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Abstract: Climate change has had a strong impact on grain production in the Lower Lancang–Mekong
River Basin (LMB). Studies have explored the response of LMB rice yield to climate change, but
most of them were based on climate projection data before CMIP6 (Coupled Model Intercomparison
Project Phase 6). Based on the latest CMIP6 climate projection data and considering three emission
scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), this study used the crop growth model (AquaCrop)
to simulate and project the LMB rice yield and analyzed the correlation between the yield and the
temperature and precipitation during the growth period. The results show that the output of rice
yield will increase in the future, with greater yield increases in the SSP5-8.5 scenario (about 35%)
than in the SSP2-4.5 (about 15.8%) and SSP1-2.6 (about 9.3%) scenarios. The average temperature
of the rice growth period will increase by 1.6 ◦C, 2.4 ◦C, and 3.7 ◦C under the SSP1-2.6, SSP2-4.5,
and SSP5-8.5 scenarios, respectively. The rice yield was predicted to have a significant positive
response to the increase in temperature in the near future (2021–2060). In the far future (2061–2100),
the rice yield will continue this positive response under the high-emission scenario (SSP5-8.5) with
increasing temperature, while the rice yield under the low-emission scenario (SSP1-2.6) would be
negatively correlated with the temperature. There will be a small increase in precipitation during the
rice growth period of LMB in the future, but the impact of the precipitation on the rice yield is not
obvious. The correlation between the two is not high, and the impact of the precipitation on the yield
is more uncertain. This result is valuable for the management of the rice cultivation and irrigation
system in the LMB, and it will help the government to adapt the impact of climate change on the rice
production, which may contribute to the food security of the LMB under climate change.

Keywords: Lancang–Mekong River Basin; AquaCrop model; rice yield; temperature; precipitation

1. Introduction

In recent years, global climate change has become a key topic, closely monitored
by governments, experts, scholars, and society and closely related to human production
and life [1]. Under the influence of climate change, the agricultural climate conditions
are deteriorating. The occurrence of extreme rainfall events and the increase in drought
pressure seriously threaten food production security [2–7]. Studies have pointed out that,
in order to meet the expected demand for food of the growing global population, world
food production must increase by 50% by 2050 [8,9]. Rice is one of the most important food
crops in the world. More than half of the world’s population has rice as its staple food, and
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its consumption increases year by year with population growth [10,11]. Climate change
has always been one of the major constraints on the production of grain crops such as rice.
Especially in developing countries, the planting and production of rice depend on weather
conditions in many aspects [12–14].

In the Lower Lancang–Mekong River Basin (LMB, including large areas of Cambodia,
Laos, Thailand, and Vietnam), rice is the main planting crop, with a planting area of
about 15 million hectares, accounting for 28% of the total area of the region. Thailand and
Vietnam are among the largest rice exporters in the world [15–17]. Nevertheless, there
is still widespread poverty in the lower LMB, with millions of poor people facing severe
food security risks [18]. The level of agricultural productivity in these countries is not high,
and the ability to cope with the negative impact of climate change on food production
is limited. The decline in rice production is worrying [15]. Many existing studies have
analyzed the impact of climate change on water resources in the LMB, while less attention
has been paid to the impact of climate change on rice cultivation [19–22], especially with
the CMIP6 outputs. In addition, the results of the research have been contradictory. Some
scholars have pointed out that higher temperatures and spatial and temporal deviations
in precipitation will lead to lower rice yields; others believe that increased precipitation
and higher CO2 concentrations will increase rice yields. Some scholars and their views are
shown in Table 1.

Table 1. Some scholars and their perspectives.

Scholars Perspectives

Yamauchi et al. [16] Climate change increases annual rainfall deviation, and insufficient
precipitation in the early rainy season will lead to reduced rice yield.

Kang et al. [23] Rice yield will increase due to increased CO2 concentration
and precipitation.

Jiang et al. [24]
Under rainfed conditions, seasonal changes in temperature rise and
precipitation will significantly reduce rice yield, while the positive
effect of CO2 rise will significantly increase rice yield.

Poulton et al. [25] Rice yield will decrease by about 4% for each 1 ◦C increase in air
temperature over the baseline temperature.

Boonwichai et al. [26–28] Higher temperatures will increase crop water requirements, and rice
yields will decrease.

In general, these studies confirmed the positive impact of CO2 on rice production,
while the impact of the temperature on crops is two-sided. When the temperature exceeds
certain thresholds, rice production is restricted, resulting in reduced yield, while the impact
of precipitation on rice production is more uncertain.

Most studies on the impact of climate change on rice production in the LMB were not
based on the newly available CMIP6 (Coupled Model Intercomparison Project Phase 6)
projections. This study aims to explore this topic with the latest CMIP6 results, in order
to better capture the impacts of climate change on rainfed rice. Considering three emis-
sion scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), the rice yield in the historical period
(HIS: 1981–2020) and two future periods, i.e., future short-term (NF) 2021–2060, and future
far-term (FF) 2061–2100, of the LMB is evaluated and projected at the provincial level. This
study is valuable for adjusting the rice cultivation and irrigation system and may contribute
to the food security of the LMB under climate change.

2. Materials and Methods
2.1. Study Area

The Lancang–Mekong River is the main cross-border river in Southeast Asia. It extends
from the Qinghai Tibet Plateau of China to the Lancang–Mekong Delta, with a total length
of more than 4500 km and a drainage area of about 795,000 km2. It is one of the seven major
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rivers in Southeast Asia [29,30]. The Lower Lancang–Mekong River Basin (LMB) is defined
as the sub-basin of the Lancang–Mekong River located in Laos, Thailand, Cambodia, and
Viatnam, with a total area of about 640,000 km2, about three-quarters of the total area of the
Lancang–Mekong River Basin. The terrain in the basin is complex; the upstream is mainly
mountains and highlands, and the downstream is mainly plain with low altitude [31–33].

The farmland in the LMB is mainly distributed in the lower reaches of the basin. The
study area includes 60 provinces in Cambodia, Laos, and Thailand. There are 20 provinces
in Cambodia, 17 provinces in Laos, and 23 provinces in Thailand. With the high irrigation
rate in the Vietnam Delta, the yield in the historical period was greatly influenced by
irrigation; hence, it was difficult to distinguish the rainfall and irrigation effects without
enough data support. Thus, Vietnam was not included in this study. The study area is
located in the tropical monsoon zone, with a distinct rainy season and a dry season. The
rainy season is from May to October, and the dry season is from November to April [34,35].
The main crop in the basin is rice. The planting dates vary from April to July, and the
corresponding harvest dates are from September to November [36]. The study area is
shown in Figure 1.
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2.2. Historical Climate Data (1981–2020)

ERA5-Land is a reanalysis dataset published by the ECMWF (European Center for
Medium-Range Weather Forecasts). It provides hourly data of global surface climate
variables from 1981 to the near future with high spatial resolution [37]. Compared with the
ERA5 and ERA-Interim, the horizontal resolution of the ERA5-Land has been improved
from 31 km and 80 km to 9 km, and the ERA5-Land dataset has been extended to 1950 [38,39].
The ERA5-Land has higher accuracy and can be applied to the research of agricultural
water resource planning, land use, and environmental management [39,40].
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2.3. Future Climate Data (2021–2100)

The latest CMIP6 has a higher spatial resolution than the previous climate-coupled
comparison projects, and its ability to simulate regional extreme rainfall and temperature
has been significantly improved [41–43]. Unlike the representative concentration path (RCP)
used by CMIP5, CMIP6 advocates emission scenarios according to the shared socioeco-
nomic path (SSP) [44,45]. The research is based on eight models in CMIP6 under three SSPs
(SSP1-2.6, SSP2-4.5, and SSP5-8.5); the details are shown in Table 2.

Table 2. The eight models of CMIP6 used in this research.

Model Institution/Country Resolution (km) Grids (Latitude/Longitude)

CanESM5 Canadian Center for Climate Modelling and Analysis,
Victoria, Canada 500 64 × 128

EC-Earth3-Veg EC-Earth Consortium, Europe 100 256 × 512

FGOALS-g3 Chinese Academy of Sciences Flexible Global
Ocean–Atmosphere–Land System Model, China 250 80 × 180

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, NJ, USA 100 180 × 288

IPSL-CM6A-LR Institute Pierre Simon Laplace (IPSL), Paris, France 250 143 × 144

MIROC6 Japan Agency for Marine–Earth Science and Technology
(JAMSTEC), Kanagawa, Japan 250 128 × 256

MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI-M), Germany 100 192 × 384

MRI-ESM2-0 Meteorological Research Institute, Ibaraki, Japan 100 160 × 320

https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id.html, accessed on 1 July 2022.

2.4. Research Method

The AquaCrop model was adopted in this study to simulate and project the rice yield
in the LMB. The AquaCrop was developed by FAO’s Water and Soil Division, which is used
to solve food security problems and assess the impact of environment and management
on crop production. AquaCrop simulates the yield response of herbaceous crops to water,
which is especially suitable for the situation in the LMB, where water is the key limiting
factor in crop production. Although the model is based on complex biophysical processes
to ensure accurate simulation of crop response in the plant soil system, it only uses a few pa-
rameters and intuitive variables. This model estimates crop water demand by separating un-
productive soil evaporation (E) and productive crop transpiration (Tr). The biomass yield (B)
is estimated directly from the actual transpiration of crops using the water productivity
parameter, which is then multiplied by the crop harvest index (HI) to obtain the final crop
yield (Y). The calculation formula is as follows:

B = WP × ∑ Tr (1)

Y = B × HI (2)

where B is the biomass, WP is the water productivity parameter, Tr is the actual transpiration
of crops, HI is the harvest index, and Y is the final yield of crops.

The input data required by the model include climate data, crop data, soil data, and
field management data.

The climate data mainly include the daily maximum temperature Tmax, the daily
minimum temperature Tmin, the daily rainfall P, the daily reference evapotranspiration Et0,
and the annual average CO2 concentration. The daily reference evapotranspiration was
calculated using the Penman–Monteith formula recommended by the FAO, and the CO2
data were from the Global Monitoring Laboratory of the National Oceanic and Atmospheric
Administration (NOAA) of the USA.

https://wcrp-cmip.github.io/CMIP6_CVs/docs/CMIP6_source_id.html
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The crop data mainly reflect the phenological characteristics of rice crops, including
the planting date, harvest date, harvest index (HI), water productivity parameter (WP),
crop coefficient (Kc), and some conservative parameters (see Table 3).

Table 3. Conservative parameters for rice.

Parameters Description Reference Value (Range)

WP Water productivity normalized for ET0 and CO2 19 (g/m2)

Kc
Crop coefficient when canopy is complete but prior
to senescence 0.45–1.29

Tbase, Tupp Base and upper temperatures, respectively 8 ◦C, 30 ◦C

Zmin, Zmax
Minimum and maximum effective rooting
depth, respectively 0.3 m, 0.5 m

CGC Canopy growth coefficient 0.006–0.008
CDC Canopy decline coefficient 0.005

FAO. Reference manual for AquaCrop version 6.0/6.1—Annexes. 2018. https://www.fao.org/aquacrop/
software/aquacropstandardwindowsprogramme/en/, accessed on 24 February 2022.

The soil data include the soil type data of each province in the LMB, which were
extracted from the Harmonized World Soil Database provided by the FAO (using the soil
classification standard of the US Department of Agriculture, see Table 4).

Table 4. Soil types.

Code Texture

1 Clay (heavy)
2 Silty clay
3 Clay
4 Silty clay loam
5 Clay loam
6 Silt
7 Silt loam
8 Sandy clay
9 Loam
10 Sandy clay loam
11 Sandy clay
12 Loam sand
13 Sand

FAO. Harmonized World Soil Database (Version 1.1, 2009) https://www.fao.org/soils-portal/soil-survey/soil-maps-
and-databases/harmonized-world-soil-database-v12/en/, accessed on 4 April 2023.

The field management patterns include rainfed and irrigated patterns. Less than
one-quarter of the total area is irrigated in the LMB; it is mostly concentrated in the delta
plain of Vietnam, and the irrigation efficiency is not high within the area of this study [46,47].
Considering that the purpose of this study is to investigate the effect of climate change on
rice, the rainfed model was set uniformly.

Figure 2 shows the spatial distribution of the soil types in each province in the
study area.

2.5. Model Evaluation

According to the rice observation data of each province in the basin (Table 5), the
calibration period was from the data start year of each country to 2015, and the verification
period was from 2016 to the data end year of each country. Our survey found that rice
production in Cambodia and Thailand was mainly in the rainy season, with over 80%
of fields planting rice only in the rainy season [48–55]. Considering that the dry-season
rice has a similar unit yield to the rainfed rice [49,56], although we could not distinguish
the rainy-season rice yield from that of the dry season in the harvest data of Cambodia
and Thailand, it is believed that such bias had a very small influence on the calibration of
the model.

https://www.fao.org/aquacrop/software/aquacropstandardwindowsprogramme/en/
https://www.fao.org/aquacrop/software/aquacropstandardwindowsprogramme/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Table 5. The observed data.

Country Data Information Source Calibration Period Verification Period

Cambodia
(20 provinces)

2008–2019
Annual yield and harvested area

MRC Socioeconomic Database:
https://www.mrcmekong.org,
accessed on 15 May 2022.
Cambodian National Bureau of Statistics:
http://www.nis.gov.kh/index.php/km,
accessed on 16 May 2022.

2008–2015 2016–2019

Laos
(17 provinces)

2010–2019
Rainy season yield and
harvested area

Lao National Bureau of Statistics (LAOSIS):
http://www.lsb.gov.la/en/home/,
accessed on 18 May 2022.

2010–2015 2016–2019

Thailand
(23 provinces)

2011–2020
Annual yield and harvested area

Thailand National Agricultural
Big Datacenter:
https://www.nabc.go.th,
accessed on 20 May 2022.

2011–2015 2016–2020

According to the observed rice yield, the accuracy of the simulation yield was evalu-
ated, and the root-mean-square error and relative error were calculated to verify the simula-
tion accuracy of the model. The calculation formulas of the root-mean-square error (RMSE)
and relative error (RE) are as follows:

RMSE =

√√√√ 1
n

(
n

∑
i=1

(Si − Oi)
2

)
(3)

https://www.mrcmekong.org
http://www.nis.gov.kh/index.php/km
http://www.lsb.gov.la/en/home/
https://www.nabc.go.th
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RE =
Si − Oi

Oi
(4)

where Si refers to the simulated yield, and Oi refers to the observed yield.

2.6. Correlation Analysis

The Pearson correlation coefficient is widely used to measure the degree of correlation
between two variables, and its value is between −1 and 1, as proposed by Pearson in the
1880s. In this study, the Pearson correlation coefficient was used to evaluate the correlation
between the rice yield and temperature and precipitation during the growth period. The
calculation formula is as follows:

r =

n
∑

i=1
(xi − x)(yi − y)√√√√ n

∑
i=1

(xi − x)2

√
n
∑

i=1
(yi − y)2

(5)

where xi is the temperature or precipitation, x is its average value, yi is the yield, and y is
its average value.

3. Results
3.1. Model Calibration Result

The results showed that the planting dates in the study area ranged from late May
to mid-July. The planting dates of provinces in Cambodia and Laos varied widely. The
planting dates of provinces in Thailand were relatively concentrated in June. Except for the
harvest dates of provinces in Cambodia that spanned October and November, the harvest
dates of Laos and Thailand were all concentrated in October. The average growth period
of rice in the three countries was 130, 135, and 134 days, respectively, which was basically
consistent with the existing research results [57]. The planting date and harvest date of
each country are shown in Figure 3.
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The calibrated HI and observed and simulated multiyear average yields for each
province for the rate period are shown in Figure 4. Cambodia, Laos, and Thailand had
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average His of 0.21, 0.21, and 0.16, respectively. Laos’s Vientiane Province had the highest
average yield (4.459 t/ha) and HI value (0.29). Thailand’s Sa Kaeo Province had the lowest
average yield (1.988 t/ha) and HI value (0.13).
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Figure 5 displays the observed and simulated yields for each province during the
calibration period’s RMSE and RE. The RMSE value was within a tolerable range for all
provinces, ranging from 0.038 to 0.666 (t/ha), accounting for 1.7% to 20.9% of the simulated
rice production; the RE was highest in Cambodia’s Otdar Mean Chey province (0.115)
and lowest in Laos’s Khammuane province (0.0). The results for each province during the
calibration and validation periods are shown in Tables 6–8.
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The average observed yield, simulated yield, RMSE, and RE of each country are shown
in Table 9. During the calibration period, the maximum RMSE was 0.233 (t/ha) in Laos, and
the minimum was 0.057 (t/ha) in Thailand, accounting for 6% and 2.4% of the simulated
average yield, respectively. The maximum RE was 0.018 in Laos, and the minimum was
0.001 in Thailand. During the validation period, the RMSE and RE values of Thailand were
the lowest, and the model simulation accuracy was better than that of Cambodia and Laos.
Overall, the RMSE and RE values for each country during the validation and rate periods
were within 0.4 and 0.05, and the model simulations met the accuracy requirements.
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Table 6. The rice yield of each province in Cambodia (2008–2019).

Province Plant
Date

Harvest
Date HI

Calibration Period (2008–2015) Validation Period (2016–2019)

Observation
Yield (t/ha)

Simulation
Yield (t/ha) RMSE RE Observation

Yield (t/ha)
Simulation
Yield (t/ha) RMSE RE

Banteay
Meanchey 06/20 10/30 0.21 2.711 2.752 0.371 0.015 3.231 2.982 0.431 0.077

Batdambang 07/30 11/30 0.24 2.803 3.074 0.379 0.097 3.308 3.003 0.559 0.092

Kampong
Cham 06/20 10/30 0.25 3.505 3.542 0.231 0.011 3.675 3.697 0.101 0.006

Kampong
Chhnang 06/30 11/08 0.22 3.125 3.134 0.294 0.003 3.553 3.271 0.401 0.079

Kampong
Speu 07/10 11/20 0.20 2.831 2.755 0.433 0.027 3.025 3.014 0.095 0.004

Kampong
Thom 06/10 10/20 0.19 2.666 2.68 0.239 0.006 3.001 2.736 0.353 0.088

Kampot 06/10 10/17 0.21 3.061 3.123 0.192 0.02 3.225 3.197 0.113 0.009

Kandal 07/01 11/10 0.28 3.722 3.701 0.523 0.006 3.949 4.121 0.259 0.043

Kratie 06/10 10/20 0.20 3.031 3.005 0.258 0.009 3.25 3.062 0.195 0.058

Krong Pailin 06/10 10/17 0.21 3.356 3.388 0.334 0.01 3.135 3.432 0.366 0.095

Mondul Kiri 06/20 10/30 0.16 2.311 2.565 0.338 0.11 2.825 2.602 0.234 0.079

Otdar Mean
Chey 06/20 10/30 0.18 2.304 2.568 0.33 0.115 2.802 2.593 0.392 0.075

Phnom Penh 06/10 10/20 0.21 2.97 2.726 0.435 0.082 2.83 2.997 0.209 0.059

Pouthisat 07/25 11/25 0.21 3.06 3.058 0.474 0.001 3.192 3.079 0.669 0.035

Preah Vihear 06/10 10/20 0.18 2.665 2.774 0.271 0.041 3.103 2.825 0.432 0.089

Prey Veng 06/20 10/30 0.22 3.271 3.199 0.227 0.022 3.627 3.324 0.314 0.084

Rotano Kiri 06/10 10/19 0.14 2.255 2.299 0.245 0.02 2.4 2.331 0.125 0.029

Siemreab 06/20 10/30 0.18 2.644 2.659 0.23 0.006 2.825 2.669 0.257 0.055

Stueng
Traeng 06/10 10/19 0.17 2.652 2.604 0.138 0.018 2.653 2.664 0.158 0.004

Takeo 06/30 10/30 0.24 3.745 3.451 0.414 0.078 3.4 3.655 0.832 0.075

Table 7. The rice yield of each province in Laos (2010–2019).

Province Plant
Date

Harvest
Date HI

Calibration Period (2010–2015) Validation Period (2016–2019)

Observation
Yield (t/ha)

Simulation
Yield (t/ha) RMSE RE Observation

Yield (t/ha)
Simulation
Yield (t/ha) RMSE RE

Attapeu 07/03 11/10 0.2 2.945 3.189 0.392 0.083 3.317 3.212 0.647 0.032

Bokeo 06/01 10/16 0.22 3.553 3.695 0.189 0.040 3.815 3.758 0.181 0.015

Borikhamxay 06/01 10/16 0.21 3.738 3.691 0.235 0.013 3.939 3.751 0.287 0.048

Champasack 07/10 11/20 0.24 4.049 3.975 0.529 0.018 4.364 3.983 0.438 0.087

Khammuane 06/10 10/10 0.22 3.739 3.740 0.433 0.000 4.006 3.808 0.595 0.049

Luangnamtha 06/15 11/06 0.17 3.477 3.515 0.197 0.011 3.258 3.499 0.278 0.074

Luangprabang 06/20 10/30 0.16 2.842 2.860 0.219 0.006 2.791 2.858 0.310 0.024

Oudomxay 06/15 11/06 0.19 3.327 3.425 0.164 0.029 3.487 3.417 0.357 0.020

Phongsaly 05/20 10/04 0.17 2.941 3.008 0.271 0.023 3.134 3.012 0.132 0.039

Saravan 06/02 10/10 0.24 3.676 3.819 0.509 0.039 4.197 3.961 0.370 0.056

Savannakhet 06/10 10/20 0.26 3.917 4.074 0.355 0.040 4.233 4.181 0.324 0.012

Sekong 07/20 11/10 0.25 3.409 3.533 0.521 0.037 4.012 3.906 0.366 0.026

Vientiane 06/01 10/16 0.27 4.256 4.363 0.238 0.025 4.474 4.418 0.233 0.013

VientianeC 06/15 11/06 0.29 4.485 4.459 0.231 0.006 4.488 4.544 0.115 0.012

Xayabury 06/01 10/23 0.2 3.859 3.890 0.207 0.008 4.026 3.919 0.184 0.027

Xaysomboon 06/10 10/30 0.14 3.490 3.179 0.666 0.089 3.202 3.378 0.269 0.055

Xiengkhuang 06/15 11/06 0.18 3.615 3.755 0.196 0.039 3.760 3.656 0.218 0.027



Agronomy 2023, 13, 1504 11 of 23

Table 8. The rice yield of each province in Thailand (2011–2020).

Province Plant
Date

Harvest
Date HI

Calibration Period (2011–2015) Validation Period (2016–2020)

Observation
Yield (t/ha)

Simulation
Yield (t/ha) RMSE RE Observation

Yield (t/ha)
Simulation
Yield (t/ha) RMSE RE

Amnat
Charoen 06/20 11/04 0.14 2.125 2.159 0.049 0.016 2.2 2.141 0.076 0.027

Bueng Kan 06/10 10/25 0.13 2.005 1.989 0.202 0.008 1.958 2.005 0.076 0.024

Buri Ram 06/20 10/28 0.16 2.351 2.317 0.199 0.015 2.249 2.349 0.179 0.045

Chaiyaphum 06/10 10/18 0.15 2.323 2.394 0.118 0.03 2.288 2.399 0.137 0.049

Chiang Rai 06/15 10/27 0.24 3.746 3.737 0.12 0.002 3.544 3.781 0.257 0.067

Kalasin 06/20 11/01 0.15 2.285 2.299 0.038 0.006 2.319 2.261 0.096 0.025

Khon Kaen 06/25 11/02 0.14 2.121 2.072 0.11 0.023 2.089 2.062 0.102 0.013

Loei 06/10 10/18 0.15 2.393 2.425 0.053 0.013 2.31 2.417 0.142 0.046

Maha
Sarakham 06/01 10/09 0.16 2.321 2.253 0.169 0.029 2.249 2.185 0.273 0.028

Mukdahan 06/15 10/30 0.15 2.342 2.331 0.067 0.005 2.457 2.299 0.194 0.064

Nakhon
Phanom 07/01 11/15 0.15 2.36 2.349 0.12 0.005 2.233 2.286 0.136 0.024

Nakhon
Ratchasima 06/25 11/02 0.17 2.338 2.368 0.183 0.013 2.244 2.429 0.33 0.083

Nong Bua
Lam Phu 06/20 10/28 0.25 3.8 3.815 0.114 0.004 3.828 3.692 0.264 0.035

Nong Khai 06/15 10/30 0.15 2.322 2.281 0.074 0.018 2.271 2.318 0.066 0.021

Phayao 06/20 10/28 0.2 3.44 3.28 0.239 0.047 3.076 3.244 0.187 0.055

Roi Et 06/10 10/22 0.16 2.35 2.359 0.049 0.004 2.265 2.332 0.101 0.03

Sa Kaeo 06/10 10/22 0.13 2.06 1.988 0.105 0.035 2.006 1.999 0.068 0.003

Sakon
Nakhon 06/15 10/30 0.14 2.138 2.13 0.109 0.004 2.159 2.023 0.181 0.063

Si Sa Ket 06/15 10/30 0.16 2.356 2.417 0.14 0.026 2.238 2.355 0.17 0.052

Surin 06/10 10/22 0.16 2.378 2.372 0.067 0.003 2.358 2.273 0.182 0.036

Ubon
Ratchathani 07/01 11/15 0.14 2.117 2.157 0.062 0.019 2.202 2.157 0.074 0.021

Udon Thani 06/10 10/22 0.16 2.343 2.405 0.098 0.026 2.31 2.427 0.127 0.051

Yasothon 06/20 11/01 0.15 2.318 2.285 0.121 0.014 2.26 2.271 0.072 0.005

Table 9. The yield and evaluation indicators of the countries in the calibration and validation periods.

Country Calibration Period Validation Period

Observation
Yield (t/ha)

Simulation
Yield (t/ha) RMSE RE Observation

Yield (t/ha)
Simulation
Yield (t/ha) RMSE RE

Cambodia 3.047 3.052 0.230 0.002 3.276 3.131 0.213 0.044
Laos 3.797 3.866 0.233 0.018 4.034 3.920 0.236 0.028
Thailand 2.353 2.356 0.057 0.001 2.302 2.334 0.089 0.014

3.2. Changes in Rice Yield in History and in the Future

On the basis of the model calibration results, this study simulated the rice yields in
the Lower Mekong River Basin for the entire historical period (HIS: 1981–2021) and two
future projection periods (NF: 2021–2060 and FF: 2061–2100) for each province. Figures 6–8
show the simulated annual average rice yields for the entire simulation period for the three
countries in the basin, where the historical period is the simulated historical rice yield based
on the ERA5-Land climate data, and the NF and FF periods are the simulated future yield
ranges for rice based on the latest CMIP6 8-model climate data. In the historical period,
the simulated rice output of various countries gradually increased. From the first 10 years
(1981–1990) to the last 10 years (2011–2020), the average simulated output of Cambodia,
Laos, and Thailand increased from 2.678, 3.480, and 1.995 tons per hectare to 3.103, 3.877,
and 2.343 tons per hectare, increases of 0.425, 0.397, and 0.348 tons per hectare respectively.
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Over the future projection period, the rice yields also showed an increasing trend, with
greater yield increases in the SSP5-8.5 (about 35%) scenario than in the SSP2-4.5 (about
15.8%) and SSP1-2.6 (about 9.3%) scenarios. Comparing the average simulated yields for
the last 20 years of the 21st century with the average simulated yields for the first 20 years
of the 21st century, Cambodia, Laos, and Thailand increased by 14.1%, 4.1%, and 11.5%,
respectively, in the SSP1-2.6 scenario, by 22%, 11.7%, and 14.4%, respectively, in the SSP2-4.5
scenario, and by 43.8%, 25.6%, and 39%, respectively, in the SSP5-8.5 scenario.

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 24 
 

 

3.2. Changes in Rice Yield in History and in the Future 

On the basis of the model calibration results, this study simulated the rice yields in 

the Lower Mekong River Basin for the entire historical period (HIS: 1981–2021) and two 

future projection periods (NF: 2021–2060 and FF: 2061–2100) for each province. Figures 6–

8 show the simulated annual average rice yields for the entire simulation period for the 

three countries in the basin, where the historical period is the simulated historical rice 

yield based on the ERA5-Land climate data, and the NF and FF periods are the simulated 

future yield ranges for rice based on the latest CMIP6 8-model climate data. In the histor-

ical period, the simulated rice output of various countries gradually increased. From the 

first 10 years (1981–1990) to the last 10 years (2011–2020), the average simulated output of 

Cambodia, Laos, and Thailand increased from 2.678, 3.480, and 1.995 tons per hectare to 

3.103, 3.877, and 2.343 tons per hectare, increases of 0.425, 0.397, and 0.348 tons per hectare 

respectively. Over the future projection period, the rice yields also showed an increasing 

trend, with greater yield increases in the SSP5-8.5 (about 35%) scenario than in the SSP2-

4.5 (about 15.8%) and SSP1-2.6 (about 9.3%) scenarios. Comparing the average simulated 

yields for the last 20 years of the 21st century with the average simulated yields for the 

first 20 years of the 21st century, Cambodia, Laos, and Thailand increased by 14.1%, 4.1%, 

and 11.5%, respectively, in the SSP1-2.6 scenario, by 22%, 11.7%, and 14.4%, respectively, 

in the SSP2-4.5 scenario, and by 43.8%, 25.6%, and 39%, respectively, in the SSP5-8.5 sce-

nario. 

 

Figure 6. The yield in Cambodia in different periods under the three shared socioeconomic paths 

(SSP1-2.6, SSP2-4.5, and SSP5-8.5). 

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 24 
 

 

3.2. Changes in Rice Yield in History and in the Future 

On the basis of the model calibration results, this study simulated the rice yields in 

the Lower Mekong River Basin for the entire historical period (HIS: 1981–2021) and two 

future projection periods (NF: 2021–2060 and FF: 2061–2100) for each province. Figures 6–

8 show the simulated annual average rice yields for the entire simulation period for the 

three countries in the basin, where the historical period is the simulated historical rice 

yield based on the ERA5-Land climate data, and the NF and FF periods are the simulated 

future yield ranges for rice based on the latest CMIP6 8-model climate data. In the histor-

ical period, the simulated rice output of various countries gradually increased. From the 

first 10 years (1981–1990) to the last 10 years (2011–2020), the average simulated output of 

Cambodia, Laos, and Thailand increased from 2.678, 3.480, and 1.995 tons per hectare to 

3.103, 3.877, and 2.343 tons per hectare, increases of 0.425, 0.397, and 0.348 tons per hectare 

respectively. Over the future projection period, the rice yields also showed an increasing 

trend, with greater yield increases in the SSP5-8.5 (about 35%) scenario than in the SSP2-

4.5 (about 15.8%) and SSP1-2.6 (about 9.3%) scenarios. Comparing the average simulated 

yields for the last 20 years of the 21st century with the average simulated yields for the 

first 20 years of the 21st century, Cambodia, Laos, and Thailand increased by 14.1%, 4.1%, 

and 11.5%, respectively, in the SSP1-2.6 scenario, by 22%, 11.7%, and 14.4%, respectively, 

in the SSP2-4.5 scenario, and by 43.8%, 25.6%, and 39%, respectively, in the SSP5-8.5 sce-

nario. 

 

Figure 6. The yield in Cambodia in different periods under the three shared socioeconomic paths 

(SSP1-2.6, SSP2-4.5, and SSP5-8.5). 
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(SSP1-2.6, SSP2-4.5, and SSP5-8.5).

In addition, the average simulated rice yields in all emission scenarios increased more
in the NF period than in the FF period; the SSP1-2.6 scenarios showed small decreases in rice
yields at the end of the 21st century for all countries, with increases of 4.2%, 4.1%, and 4.8%
for each country in the NF period and decreases in rice yields at the end of the FF period
of 1.8%, 2.0%, and 0.9%, respectively. Under the SSP2-4.5 scenario, the rice growth in the
NF period was 7.2%, 6.7%, and 5.8%, the rice yield in Laos and Thailand decreased by
0.3% and 2.2% at the end of the FF period, and the growth in Cambodia slowed. Under
the SSP5-8.5 scenario, the largest increase in rice in the NF period was 13.1% in Cambodia,
and the smallest was 9.8% in Laos. During the FF period, the growth of rice production
in all countries slowed. In the NF and FF periods, the average yield of the first 10 years
(2021–2030 in NF, 2061–2070 in FF) and the last 10 years (2051–2060 in NF, 2091–2100 in FF)
is shown in Table 10.
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Table 10. The average yields of NF and FF in the LMB.

Scene Country NF FF

2021–2030 (t/ha) 2051–2060 (t/ha) Growth Rate 2061–2070 (t/ha) 2091–2100 (t/ha) Growth Rate

SSP1-2.6
Cambodia 3.428 3.573 4.2% 3.568 3.505 −1.8%
Laos 3.890 4.049 4.1% 4.018 3.937 −2.0%
Thailand 2.487 2.606 4.8% 2.568 2.544 −0.9%

SSP2-4.5
Cambodia 3.364 3.607 7.2% 3.708 3.743 0.9%
Laos 3.889 4.148 6.7% 4.226 4.214 −0.3%
Thailand 2.395 2.535 5.8% 2.633 2.576 −2.2%

SSP5-8.5
Cambodia 3.412 3.858 13.1% 4.059 4.433 9.2%
Laos 3.908 4.291 9.8% 4.543 4.778 5.2%
Thailand 2.486 2.798 12.6% 2.937 3.186 8.5%
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SSP2-4.5, and SSP5-8.5).

3.3. Correlation between the Yield and Temperature under Climate Change

In the future, the average temperature of the rice growth period will increase by 1.6 ◦C,
2.4 ◦C, and 3.7 ◦C under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The temperature
increase from the historical period to the NF period was greater than that from the NF
period to the FF period in the same emission scenario. Compared with the rice yield
situation in each country during the same period, the rice yield variation had a high
similarity with the temperature variation. Table 10 shows the variation in the temperature
and rice yield in different countries under different emission scenarios, where HIS is the
mean value of the historical period, NF − HIS is the difference between the near future
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and the historical period, and FF − NF is the difference between the far future and the
near future.
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Figure 8. The yield in Thailand in different periods under the three shared socioeconomic paths
(SSP1-2.6, SSP2-4.5, and SSP5-8.5).

As shown in Table 11, the average temperature of the rice growing period during
the historical period in the LMB countries was 26.97 ◦C in Cambodia, 22.80 ◦C in Laos,
and 25.92 ◦C in Thailand, with average yields of 2.94 (t/ha), 3.68 (t/ha), and 2.173 (t/ha),
respectively. Under the SSP1-2.6 emission scenario, the average temperature increase
during the FF was not high in each country, 0.23 ◦C, 0.31 ◦C, and 0.30 ◦C, respectively, and
the yield did not increase much during the same period. It was 0.02 (t/ha) in Cambodia,
and the increase was about zero in Laos and Thailand. Under the SSP5-8.5 scenario, there
was little difference between the short-term and long-term temperature increases, and there
was no obvious difference in the change in yield growth in the same period. The yield and
temperature change did not follow a completely positive relationship. Under the SSP2-4.5
scenario, the yield increase in Cambodia in the NF period of 0.57 (t/ha) was larger than
that in the FF period of 0.21 (t/ha), but the temperature increase of 0.35 ◦C was smaller
than that in the FF period of 0.81 ◦C. Under the SSP5-8.5 scenario, the temperature rise in
Laos in the NF period was 3.06 ◦C, which was greater than 2.07 ◦C in the FF period. The
output increase in the NF period was only 0.42 (t/ha), which was less than 0.60 (t/ha) in
the FF period.

To further explore the response of the rice yield to the temperature, the Pearson corre-
lation coefficients (r) were calculated for the simulated rice yield and average temperature
during the growing season in different countries for different periods under different
emission scenarios, as shown in Figures 9–11. The results showed that there was a certain
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linear relationship between the rice yield and temperature. The research found that, in
the NF period, the simulated rice yield in all countries was positively correlated with the
temperature, and the correlation gradually increased with the increase in the greenhouse
gas emissions. The yield of Cambodia had the highest correlation with temperature, and
the r-value under the three emission scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 was 0.518,
0.659 and 0.881, respectively (p < 0.01). The rice yield and temperature in Laos and Thailand
were not significantly correlated in the SSP1-2.6 scenario; they were generally correlated in
the SSP2-4.5 scenario with r-values of 0.588 and 0.45, respectively (p < 0.01), and they were
increased in the SSP5-8.5 scenario with r-values of 0.662 and 0.74, respectively (p < 0.01).
In the FF period, the yield and temperature in each country were negatively correlated
under the low-emission scenario SSP1-2.6, with r-values of −0.503, −0.741, and −0.747 for
Cambodia, Laos, and Thailand, respectively (p < 0.01); the correlation weakened or was not
correlated under the medium-emission scenario SSP2-4.5, with r-values (p) of −0.356 (p < 0.05)
and −0.489 (p < 0.01) for Laos and Thailand, respectively; positive correlations were found
under the SSP5-8.5 scenarios with r-values of 0.869, 0.568, and 0.691, respectively (p < 0.01).
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Table 11. The temperature changes in the different countries in the different periods under the
three scenarios.

Scene Country Temperature (◦C) Yield (t/ha)

HIS NF − HIS FF − NF HIS NF − HIS FF − NF

SSP1-2.6
Cambodia 26.97 +0.18 +0.23 2.94 +0.58 +0.02
Laos 22.80 +2.66 +0.31 3.68 +0.32 +0.00
Thailand 25.92 +1.11 +0.30 2.17 +0.39 +0.00

SSP2-4.5
Cambodia 26.97 +0.35 +0.81 2.94 +0.57 +0.21
Laos 22.80 +2.80 +0.92 3.68 +0.37 +0.20
Thailand 25.92 +1.32 +0.90 2.17 +0.32 +0.13

SSP5-8.5
Cambodia 26.97 +0.55 +1.87 2.94 +0.70 +0.65
Laos 22.80 +3.06 +2.07 3.68 +0.42 +0.60
Thailand 25.92 +1.56 +2.01 2.17 +0.48 +0.44
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3.4. The Correlation between Yield and Precipitation under Climate Change

In addition to temperature, precipitation is one of the important factors influencing
yield. Because there are differences in the planting systems of various countries and
provinces in the study area, and the planting dates and harvest dates are different, changes
in the growth period and rainy season will lead to changes in the precipitation during
the growth period, thus affecting the rice yield. In the historical period, the average
precipitation of Cambodia, Laos, and Thailand in the growing season was 1027 mm,
1396 mm, and 1028 mm, respectively. The simulated average yield of rice in Laos was
also higher than that in Cambodia and Thailand in the same period. In addition, in
the years with reduced precipitation during the growth period, the rice yield decreased
significantly. Figure 12 shows the total precipitation and rice yield during the growth
period in various countries in the historical period. The black dotted circle highlights
the dry years [7,20,34,58]. In the future, the rainy season (rainfed rice-growing period)
precipitation in the LMB will increase by 12.5%, 13.3%, and 15.3%, under the SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios, respectively.

To further explore the response of rice yield to precipitation, Pearson correlation
coefficients ®were calculated for the simulated rice yield and average precipitation during
the growing season, as shown in Figures 13–15. In the historical period, there was no
significant correlation between the rice yield and precipitation in Cambodia and Laos,
except for some weak correlation between the simulated average rice yield and precipitation
during the growing period in Thailand (r = 0.323, p < 0.05). In the NF period, the correlation
between the rice yield and precipitation increased in Cambodia, Laos, and Thailand. The
r-values between the yield and precipitation during the growing period under the moderate
emission scenario SSP2-4.5 were 0.565 (p < 0.01) and 0.508 (p < 0.01) in Cambodia and
Thailand, respectively. The yield and precipitation during the growing period in Laos
reached a general correlation (r = 0.6, p < 0.01) under the SSP1-2.6 scenario, and the r-values
were higher than 0.5 under both the SSP2-4.5 and the SSP5-8.5 scenarios. In the FF period,
the correlation between rice yield and precipitation weakened, and there was no obvious
correlation between rice yield and precipitation in Cambodia under the three emission
scenarios. In Laos, there was some correlation between the rice yield and precipitation
in the SSP1-2.6 and SSP5-8.5 scenarios, with r-values of 0.389 (p < 0.05) and 0.552 (p < 0.01),
respectively, but there was no significant correlation in the SSP2-4.5 scenario. The rice
yield and precipitation in Thailand were significantly weakly correlated in the SSP2-4.5
and SSP5-8.5 scenarios, with r-values of 0.352 (p < 0.01) and 0.56 (p < 0.01), respectively,
but not in the SSP1-2.6 scenario. In general, the rice yield in Laos was more strongly
correlated with precipitation than in Cambodia and Thailand; under the same scenario, the
correlation between the rice yield and precipitation in the NF period was stronger than
that in the FF period, and the correlation in the historical period was the weakest or had no
obvious correlation.
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4. Discussion

This study was based on AquaCrop-OSPy, an open-source version in Python of
the AquaCrop model, to simulate rice yield in the Lower Lancang–Mekong River Basin.
AquaCrop-OSPy is mainly aimed at exploring the impact of climate change on crop yield,
without considering soil fertility and salt stress modules for the time being. However, due
to the further increase in the global temperature, the accelerated melting of ice sheets and
glaciers has further increased the sea level [59–63]. It is predicted that, by 2050, the sea
level in southern Vietnam may rise by 30 cm [64,65], which will lead to salt intrusion in the
Lancang–Mekong Delta region, affecting about 1.8 million hectares of land and threatening
rice production [64–66]. The effects of soil fertility stress and salinity stress were not
considered in this study, and further research is needed to explore the potential influences.
The AquaCrop model requires that the input temperature data include minimum and
maximum temperatures; however, in this paper, the average temperature during the
growth period was used to analyze the effect of temperature on rice yield, which may lead
to the relationship between temperature and rice yield being blurred. In addition, this
paper did not analyze the correlation between CO2 concentration and rice yield, but many
previous studies found that the fertilization effect that will be increased by the increase
in the CO2 concentration will compensate for the rice yield reduction caused by the heat
stress from the continuous increase in the temperature and the irregular change in the
precipitation [67,68]. This finding happens to be consistent with the results of this study. In
the near future, rice yield and temperature will show a significant positive correlation in
both the low-emission scenario (SSP1-2.6) and the high-emission scenario (SSP5-8.5). In
the far future, rice yield and temperature will be negatively correlated in the low-emission
scenario (SSP1-2.6) and positively correlated in the high-emission scenario (SSP5-8.5).

5. Conclusions

On the basis of the climate data of the historical and future periods, rice yields in the
Lower Lancang–Mekong River Basin (LMB) under various scenarios were simulated using
the AquaCrop model. The correlation between the temperature and precipitation and the
rice yield during the growing period was analyzed. The study drew the below conclusions.

The AquaCrop model had a good capacity for rice yield simulation in the LMB. From
1981 to 2100, the LMB rice yields will increase significantly. The range in the rice yield
increase in the future projection period depends on different emission scenarios. The
increase in the rice yield under the SSP5-8.5 scenario was the largest (about 35%), followed
by the SSP2-4.5 (about 15.8%) and the SSP1-2.6 (about 9.3%) scenarios. The increasing trend
in the rice yield in the near future will be stable, and the trend in the far future will slow
or decline.

The average temperature of the LMB rice planting period will increase. In the near
future, rice yield will be positively correlated with temperature. In the far future, the
continued increase in temperature will limit rice production.

In the future, the rainy season (rainfed rice-growing period) precipitation in the LMB
will increase, but the effect of increased precipitation on rice yield will be insignificant. The
correlation between the two was weak or showed no obvious correlation, and the response
of rice yield to precipitation was more uncertain.

The result is valuable for the management of the rice cultivation and irrigation system
in the LMB, and it will help the government to adapt the impact of climate change on the
rice production. Given that the impact of climate change on the production of LMB rice
and other crops is multifaceted and complex, although our results imply a bright future for
rice yield increase in general, it is noteworthy that extreme climate events may result in
tremendous agricultural losses, and water safety measures should be enhanced to meet
the food demand of the increasing population. We suggest carrying out further research
to construct a running platform for forecasting the impact of climate change and human
activities on rice to propose reasonable and efficient measures to ensure food security.
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