrete Element Method 
	Principles 
	Calibration Approaches 
	Implementation 

	Fundamental Studies of DEM in Soil–Plant–Machine Interactions 
	Contact Models 
	Normal Force Model 
	Tangential Force Model 
	Adhesion and Cohesion Model 

	Model Parameters 

	Applications of DEM in Soil–Plant–Machine Interaction Studies 
	Tillage 
	Seeding and Planting 
	Fertilizing 
	Harvesting 

	Opportunities and Challenges 
	Emerging Fields 
	Future Challenges 

	Conclusions 
	References

