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Abstract: A deep learning methodology was utilized to predict the bulb weights of garlic and onions
in the Jeolla Province of Korea. The Korea Rural Economic Institute (KREI) operates the Outlook &
Agricultural Statistics Information System (OASIS) platform, which provides actual measurements of
garlic and onions. We trained the Neural Prophet (NP) lagged time-series model using this data. The
NP model effectively handles lagged variables and their covariates by inserting a hidden layer. Our
results indicate that the NP model performed with around 5% mean absolute error in predicting bulb
weights, with a gap of 3.3 g and 4.7 g with average weights of 63.7 g and 129.9 g for garlic and onions,
respectively. This experimental research was based on only three years of measurement data. Hence,
the gap between observed and predicted data can be reduced by accumulating more measurement
data in the future.

Keywords: deep learning; Neural Prophet; bulb weight prediction; agricultural production; measure-
ment data

1. Introduction

Predicting crop production provides crucial information for policymaking. When
an oversupply is anticipated, the government can take preemptive actions to prevent
price collapses or encourage farmers to adjust production levels or switch to alternative
crops. On the other hand, if a supply shortage is expected, temporary import expansion or
government purchase policies may be necessary. Garlic and onions, which are particularly
sensitive to climate change and prone to price fluctuations, are essential ingredients in
Korean cuisine. Their demand remains stable as they are consumed both at home and in
restaurants. Proactive forecasting for these sensitive crops can contribute to supply stability,
helping to inform policy decisions.

Foreign agricultural agencies conduct annual field surveys of major crops. The US
National Agricultural Statistics Service (USDA-NASS) [1] investigates corn, soybeans,
cotton, winter wheat, and potatoes through local field surveys and predicts their production.
The NASS estimation program, which involves farm-level and objective yield surveys based
on field measurements at key production sites, derives yield forecasts. Collected stage-
specific measurement data is used for yield prediction through mathematical models [2].
The Belgian Statistical Agency utilizes a crop growth monitoring system to predict the
production of six major crops. The model uses various information, such as weather,
soil, and remote sensing, to predict yield [3]. In this way, major foreign agencies aim
to contribute to supply stability by predicting crop production through field surveys of
sensitive crops.

Since 2020, the Korea Rural Economic Institute (KREI) has been conducting field
surveys of crops in each province. The measured data are used to predict the production
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volume for the current year, and various studies have been presented for this purpose. Us-
ing growth-stage field surveys and meteorological information, Kim and Kim [4] predicted
the bulb weight of onions. In particular, using a multilevel model, the predictive power
of onion bulb weight was increased by considering the correlation between onion growth
indicators. The researchers implemented a statistical prediction, and the results demon-
strated performance with less than a 10% prediction error. Kang [5] used a spatial panel
model to analyze the impact of climate change on garlic and onion yields. Meteorological
factors significantly impact crops, especially with strong spatial dependencies. Moon and
Jung [6] improved the prediction of yields by using onion actual measurement data and
meteorological factors. These previous studies predicted yields per unit area via regression
analysis using growth surveys and meteorological information.

Recently, deep learning-based prediction models have been applied in various fields.
Studies have examined the impact of sentiment indices based on deep learning in the
agricultural market. Soon and Kim [7] used an artificial-neural-network (ANN) language
model to collect real-time African swine fever news, create a sentiment index, and analyze
the impact of African swine fever on meat prices via an autoregressive lag distribution
model (ARDL). Cho et al. [8] derived an onion sentiment index from articles related to
onions before sowing. By incorporating the onion sentiment index into an onion supply
model, they analyzed the impact of changes in the onion sentiment index on the onion
market. These studies indexed existing news through sentiment analysis using neural
networks. Therefore, production for the current year can be predicted by applying ANNs
to measurement data. Recently, Ali et al. [9] claimed that smart farming techniques enhance
agricultural productivity and decision-making while improving yields and reducing costs
in sustainable crop production systems. Kaur et al. [10] focus on the importance of crop
yield prediction in agriculture and its role in promoting sustainable agricultural practices.
Remote sensing offers an efficient and cost-effective solution for measuring key agricultural
parameters, such as soil moisture levels. However, retrieving soil moisture content from
coarse-resolution datasets, particularly microwave datasets, is challenging. The develop-
ment of data sourcing and management is a crucial step toward implementing sustainability
and precision in agriculture. Technological advancements enable data collection at a low
cost [11]. These technological advancements contribute to more efficient and sustainable
agricultural practices, benefiting both farmers and policymakers.

The current study predicts the final production of garlic and onions by inputting
the actual measurement data into the Neural Prophet Autoregressive Exogenous-Variable
(NP-ARX) model. The NP-ARX model enhances predictive power in various sectors. Based
on three years of measurement data from the KREI, the Neural Prophet’s lag model was
used to predict the bulb weight of harvested crops. Through this study, it is expected that
the prediction accuracy of the final yield of garlic and onions using measurement data can
be improved and applied to existing economic models. In addition, by utilizing our results,
we aim to contribute to supply stability by preemptively predicting production, thereby
increasing the welfare of both farmers and consumers.

The rest of this paper is organized as follows. The analysis model and data are
described in Sections 2 and 3, respectively. The analysis is divided into explanations of the
“Neural Prophet Time-Series Prediction Model” and “Application of Garlic and Onion Bulb
Weight Prediction.” The estimation results are evaluated in Section 4. Finally, a summary
of the results and future improvements are discussed in Section 5.

2. Model
2.1. Main Features in Neural Prophet

Neural Prophet is an extension of the Prophet package, a time-series forecasting
package released by Facebook in 2017 [12], which not only applies a deep learning structure
but also enhances performance using an autoregressive network (AR-Net) that combines
feedforward ANNs with traditional autoregressive time-series models [13]. In Equation (1),
the first three independent variables (trend (T), seasonality (S), and events (E)) are included
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in the basic Prophet model, while the Neural Prophet adds the latter three components
(regressive (F), autoregressive (A), and lag (L)). The AR-Net is applied to interpret the
lag effects of independent variables, which is considered suitable for effectively handling
crop measurement data [13]. The six components in the Neural Prophet can be excluded
depending on the research design, and trend and seasonal components are assigned by
default. Considering the characteristics of crop growth, the occurrence of unforeseen events
or the impact of holidays on crop growth was insignificant. Otherwise, Fourier analysis
in the Neural Prophet, which decomposes the frequency of these components and helps
improve pure forecasting performance, was used to internally analyze trend, seasonality,
and event components [12].

Ŷ = T(t) + S(t) + E(t) + F(t) + A(t) + L(t) (1)

In the given equation, T(t) represents trend effects, S(t) represents seasonal effects,
E(t) represents event and holiday effects, F(t) represents regression effects, A(t) represents
autoregression effects for the future, and L(t) represents lag effects.

Generally, as the AR process becomes higher-dimensional, the model’s predictive
power improves, but the interpretability decreases. Moreover, lag variables are often
correlated with themselves and other independent variables. The Neural Prophet in
Figure 1b eases those issues by the AR-Net inserting hidden layers between the target
variable at the present time (p = 0) and the lagged dependent variables (p = 1~7) [14]. In
particular, the weights determined with the hidden layers decide whether to strengthen or
weaken certain connections, and the optimal weight values are derived through iterations
of the training process.
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Figure 1. Artificial-neural-network autoregressive structure. Source: Created by author. (a) AR(0):
Structure without hidden layers. (b) AR(p): Structure with hidden layers (H).

The AR-Net structure renders the lag factors of independent variables (L(t)) in the
prediction. The AR-Net comprehensively considers the set lag (lag p) and generates
additional independent variables for each p, enabling predictions for h steps ahead. For the
five independent variables, seven lag variables were created, and weights (wp) of their lag
factors were multiplied. The lag-reflected independent variables are likely to be correlated,
and the Neural Prophet is designed to separately construct the covariates (covariates, x) as
lag factors (L(t)) and influence the prediction. As demonstrated in Equation (2), the lag
factor becomes the sum of the influences given by the covariates of each lag up to p [13].
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Indeed, this advantage is not exclusive to the NP model; many deep learning architectures
share this benefit.

L(t) = ∑
x∈X

Lx
(
xt−1,xt−2,...,xt−p

)
, X ∈ RT×nl (2)

2.2. Neural Prophet Autoregressive Exogenous-Variable (NP-ARX) Model

The model used to predict the bulb weights of garlic and onions is presented in
Equation (3). To predict the bulb weight (Ŷ) two months later, six independent variables are
set: autoregressive term (Y), plant height (X1), leaf count (X2), leaf sheath length (X3), stem
diameter (X4), and leaf tip dying length (X5). Each independent variable reflects a lag of
up to seven periods (7-day window). Accordingly, each of the five independent variables
generates seven additional independent variables, resulting in a total of 47 independent
variables. For instance, the independent variables on April 15th (X) are used to predict the
bulb weight (Ŷ) on June 15th, two months later.

Ŷ =
7

∑
t=1

Y(t) +
7

∑
t=0

X1(t) +
7

∑
t=0

X2(t) +
7

∑
t=0

X3(t) +
7

∑
t=0

X4(t) +
7

∑
t=0

X5(t) (3)

The ANN structure applied to predict the bulb weight (Ŷ) is illustrated in Figure 2.
The measured data were used after SOFT1 normalization, and the loss function was set to
minimize the mean absolute error (MAE). The “SOFT1” normalization method adjusts the
minimum value to 0.1 and the 95th percentile to 1.0, which is effective for data with outliers.
This method was applied because the observed bulb weight of onions significantly exceeded
the average. The loss function refers to the criterion used to calculate the difference between
the actual and predicted values. It represents the degree of error for the model’s training
data, and the goal is to identify values that minimize the loss function as much as possible.
The optimizer used was AdamW [15], which is the default setting of the Neural Prophet,
and a total of four hidden layers were constructed, each with 10 dimensions, to predict the
bulb weight. The point where the loss function is minimized and the method of finding
this optimal point are called the optimizer. The optimizer is an algorithm that adjusts the
model’s parameters iteratively to minimize the loss function and improve the model’s
performance. Adam, a type of optimizer, is a combination of the first letters of Adaptive
GD and Momentum, two different optimizers. AdamW optimizer refers to the addition of
a weight decay method to the original Adam optimizer. In the context of gradient descent,
weight decay reduces the size of weights by a certain ratio when updating them, which
helps prevent overfitting. Additionally, the training was conducted with the following
settings: Batch size = 64, Epochs = 100, Learning rate = 0.1, Activation Function = ReLU,
and random seed = 456. One epoch refers to the entire training dataset passing through the
ANN once. Batch size is a unit that indicates how many parts the dataset is divided into for
one epoch. In this study, 1 epoch is composed of 64 batches, and the training was conducted
100 times. Learning rate, also known as the learning step, refers to the amount by which
the learning progresses to reach the optimal point. Activation functions are responsible for
transforming input values non-linearly, yielding output values. The input layer contains
six independent variables, and the additional seven lagged variables generated are not
presented in Figure 2. The independent variables input is calculated in the hidden layers,
which is often referred to as the “black box” area, where interpretation is not easy. Recently,
research has been actively conducted to address the black box problem using eXplainable
AI (XAI) to improve model interpretability [16].
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3. Data

We used the actual measurement data in the Agricultural Economic Research In-
stitute’s OASIS system (https://oasis.krei.re.kr/: Accessed on 09 December 2022). We
collected growth survey data for garlic and onions in Jeollado from 2020 to 2022. The garlic
cultivar used for the analysis was a warm-region species (Namdo, Dae-seo, Republic of
Korea), and the onion cultivar was a middle-aged species. The garlic varieties are classified
into warm-region and cold-region, and this study analyzes the main variety, the warm-
region species. The onion varieties are classified into early-maturing and middle-aged, and
this study analyzes the main variety, the middle-aged species. The application of method-
ology on each variety will be executed in further research. This study’s area was limited to
Jeollado (Jeollanam-do and Jeollabuk-do, Republic of Korea). The Jeolla Province is located
in the southeastern part of South Korea and is the main agricultural production region of
garlic and onions. Although the original data are differentiated up to the city and county
levels, we calculated the average values to create average growth data for Jeollado. A visual
explanation of the measured part of crops is presented in Figure 3, and the descriptive
statistics of the actual measurement data are reported in Table 1. Examination of the daily
actual measurement data revealed garlic growth had a maximum bulb weight of 120 g,
plant height of 89 cm, leaf count of 9, leaf sheath length of 42 cm, stem diameter of 22 mm,
and leaf tip dying length of 21 cm. For onions, the growth reached a maximum bulb weight
of 357 g, plant height of 91 cm, leaf count of 9, leaf sheath length of 22 cm, stem diameter of
26 mm, and leaf tip dying length of 13 cm.

https://oasis.krei.re.kr/
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Table 1. Descriptive statistics of garlic and onion actual measurement data (2020–2022).

Stat.
Plant

Height
(cm)

Leaf
Count

(leaves)

Leaf Sheath
Length

(cm)

Stem
Diameter

(mm)

Leaf Tip Dying
Length

(cm)

Bulb
Weight

(g)

Garlic

Min. 20.62 2.64 2.46 7.29 0.00 18.73
Max. 88.75 8.90 41.81 21.66 21.44 120.22
Mean 59.42 7.07 22.46 15.67 5.43 63.69

Median 66.58 7.26 24.61 15.73 3.76 64.07
SD 19.85 1.18 12.67 3.11 5.01 22.25

Variance 393.88 1.40 160.51 9.70 25.08 495.04
Skewness −0.46 −0.79 −0.15 −0.27 1.21 0.18
Kurtosis −1.21 0.72 −1.52 −0.26 0.79 −0.34

Onion

Min. 9.20 2.76 0.99 4.03 0.00 10.10
Max. 91.43 9.15 21.59 25.56 12.95 356.94
Mean 54.85 6.65 9.87 14.89 1.76 129.89

Median 58.84 6.99 9.85 16.09 0.53 110.70
SD 22.24 1.67 6.78 5.37 2.86 83.30

Variance 494.80 2.80 46.01 28.87 8.20 6939.22
Skewness −0.39 −0.40 0.14 −0.40 2.28 1.10
Kurtosis −1.12 −1.03 −1.51 −0.92 4.55 0.54

Source: Prepared by the author (originally sourced by the Korea Rural Economic Institute).

The distribution of the data used in this study is represented in Figure 4. Bulb weight
reaches its maximum around May, and the trend changes similarly to that of the five
independent variables. During the growth period, a total of 10 surveys were conducted, and
missing values between the first and tenth surveys were resolved using linear interpolation
to organize the dataset by date. For example, if the first and second surveys are on 14th and
17th of April, respectively, the data for the 15th and 16th are connected linearly between
the 14th and 17th to input data for the dates without measured data. When we used the
measured data for model training, owing to differences in measurement units between
variables, the independent variables were inputted as normalized values through the
SOFT1 method. However, considering the difficulty in updating the measured data of
onion bulb weight in June 2020, which recorded 357 g, significantly exceeding the overall
average of 130 g, outliers were not handled separately and included the data in the training.
As a result, it is judged that the error of the estimated value (Ŷ) of the daily production

https://www.nongupin.co.kr/news/articleView.html?idxno=90052
https://www.nongupin.co.kr/news/articleView.html?idxno=90052
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prediction results displays a negative value, as the standard deviation of the onion is higher
than that of the garlic, and the normal measured information is underestimated.
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This study predicts the bulb weight between April and June using the five independent
variables measured between February and April. The data learning structure is presented
in Figure 4, where the aboveground measured data from February to April for each year
are used to predict the underground (bulb) measured data from April to June. For example,
the aboveground measured data recorded on February 14th are used to estimate the
underground measured data on April 14th. As a result, the completed lag model can
predict the bulb weight two months later.

Currently, the agricultural observation statistical system shares measurement data
only for three years. This study was designed to train the Neural Prophet lag model with
the data from 2020 and 2021 (training data and then predict the bulb weight from April to
June in 2022 (test dataset) using the aboveground observation data from February to April
2022. During the training, the learning rate was set to 10% of the training dataset, which
means that the model was trained on 10% of the dataset while using the remaining 90% to
evaluate its performance. Here, the aboveground observation data also existed in May and
June but were removed (gray box in Figure 5) to align with the goal of pre-estimating the
bulb weight before proceeding with the training. Therefore, the model predicts the bulb
weight from April to June using only the aboveground measured data from February to
April, without knowing the aboveground measured data from May to June.
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4. Performance Evaluation

The performance of the deep learning-based regression model was evaluated using
the MAE and root-mean-squared-error (RMSE) metrics. The MAE represents the average
of the absolute differences between the actual and predicted values, while the RMSE is the
square root of the mean squared error (MSE) and is less sensitive to outliers compared to
the MSE. (Refer to Equation (4) for details.) Both metrics are considered to have higher
predictive accuracy when their values are closer to 0. The MAE is robust to outliers among
the three metrics (MAE, RMSE, and MSE) and assigns equal weights to errors. The model
was designed to minimize the MAE, and since garlic and onions exhibit annual periodicity,
the model takes the yearly seasonality into account. Additionally, the SmoothL1Loss
performance metric was considered, which combines the advantages of both L1 and L2
functions. SmoothL1Loss is a loss function that represents the error between the actual
and predicted values in absolute terms. It aims to address the limitations of the traditional
L1 loss and L2 loss functions, which are either non-differentiable or sensitive to outliers.
SmoothL1Loss primarily uses the L1 loss function but transitions to the L2 loss function
as the error value decreases. By combining the benefits of both L1 and L2 loss functions,
SmoothL1Loss offers a more robust and smooth approach to minimizing errors during the
model training process. This allows the model to achieve better performance in handling
small errors and outliers, ultimately leading to more accurate predictions. When the error
value is large, the gradient decreases steadily, and when it is less than 1, the gradient
decreases smoothly, making it easier to determine the optimal value.

The results of the deep learning-based regression model for predicting the bulb weights
of garlic and onions indicate promising performance, as indicated by the low values of
the MAE and RMSE metrics. This demonstrates that the model can make accurate predic-



Agronomy 2023, 13, 1362 9 of 13

tions using the aboveground observation data, which can help farmers and agricultural
professionals make better-informed decisions regarding crop management and planning.

MAE = 1
n ∑
∣∣Y− Ŷ

∣∣
RMSE =

√
∑ (Y−Ŷ)2

n

smooth L1Loss =

{
0.5(Y− Ŷ)2 if

∣∣Y− Ŷ
∣∣ < 1∣∣Y− Ŷ

∣∣− 0.5 otherwise,

(4)

The performance metrics for garlic and onion are presented in Table 2. The NP-ARX
model, which incorporates the aboveground observation data for May and June, attained
an MAE of 3.3 g and 4.7 g and RMSE of 5.4 g and 8.7 g for the garlic lag and the onion
models, respectively. The learning performance of the former was higher than that of the
latter, and both models exhibited an average daily error of less than 5 g (3–6% error rate)
based on the MAE.

Table 2. Estimation performance.

Garlic Onion

MAE (Train) 1.41 g MAE (Train) 3.30 g
MAE (Test) 3.34 g MAE (Test) 4.66 g

Error Rate to Average 5.24% Error Rate to Average 3.59%

RMSE (Train) 3.60 g RMSE (Train) 10.16 g
RMSE (Test) 5.36 g RMSE (Test) 8.68 g

Error Rate to Average 8.42% Error Rate to Average 6.68%

SmoothL1Loss 0.001 SmoothL1Loss 0.003
Note: (1) The training data error results are the prediction results of the 2020 and 2021 training data, and test data
error results are the prediction results for 2022 based on the training data. (2) The average bulb weights of garlic
and onions are 63.69 g and 129.89 g, respectively. Source: Prepared by the author.

This study aimed to predict daily bulb weight, and the models are considered to
have high applicability due to the highly directed nature of the measurement data used
for prediction. Furthermore, they exhibited an error rate within 6% of the average bulb
weight, further supporting their potential practical use in the field. However, the difference
between the training and test data errors can be attributed to the relatively short observation
period used for training the dataset (only two years: 2020 and 2021). This limitation can be
improved in the future as more observation data is accumulated.

The MAE graph, which is the learning evaluation metric for the training and validation
data, is presented in Figure 6. The index represents the epoch, and the MAE value decreases
as the model goes through 100 iterative learnings. Both garlic and onion present stable MAE
values after epoch = 80, and the ‘MAE_val’ (validation value) is somewhat higher but still
stable. This graph is visualized to check for overfitting; when overfitting occurs, the validation
value displays an upward or unstable trend, meaning the model is overtrained on the training
dataset and does not work properly on the validation dataset. In the current study, there is no
overfitting, and it also demonstrates fitting results with the validation data.

The predicted average bulb weights of garlic and onions for April to June 2022,
presenting both actual values (actual y) and estimated values (yhat), are visualized in
Figure 7. The actual values reveal a pattern of starting the first bulb weight observations in
early April, reaching a peak in May, and then decreasing in June. The predicted and actual
values exhibit a similar trend, and the daily predictions can derive the bulb weight within
a certain margin of error (Table 3). The predicted values for garlic tend to be higher than
the actual values, while those for onions tend to be lower.
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Figure 7. Visualization of estimated results. Note: (1) Although there are actual bulb weight
measurements of garlic and onions in February in the raw data, the model’s training is focused on
the main harvest season from April to June, so the data from February are excluded. (2) The actual
values are presented as continuous points in some cases because daily measurement data do not
always exist. For data for missing days, linear interpolation is applied to insert the expected values.
Source: Created by the author. (a) Garlic. (b) Onion.
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Table 3. Daily average estimation of bulb weight (2022.05).

Observation
Data

Garlic Observation
Data

Onion

Act. (y) Approx. (yhat) Gap (g) Act. (y) Approx. (yhat) Gap (g)

Mean 60.5 58.8 1.7 Mean 80.2 79.0 −1.2

Std Error 14.1 13.3 9.7 Std Error 13.8 16.3 17.7

2 May 2022 71.2 71.8 −0.6 2 May 2022 83.3 83.7 −0.4
3 May 2022 64.1 74.6 −10.5 3 May 2022 115.6 89.1 26.6
4 May 2022 75.1 66.9 8.2 4 May 2022 85.1 117.5 −32.4
6 May 2022 79.6 81.3 −1.8 6 May 2022 76.8 83.0 −6.2
11 May 2022 56.6 62.4 −5.8 9 May 2022 93.6 91.6 1.9
12 May 2022 64.1 58.6 5.5 10 May 2022 69.0 100.6 −31.6
13 May 2022 58.1 64.9 −6.8 11 May 2022 79.3 75.9 3.4
16 May 2022 49.0 52.5 −3.6 12 May 2022 99.0 80.3 18.7
17 May 2022 76.3 49.2 27.1 13 May 2022 72.1 101.0 −28.9
18 May 2022 84.4 73.7 10.7 16 May 2022 78.4 79.7 −1.3
23 May 2022 34.7 35.6 −0.9 17 May 2022 72.3 80.1 −7.9
24 May 2022 45.1 36.4 8.8 18 May 2022 87.9 74.0 13.9
25 May 2022 56.0 49.1 6.9 23 May 2022 66.0 68.7 −2.7
26 May 2022 44.8 58.0 −13.1 24 May 2022 63.1 62.5 0.6
27 May 2022 48.7 47.7 1.1 25 May 2022 64.3 60.6 3.7

26 May 2022 59.7 60.5 −0.8
27 May 2022 93.7 56.7 37.0
31 May 2022 44.3 47.5 −3.2

Source: Created by the author.

The underestimation of onion predictions is related to the existence of outliers that
greatly exceed the average actual value. This may also be associated with the underrepre-
sentation of the data during the normalization process following the min.–max. method.
This aspect is expected to be adjusted in the future as raw data is updated.

The daily bulb weight prediction results for garlic and onions in May, which is the
main production period and the month when the bulb weight reaches its maximum, are
reported in Table 3. On average, prediction errors of 1.7 g and 1.2 g were observed for garlic
and onions, respectively. The standard deviation of the predicted values for garlic is 13.3 g,
which is lower than that of the actual values, which is 14.1 g. This confirms that the model
was applied more stably for garlic than for onions, which have a higher standard deviation
(16.3 g). The Neural Prophet lag model effectively used autoregressive (AR) variables and
lagged independent variables through high-dimensional deep learning structures. Despite
using relatively high-frequency data for prediction, the model quickly adapted to the
shocks of the latest actual information and made predictions accordingly. For example, on
May 17th, 2022, the actual datum of 76.3 g for garlic was collected, and the model generated
a prediction of 49.2 g, an error of 27.1 g. Subsequently, the model quickly adjusted to an
error of 10.7 g on May 18th and 0.9 g on May 23rd when the next actual information was
collected. The significance of these prediction results is that they were achieved using only
growth measurement data, even though no other growth information (such as weather
data or growth indices) was included as independent variables. Measurement data is a
direct indicator for predicting crop yield, and its inclusion in forecasting models could
potentially enhance their accuracy by incorporating previously unconsidered data. The
results suggest that improving the precision and frequency of updates to the forecasting
model could lead to better predictions of crop yield.

5. Summary and Conclusions

Garlic and onions are key vegetables used for seasoning in Korea, consumed stably
throughout the year. It is necessary to establish supply policies that stabilize the market
through production forecasts. This study predicts the bulb weight of harvested crops using
garlic and onion growth-stage measurement data and contributes to minimizing fiscal
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expenditures for related policy authorities while increasing the welfare of farmers and
consumers through proactive preparation of supply.

Since 2020, the Korea Rural Economic Institute (KREI) has been conducting field
surveys of crops in each province. The measurement data of garlic and onions from the
Jeolla Province were used in the current study. The observed bulb weight of garlic was
stably measured with an average of 19–120 g over three years, while that of onions exhibited
large fluctuations with an average of 10–357 g over three years. In particular, the bulb
weight of onions in 2020 exceeded the average of 130 g by more than three times, requiring
a meticulous review of the observed values. Additionally, the measurement data was
randomly conducted per field, which is considered suitable for predicting the average
total production.

The lag model was used with the Neural Prophet instead of statistical analysis for
356 measurement data over 3 years. While various economic forecasts using deep learning
have been applied, research using crop measurement data in agricultural economics is
in its early stages. This study trained a multilayer ANN and demonstrated performance
using error performance indicators between measured and predicted bulb weights. The
results revealed an error of about 5% of the average bulb weight when predicting garlic
and onions in 2022, suggesting the possibility of predicting underground measurements
not yet observed through aboveground measurements two months earlier.

By enabling the customization of model options, the Neural Prophet facilitates the
resolution of prevailing challenges in time-series modeling, namely multicollinearity, het-
eroscedasticity, and autocorrelation. The Neural Prophet ARX model demonstrated high
accuracy in predicting the bulb weight, even with a relatively short measurement period
and training data of 2 years, by controlling correlated independent variables and their
lagged variables.

This study explores ANN-based time-series prediction using measurement data. To
evaluate its practicality, comparisons with existing statistical methods are needed. The
enhancement tasks, such as handling missing values and optimizing data processing, are
unorganized. Integrating updated data and additional crop production information may
refine the deep learning model. Notably, the NP-ARX is user-friendly for agricultural
economists without extensive computer science expertise. While the NeuralProphet pack-
age provides an automated AR-Net structure, fine-tuning the model for better performance
can be challenging. Therefore, researchers may find it advantageous to construct their own
neural-network time-series models to achieve improved results.
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