Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Management
2.2. Sampling and Measurements
2.2.1. Soil Moisture
2.2.2. Photosynthetic Characteristics
2.2.3. Soil Temperature and Calculation of Accumulated Temperature
2.2.4. Plant Nitrogen Rate
2.2.5. Yield and Yield Components
2.2.6. Crop Water Productivity and Total Evapotranspiration
2.2.7. The Calculation Formula as Follows
2.2.8. Statistical Analysis
3. Results
3.1. Effects of Sowing Methods on Soil Water Consumption
3.2. Nitrogen Accumulation and Translocation of Plant
3.3. Water Ingestion of Wheat during Growth Phase, and Accumulated Temperature of Soil
3.4. Effects of Photosynthetic Parameters, and Grain Yield Components
4. Discussion
4.1. Effects of Nitrogen Fertilization on Soil Water in Dryland
4.2. Effects of Yield Formation in Dryland
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Z.; Zhang, J.; Wu, W.; Cai, D.; Lv, J.; Jiang, G.; Huang, J.; Gao, J.; Hartmann, R.; Gabriels, D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manag. 2007, 87, 307–314. [Google Scholar] [CrossRef]
- Qiu, L.; Hao, M.; Wu, Y. Potential impacts of climate change on carbon dynamics in a rain-fed agroecosystem on the Loess Plateau of China. Sci. Total Environ. 2017, 577, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Z.; Zhang, L.; Liang, Y.; Hu, X.; Gu, B. Effects of limited irrigation on yield, and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Bing, L.; Gao, Z.-Q. Disadvantages of sowing methods on soil water content root distribution and yield of wheat (Triticum aestivum L.) in the Loess Plateau of South Shanxi, China. Water Supply 2022, 22, 8065–8079. [Google Scholar] [CrossRef]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the Global Spread of Conservation Agriculture, Sustainable Development of Organic Agricuture; Apple Academic Press: Palm Bay, FL, USA, 2012; ISSN 1867-8521. [Google Scholar]
- Jiang, C.; Zhang, H.Y.; Wang, X.C.; Feng, Y.Q. Challenging the land degradation in China’s Loess Plateau: Benefits, limitations, sustainability, and adaptive strategies of soil and water conservation. Ecol. Eng. 2019, 127, 135–150. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Zhou, S.; Wang, Z. Meta-analysis of no-tillage effect on wheat and maize water use efficiency in China. Sci. Total Environ. 2018, 635, 1372–1382. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Z.; He, G.; Dai, J.; Huang, M.; Wang, S.; Luo, L.; Sadras, V.O.; Hoogmoed, M.; Malhi, S.S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Res. 2017, 209, 88–95. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, D. Nitrogen fertilizer use in China Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Turner, N.C.; Asseng, S. Productivity, sustainability, and rainfall-use efficiency in Australian rainfed Mediterranean agricultural systems. Aust. J. Agric. Res. 2005, 56, 1123. [Google Scholar] [CrossRef]
- Shi, Z.L.; Li, Q.; Cai, J. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice wheat rotation. Field Crops Res. 2012, 127, 241–247. [Google Scholar] [CrossRef]
- Hungria, M.; Franchini, J.C.; Brandão-Junior, O.; Kaschuk, G.; Souza, R.A. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl. Soil Ecol. 2009, 42, 288–296. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Khan, S.; Lin, W.; Ren, A.; Yu, S.; Ullah, S.; Yang, Z.; Gao, Z. Different sowing methods increase the yield and quality of soil water consumption of dryland Winter wheat on the loess plateau China. Appl. Ecol. Environ. Res. 2020, 18, 8285–8308. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Lin, W.; Gao, Z. Effect of Different Sowing Methods on Water Use Efficiency and Grain Yield of Wheat in the Loess Plateau, China. Water 2022, 14, 577. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Wei, J.; Cui, R.; Sun, J.; Qiu, S.; Zhao, S.; Zhou, W. Use of controlled-release urea to improve yield, nitrogen utilization, and economic return and reduce nitrogen loss in wheat-maize crop rotations. Agronomy 2021, 11, 723. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yu, R.; Li, F.; Li, K.; Cao, H.; Yang, N.; Li, M.; Dai, J.; Zan, Y.; et al. Optimal nitrogen input for higher efficiency and lower environmental impacts of winter wheat production in China. Agric. Ecosyst. Environ. 2016, 224, 1–11. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Dai, J.; Dong, H.; Kong, X. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production. Field Crops Res. 2019, 230, 121–131. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, N.; Camberato, J.J.; Gao, J.; Liu, P.; Bin Zhao, B.; Zhang, J. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain: An economic and environmental assessment over 8 years. Sci. Rep. 2019, 9, 19335. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Palta, J.A.; Chen, W.; Chen, Y.L.; Deng, X.P. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agric. Water Manag. 2018, 197, 41–53. [Google Scholar] [CrossRef]
- Noor, H.; Min, S.; Ren, A.X.; Lin, W.; Yang, Z.P.; Sher, A.; Gao, Z.Q. Effect of Seeding rate on soil water consumption yield, and quality under wide-space sowing of dryland Winter wheat on the loess plateau, China. Appl. Ecol. Environ. Res. 2020, 18, 7167–7188. [Google Scholar] [CrossRef]
- Cao, H.; Li, Y.; Chen, G. Identifying the limiting factors driving the winter wheat yield gap on smallholder farms by agronomic diagnosis in North China Plain. J. Integr. Agric. 2019, 18, 1701–1703. [Google Scholar] [CrossRef]
- Ozturk, A.; Aydin, F. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J. Agron. Crop Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G. Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: Durum wheat, sunflower and maize grain yield. Eur. J. Agron. 2016, 77, 166–178. [Google Scholar] [CrossRef]
- Xue, L.; Khan, S.; Sun, M.; Anwar, S.; Ren, A.; Gao, Z. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. Soil Tillage Res. 2019, 191, 66–74. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.; Li, F.; Dai, J. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Sun, L.; Wang, R.; Li, J.; Wang, Q.; Lyu, W.; Wang, X.; Cheng, K.; Mao, H.; Zhang, X. Reasonable fertilization improves the conservation tillage benefit for soil water use and yield of rain-fed winter wheat: A case study from the Loess Plateau, China. Field Crops Res. 2019, 242, 242–253. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.-X.; Gao, Z.-Q.; Wang, P.-R.; Mo, F.; Xue, L.-Z.; Lei, M.-M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the loess plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Wang, D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crops Res. 2017, 217, 213–220. [Google Scholar] [CrossRef]
- Lin, X.; Wang, D. Effects of supplemental irrigation on water consumption characteristics, grain yield and water use efficiency in winter wheat under different soil moisture conditions at seeding stage. Acta Agron. Sin. 2017, 43, 1357–1369. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Weiner, J.; Griepentrog, H.W. Suppression of weeds by spring wheat (Triticum aestivum L.) increases with crop density and spatial uniformity. J. Appl. Ecol. 2001, 38, 784–790. [Google Scholar] [CrossRef]
- Del Blanco, I.A.; Rajaram, S.; Kronstad, W.E. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci. 2001, 41, 670–676. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Li, J.; Zhang, C.; Wei, T.; Yang, Z.; Cai, T.; Zhang, P.; Ding, R.; Jia, Z. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis. Agric. For. Meteorol. 2019, 272, 12–19. [Google Scholar] [CrossRef]
- Slafer, G.A. Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann. Appl. Biol. 2003, 142, 117–128. [Google Scholar] [CrossRef]
- Hochman, Z. Effect of water stress with phasic development on yield of wheat grown in a semi-arid environment. Field Crops Res. 1982, 5, 55–67. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J. Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Juang, C.H.; Dijkstra, T.; Wasowski, J. Loess geohazards research in China: Advances and challenges for mega engineering projects. Ecol. Eng. 2019, 251, 1–10. [Google Scholar] [CrossRef]
- Johnson, M.D.; Lowery, B. Effect of three conservation tillage practices on soil temperature and thermal properties. Soil Sci. Soc. Am. J. 1985, 49, 1547–1552. [Google Scholar] [CrossRef]
- Amos, B.; Shen, H.; Arkebauer, T.J.; Walters, D.T. Effect of previous crop residue on soil surface carbon dioxide flux in maize. Soil Sci. 2007, 172, 589–597. [Google Scholar] [CrossRef]
- Lueschen, W.E. Tillage, row spacing, and planting date effects on soybean following corn or wheat. J. Prod. Agric. 1992, 5, 260. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Microclimate effects of crop residues on biological processes. Theor. Appl. Climatol. 1996, 54, 47–59. [Google Scholar] [CrossRef]
- Sims, A.L.; Schepers, J.; Olson, R.A. Irrigated corn yield and nitrogen accumulation response in a comparison of no-till and conventional till: Tillage and surface-residue variables. Agron. J. 1998, 90, 630–637. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhu, A.; Zhang, J.; Yang, W. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena 2017, 156, 176–183. [Google Scholar] [CrossRef]
- Wagger, M.G.; Denton, H.P. Crop and tillage rotations: Grain yield, residue cover, and soil water. Soil Sci. Soc. Am. J. 1995, 56, 1233–1237. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; McKyes, E. Reflectance of light from the soil surface in relation to tillage practices, crop residues and the growth of corn. Soil Tillage Res. 1993, 26, 99–114. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor, H.; Wang, Q.; Islam, M.; Sun, M.; Lin, W.; Ren, A.; Feng, Y.; Yu, S.; Fida, N.; Dong, S.; et al. Effects of sowing methods and nitrogen rates on photosynthetic characteristics, yield and quality of winter wheat. Photosynthetica 2021, 59, 277–285. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Gao, Z. Effects of Nitrogen on Photosynthetic Productivity and Yield Quality of Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bala, G.; Duffy, P.B. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett. 2006, 33, 4–7. [Google Scholar] [CrossRef]
- Hirsch, A.L.; Wilhelm, M.; Davin, E.L.; Thiery, W.; Seneviratne, S.I. Can climate-effective land management reduce regional warming. J. Geophys. Res. Atmos. 2017, 122, 2269–2288. [Google Scholar] [CrossRef]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Ruan, R. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Gregersen, P.L.; Culetic, A.; Boschian, L.; Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef] [PubMed]
- Kitonyo, O.M.; Sadras, V.O.; Zhou, Y.; Denton, M.D. Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crops Res. 2018, 225, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Liu, H.; Li, W.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
Items | Growing Season | |
---|---|---|
2019–2020 | 2020–2021 | |
Wide-space sowing (WS) | 10-July | 15-July |
Furrow sowing (FS) | 10-July | 15-July |
Drill sowing (DS) | 10-July | 10-July |
Year | Organic Matter (g kg−1) | Alkali-Hydrolysable Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | PH (2.5:1) |
---|---|---|---|---|---|
2018–2019 | 9.90 | 32.2 | 15.73 | 112.5 | 8.2 |
2019–2020 | 9.62 | 33.6 | 16.62 | 108.9 | 8.4 |
2020–2021 | 8.07 | 32.1 | 17.64 | 117.6 | 8.1 |
Treatment | Soil Water | Precipitation | Total Water Consumption | |||
---|---|---|---|---|---|---|
Water Consumption (mm) | Proportion (%) | Amount (mm) | Proportion (%) | |||
FS | N1 | 217.20 ± 1.20 c | 77.68 ± 3.88 ab | 62.40 | 22.32 ± 1.20 bc | 279.60 ± 18.33 c |
N2 | 254.69 ± 0.68 b | 80.07 ± 3.56 a | 62.40 | 19.93 ± 0.68 d | 318.09 ± 16.27 b | |
DS | N1 | 181.44 ± 1.95 d | 73.80 ± 1.99 b | 62.40 | 26.20 ± 1.95 a | 245.84 ± 17.97 d |
N2 | 223.48 ± 1.66 c | 77.36 ± 5.28 ab | 62.40 | 22.64 ± 1.66 b | 288.88 ± 17.24 c | |
WSS | N1 | 253.31 ± 0.51 b | 79.23 ± 4.72 a | 62.40 | 20.77 ± 0.51 cd | 319.71 ± 19.60 b |
N2 | 301.81 ± 1.36 a | 81.74 ± 3.62 a | 62.40 | 18.26 ± 1.36 e | 369.21 ± 19.57 a | |
Single factor average | ||||||
Sowing methods | FS | 235.95 ± 18.00 b | 78.88 ± 1.38 b | - | 21.12 ± 0.80 b | 298.85±21.05 b |
DS | 202.46 ± 19.59 c | 75.58 ± 1.00 c | - | 24.42 ± 0.92 a | 267.36 ± 19.23 c | |
WSS | 277.56 ± 21.62 a | 80.49 ± 1.57 a | - | 19.51 ± 0.83 b | 344.46 ± 18.94 a | |
N fertilizer | N1 | 217.32 ± 0.98 b | 76.91 ± 0.38 b | - | 23.09 ± 0.08 a | 281.72 ± 19.57 b |
N2 | 259.99 ± 1.23 a | 79.72 ± 1.78 a | - | 20.28 ± 1.23 b | 325.39 ± 17.85 a | |
F value | ||||||
S | 78.47 ** | 7.47 * | - | 34.17 ** | 109.09 ** | |
N | 43.76 ** | 3.15 | - | 60.38 ** | 41.22 ** | |
S × N | 0.25 | 0.06 | - | 1.04 | 0.22 |
Sowing Methods | Sowing-Wintering | Wintering-Jointing | Jointing-Anthesis | Anthesis-Maturity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | CA (mm) | CP (%) | CD (mm) | |
WSS | 97.8 a | 23.3 a | 1.24 a | 130.7 a | 30.9 ab | 0.82 a | 49.8 b | 11.9 c | 1.72 b | 142.6 a | 34.0 b | 3.48 a |
FS | 77.8 b | 19.6 b | 0.98 b | 130.9 a | 32.7 a | 0.81 a | 69.0 a | 17.1 a | 2.38 a | 122.9 c | 30.7 c | 3.00 c |
DS | 81.9 b | 21.6 ab | 1.04 b | 111.0 b | 29.0 b | 0.70 b | 52.6 b | 13.62 b | 1.81 b | 137.2 b | 35.8 a | 3.35 b |
Treatment | Accumulation (kg ha−1) | Grain N Content (kg ha−1) | Before Anthesis (kg ha−1) | To Grain Contribution Rate % | N Harvester Index(%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Anthesis | Mature | After Anthesis | Transport Amounts (kg ha−1) | Transport Rate % | Before Anthesis | After Anthesis | ||||
FS | N1 | 71.14 ± 4.35 c | 84.73 ± 4.91 c | 13.59 ± 0.83 c | 69.48 ± 3.23 c | 55.89 ± 2.97 c | 78.56 ± 3.16 bc | 80.44 ± 5.47 a | 19.56 ± 0.708 c | 82.01 ± 1.80 bc |
N2 | 85.23 ± 4.30 b | 101.9 ± 4.05 b | 16.67 ± 0.76 a | 86.61 ± 2.03 b | 69.94 ± 2.66 b | 82.07 ± 4.27 ab | 80.75 ± 6.49 a | 19.25 ± 1.00 cd | 85.02 ± 5.02 ab | |
DS | N1 | 53.83 ± 4.26 d | 65.81 ± 3.54 d | 11.98 ± 0.90 d | 51.33 ± 5.72 d | 39.36 ± 2.93 d | 73.11 ± 3.82 c | 76.67 ± 4.54 a | 23.33 ± 1.36 a | 78.02 ± 1.01 c |
N2 | 69.28 ± 3.95 c | 84.44 ± 4.55 c | 15.16 ± 0.79 b | 69.24 ± 2.06 c | 54.08 ± 2.64 c | 78.06 ± 3.8 bc | 78.11 ± 4.13 a | 21.89 ± 1.36 b | 82.10 ± 2.47 bc | |
WSS | N1 | 84.09 ± 3.08 b | 99.23 ± 3.13 b | 15.13 ± 1.39 b | 84.34 ± 1.92 b | 69.21 ± 3.22 b | 82.30 ± 2.96 ab | 82.06 ± 4.78 a | 17.94 ± 1.10 d | 85.03 ± 5.58 ab |
N2 | 102.43 ± 4.74 a | 119.5 ± 4.09 a | 17.07 ± 0.88 a | 105.16 ± 4.61 a | 88.09 ± 1.10 a | 86.03 ± 1.94 a | 83.77 ± 6.26 a | 16.23 ± 0.98 e | 88.01 ± 4.60 a | |
Single factor average | ||||||||||
Sowing methods | FS | 78.18 ± 4.37 b | 93.31 ± 3.66 b | 15.13 ± 0.86 a | 78.05 ± 6.65 b | 62.91 ± 2.02 b | 80.31 ± 4.69 ab | 80.59 ± 3.83 a | 19.41 ± 0.61 b | 83.50 ± 3.24 b |
DS | 61.56 ± 4.32 c | 75.13 ± 3.52 c | 13.57 ± 0.85 b | 60.29 ± 6.81 c | 46.72 ± 4.48 c | 75.58 ± 2.64 b | 77.39 ± 2.06 a | 22.61 ± 0.77 a | 80.01 ± 2.17 c | |
WSS | 93.26 ± 3.44 a | 109.36 ± 5.12 a | 16.10 ± 1.04 a | 94.75 ± 4.32 a | 78.65 ± 4.17 a | 84.15 ± 3.07 a | 82.91 ± 3.15 a | 17.08 ± 0.43 c | 86.50 ± 3.72 a | |
N fertilizer | N1 | 69.69 ± 1.06 b | 83.25 ± 0.89 b | 13.57 ± 0.11 b | 68.38 ± 2.34 b | 54.82 ± 1.09 b | 77.99 ± 1.20 b | 79.72 ± 1.90 a | 20.28 ± 0.56 a | 81.67 ± 1.60 b |
N2 | 85.65 ± 1.69 a | 101.95 ±1.50 a | 16.30 ± 0.81 a | 87.01 ± 1.52 a | 70.71 ± 1.36 a | 82.04 ± 2.04 a | 80.88 ± 1.45 a | 19.12 ± 0.45 b | 85.02 ± 0.96 a | |
F value | ||||||||||
S | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
N | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
S × N | ns | ns | ** | ns | * | ns | ** | ns | * |
Treatment | Sowing-Wintering | Wintering-Jointing | Jointing-Anthesis | Anthesis-Mature | |
---|---|---|---|---|---|
FS | N1 | 32.91 ± 1.45 c | 38.53 ± 1.59 d | 98.40 ± 9.01 c | 109.76 ± 10.93 d |
N2 | 40.00 ± 1.14 b | 41.28 ± 1.54 b | 113.81 ± 9.21 b | 123.01 ± 11.78 b | |
DS | N1 | 28.64 ± 0.64 d | 36.20 ± 1.75 e | 85.54 ± 8.03 d | 95.45 ± 10.03 e |
N2 | 35.25 ± 0.83 c | 39.38 ±1.35 c | 100.61 ± 9.08 c | 113.65 ±10.52 cd | |
WSS | N1 | 39.58 ± 2.24 b | 40.98 ± 1.85 b | 118.81 ± 8.97 b | 120.33 ± 10.89 bc |
N2 | 44.01 ± 1.69 a | 44.25 ± 2.66 a | 136.93 ± 9.67 a | 144.02 ± 11.87 a | |
Single factor average | |||||
Sowing methods | FS | 36.455 ± 1.92 b | 39.91 ± 1.50 b | 126.11 ± 8.53 b | 116.39±10.41 b |
DS | 31.945 ± 1.48 c | 37.79 ± 1.42 c | 113.08 ± 8.89 c | 104.55 ± 11.01 c | |
WSS | 41.795 ± 1.31 a | 42.61 ± 0.98 a | 147.87 ± 8.07 a | 132.18 ± 7.76 a | |
N fertilizer | N1 | 33.71 ± 1.02 b | 38.57 ± 1.73 b | 120.92 ± 8.83 b | 108.51 ± 11.02 b |
N2 | 39.75 ± 1.46 a | 41.64 ± 1.85 a | 137.12 ± 9.35 a | 126.89 ± 12.04 a | |
F value | |||||
S | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
S × N | ns | ** | ns | * |
Treatment | 5 cm Soil Accumulated Temperature | 10 cm Soil Accumulated Temperature | |
---|---|---|---|
FS | N1 | 1018.03 ± 57.05 cd | 1116.45 ± 57.46 c |
N2 | 1070.37 ± 58.60 bc | 1115.45 ± 62.16 b | |
DS | N1 | 959.23 ± 56.86 d | 1045.34 ± 57.88 c |
N2 | 1045.91 ± 62.60 c | 1151.71 ± 62.29 a | |
WSS | N1 | 1090.01 ± 61.66 b | 1172.21 ± 62.73 a |
N2 | 1139.14 ± 64.12 a | 1194.61 ± 59.88 a | |
Single factor average | |||
Sowing methods | FS | 1044.20 ± 57.82 b | 1115.95 ± 59.81 b |
DS | 1002.57 ± 59.73 c | 1098.53 ± 60.08 c | |
WSS | 1114.58 ± 62.89 a | 1183.41 ± 61.31 a | |
N fertilizer | N1 | 1022.42 ± 58.52 b | 1111.33 ± 59.36 a |
N2 | 1085.14 ± 61.77 a | 1153.92 ± 61.44 a | |
F value | |||
S | 114.71 * | 4.49 * | |
N | 42.37 * | 45.80 | |
S × N | 6.48 | 64.21 |
Treatment | Yield (kg ha−1) | Ear Number (×104 ha−1) | Ear Grain Number | 1000-Grain Weight (g) | |
---|---|---|---|---|---|
FS | N1 | 3202.50 ± 243.95 c | 311.63 ± 23.36 d | 30.79 ± 1.61 b | 39.09 ± 1.55 b |
N2 | 3517.50 ± 258.09 b | 370.88 ± 9.26 b | 31.79 ± 0.35 ab | 37.63 ± 0.28 b | |
DS | N1 | 2711.64 ± 163.29 d | 273.44 ± 49.85 e | 31.19 ± 1.27 ab | 36.48 ± 0.68 c |
N2 | 3101.70 ± 233.60 c | 318.43 ± 12.73 d | 32.00 ± 0.18 a | 36.27 ± 0.24 c | |
WSS | N1 | 3525.00 ± 127.28 b | 348.00 ± 54.09 c | 30.78 ± 0.25 b | 41.65 ± 1.11 a |
N2 | 4117.50 ± 215.67 a | 429.38 ± 24.4 a | 31.26 ± 0.42 ab | 36.50 ± 0.66 c | |
Single factor average | |||||
Sowing ways | FS | 3360.00 ± 158.78 b | 341.25 ± 16.29 b | 31.29 ± 0.73 a | 38.36 ± 0.55 a |
DS | 2906.67 ± 169.67 c | 295.93 ± 17.93 c | 31.60 ± 0.96 a | 36.38 ± 0.74 b | |
WS | 3821.25 ± 128.50 a | 388.69 ± 12.09 a | 31.02 ± 0.96 a | 39.08 ± 0.92 a | |
N fertilizer | N1 | 3146.38 ± 180.63 b | 311.02 ± 15.05 b | 30.92 ± 0.98 a | 39.07 ±0.89 a |
N2 | 3578.9 ± 122.72 a | 372.89 ± 16.15 a | 31.68 ± 0.71 a | 36.80 ± 0.84 b | |
F value | |||||
S | ** | ** | ** | ** | |
N | ** | ** | ** | ** | |
S × N | * | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, P.; Noor, H.; Shah, A.A.; Yan, Z.; Sun, P.; Zhang, L.; Li, L.; Jun, X.; Sun, M.; Elansary, H.O.; et al. Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.). Agronomy 2023, 13, 1528. https://doi.org/10.3390/agronomy13061528
Ding P, Noor H, Shah AA, Yan Z, Sun P, Zhang L, Li L, Jun X, Sun M, Elansary HO, et al. Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.). Agronomy. 2023; 13(6):1528. https://doi.org/10.3390/agronomy13061528
Chicago/Turabian StyleDing, Pengcheng, Hafeez Noor, Anis Ali Shah, Zhouzuo Yan, Peijie Sun, Limin Zhang, Linghong Li, Xian Jun, Min Sun, Hosam O. Elansary, and et al. 2023. "Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.)" Agronomy 13, no. 6: 1528. https://doi.org/10.3390/agronomy13061528
APA StyleDing, P., Noor, H., Shah, A. A., Yan, Z., Sun, P., Zhang, L., Li, L., Jun, X., Sun, M., Elansary, H. O., & Gao, Z. (2023). Nutrient Cycling and Nitrogen Management Impact of Sowing Method and Soil Water Consumption on Yield Nitrogen Utilization in Dryland Wheat (Triticum aestivum L.). Agronomy, 13(6), 1528. https://doi.org/10.3390/agronomy13061528