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Abstract: Phytosanitary control of crops requires the rapid mapping of diseases to enable manage-
ment attention. This study aimed to evaluate the potential of vegetation indices for the detection
of sugarcane mosaic disease. Spectral indices were applied to hyperspectral images collected by an
unmanned aerial vehicle (UAV) to find the areas affected by the mosaic virus in sugarcane. Identifying
indices capable of detecting diseased plants in agricultural crops supports data processing and the
development of efficient tools. A new index was designed based on spectral regions, which presents
higher differences between healthy and mosaic virus-infected leaves to enhance hyperspectral image
pixels representing diseased plants. Based on the data generated, we propose the anthocyanin red
edge index (AREI) for mosaic virus detection in sugarcane plantations. An index that can adequately
identify sugarcane infected by the mosaic virus may incorporate wavelengths associated with varia-
tions in leaf pigment concentrations as well as changes in leaf structure. The indices that assessed to
detect plants infected with the sugarcane mosaic virus were the normalised difference vegetation
index (NDVI), normalised difference vegetation index red edge (NDVI705), new vegetation index
(NVI), ARI2 and AREI. The results showed that AREI presented the best performance for the detection
of mosaic in sugarcane from UAV images, giving an overall accuracy of 0.94, a kappa coefficient
of 0.87, and omission and inclusion errors of 2.86% and 10.52%, respectively. The results show the
importance of wavelengths associated with the concentration of chlorophyll and anthocyanin and
the position of the red edge for the detection of diseases in sugarcane.

Keywords: vegetation pigments; phytopathology; precision agriculture; crop monitoring; remote
sensing; UAV

1. Introduction

Agricultural production strategies have changed considerably in recent years due to
economic decisions aimed at maximising profits according to environmental guidelines
for the safer and more efficient use of chemicals in crops [1]. Identifying areas affected by
diseases in plantations is essential in adopting proper management attention.

Phytosanitary problems in sugarcane plantations around the world were firstly identi-
fied in 1840 with the rot of sugarcane in Mauritius [2]. In the 1930s, a study was carried
out to solve the problems caused by sugarcane gumming disease and mosaics, the first
diseases listed in sugarcane cultivation in Brazil [3]. Brazil is the world leader in sugarcane
production, and the use of resistant varieties usually controls diseases.

The current scientific efforts have not yet been able to produce a hybrid species
resistant to all sugarcane diseases that have characteristics that meet the expectations of
agroindustry production [4]. Thus, disease control based on resistant sugarcane varieties
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is a complex problem, as varieties susceptible to one or more diseases will always appear
in cultivation. Additionally, as agents of diseases are living organisms, they can change,
adapt to the environment, become more resistant, and cause damage to the agroindustry.

The development of methodologies that allow for the rapid detection of disease,
selecting the correct management focus, and improving pesticide application technolo-
gies are fundamental to increasing productivity and bringing advances to the sugarcane
industry [5].

In this sense, agricultural crops have been widely characterised, classified, modelled,
and mapped using hyperspectral remote sensing data [6]. There are several sensor systems
based on RGB, multispectral, hyperspectral, thermal, fluorescence and 3D sensors for
the detection of diseases in precision agriculture [7]. Mahlein [7] reviewed the literature
about sensing techniques for plant diseases detection and concluded that RGB and hy-
perspectral sensors demonstrated potential to identify specific diseases. Thus, multi- and
hyperspectral images can be used to monitor biochemical and biophysical parameters of
vegetation and agricultural crops for stress detection in plants [8]. The information that
characterises the crops can be extracted by images represented in “map-driven” data that
delimit “management zones”, allowing for the realisation of differentiated treatment for
different zones [9].

Remote sensing provides a means for identifying and quantifying the differences in
the spectral characteristics of surfaces affected by biotic and abiotic stresses and constitutes
a tool for monitoring plant health [10]. The spectral reflectance changes in these images are
the basis for several vegetation indices that have been developed [10]. Vegetation indices are
mathematical models capable of indicating certain characteristics of vegetation [11,12]. The
indices are used for various purposes, including the image-based estimation of pigments
concentration such as chlorophyll, carotene, and anthocyanin, as well as in the detection
of phenological stages, nutritional stress, production estimation, and crop phytosanitary
conditions [13–16].

Vegetation indices centred on specific wavelengths contribute to the identification of
plant health status; changes in specific regions of the electromagnetic spectrum result from
the interaction between incoming radiation and plant pigments, indicating environmental
changes, plant senescence phases, and stress occurrence, even when caused by diseases
or pests [17,18]. Plant stress and diseases cause a reduction in the concentration of photo-
synthetic pigments and the formation of necrotic regions, and these factors contribute to
changes in the spectral responses of the plant [9].

A deficiency of nutrients in sugarcane, such as nitrogen and potassium, also causes
changes to the spectral response of the plant [19]. Bands centred at 410, 430, 720, 754
and 1216 nm have been used to predict the sugarcane nutritional quality, which is highly
correlated with the plant’s nitrogen concentration [20].

The relationships between anthocyanin, stress and senescence are important indicators
for some types of vegetation [21–24]. In addition, the 530 nm is a wavelength that can be
an element of an index, as proposed by Gitelson [21], who used the 550 nm wavelength.
Chlorophyll a concentration changes when plants are subjected to stress. Many of these
indices are based on the change in plant pigment concentration. Changes in the plant
structure can occur both in the red edge position and in the NIR region in some situations.
Thus, it is clear from these previous studies that vegetation indices may identify plant
responses under stress.

When the plant is attacked by phytopathogenic agents, such as fungi, viruses, or
bacteria, or undergoes some type of stress, it naturally activates its defence mechanisms,
creating physical and chemical barriers. One such mechanism is systemic acquired resis-
tance [25,26]. Viswanathan et al. [27] argued that anthocyanin might be a biochemical factor
in systemic resistance induced in sugarcane: when examining red rot, a fungal disease,
the researchers verified that the anthocyanin concentration is greater near the inoculation
sites of the phytopathogenic agent, suggesting that the plant suffering the attack starts to
accumulate more anthocyanin.
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Anthocyanins exhibit some properties that act as a defence mechanism in the plant
against pathogen attack. These chemicals provide repellence against herbivores and par-
asites, and their optical properties serve as a visual signal to herbivores, indicating the
presence of toxic or unpleasant elements, thus preventing the plant from being attacked [28].
In addition, anthocyanins have been shown to protect plants from pathogenic microor-
ganisms, serving as antiviral, antibacterial and antifungal purposes. Thus, anthocyanin is
responsible for disease resistance in several types of agricultural crops [27].

Furthermore, anthocyanin may indicate senescence and stress in some plant species [21].
It can be concluded that, after being infected by the disease, the sugarcane plant will produce
a greater amount of anthocyanin. The presence of this pigment can be detected with the
ARI2 index using the hyperspectral images.

The main purpose of this work was to design an index for sugarcane mosaic virus
identification in remote sensing images. An adequate index to identify sugarcane crops
infected by the mosaic virus may incorporate wavelengths associated with variations in
leaf pigment concentrations and changes in leaf structure. These indices are needed to
design suitable sensors for taking images in the appropriate spectral bands for sugarcane
crop monitoring.

Towards this goal, a set of known indices and the one specifically designed in this
work, were evaluated. One index was designed based on spectral regions which present
higher differences between healthy leaves and those infected with the mosaic virus to
enhance hyperspectral image pixels representing sugarcane plants with the disease. These
specific spectral regions can be known as sensitive spectral regions. The anthocyanin red
edge index (AREI) is proposed for mosaic virus detection. In addition, this work presents a
comparative analysis of these designed sugarcane indices with other vegetation indices to
enhance the identification of sugarcane plants affected by diseases.

The vegetation indices were designed considering the following steps: spectral analy-
sis of sugarcane leaves, a field study to acquire hyperspectral images using an unmanned
aerial vehicle (UAV), processing hyperspectral images, and the application of vegetation
index in hyperspectral images.

The contributions of this work were the development of a vegetation index and a
solution for monitoring, mapping, and quantifying the damaged sugarcane plants infected
with mosaic virus. Although several vegetation indices are available, including spectral
indices related to anthocyanin variation, the proposed solution is expected to be more
sensitive to inherent variations in the spectral behaviour of sugarcane plants infected with
mosaic virus. The solution based on the spectral analysis of healthy and diseased leaves
and on the combination of wavelengths sensitive to changes in the plant’s spectra, using
normalised differences, could be applied in other cases, constituting a contribution to
produce other vegetation indices. The design of new vegetation indices is justified by
the flexibility when designing new low-cost, lightweight multispectral cameras to detect
crop diseases.

General Description of Sugarcane Mosaic Virus (SCMV)

Sugarcane mosaic virus is one of the main viral diseases in sugarcane cultivation in
Brazil and is an important virus in Europe and Asia for maise production [29]. From 1922 to
1930, a mosaic epidemic damaged the sugarcane industry in the state of São Paulo (Brazil),
causing a 93% reduction in sugarcane production and a 90% reduction in the production
of alcohol [4]. The virus is also found in grasses such as maise (Zea mays L.), sorghum
(Sorghum bicolour) and numerous other plants other than aphids. SCMV can be transmitted
mechanically or through infected seedlings [4,29].

The mosaic symptoms include chlorosis in a linear arrangement, in the middle or at the
base of the leaves, which develops into elongated areas, increasing as the leaf gets older [29].
According to Sanguino [4], the disease is characterised by an alteration in the normal green
colour of the leaf, resulting in a lighter or yellowish green colour that forms spots along the
whole length of the leaf blade. It may be associated with changes in pigments (chlorophyll
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versus carotenoid), resulting in alterations in the visible spectrum. The infection can be
accompanied by necrosis of the leaf tissue, associated with changes in near-infrared spectra.

2. Materials and Methodology

The whole experiment methodology can be divided into three parts:

- The first step provided support for the configuration of the airborne hyperspectral
imaging system operated onboard a UAV.

- The second step comprised the UAV flight study and the field work that provided
support for image acquisition with the camera onboard the UAV. Spectral reference
samples were also measured to create a spectral library.

- The last step was the comparison of the proposed indices for sugarcane disease with
vegetation indices found in the literature and verifying whether the proposed indices
presented an improved potential for the detection of diseases in sugarcane. The
conclusions were validated using hyperspectral UAV imagery.

The first step of this study was the spectral analysis of healthy and diseased sugarcane
leaves and the index design. The aim of this experimental step was to analyse the spectral
differences of sugarcane leaves infected by different pathogenic agents based on spectro-
radiometric measurements in the field and laboratory and to identify sensitive spectral
regions that can aid in the identification of diseases in sugarcane. Field spectroscopy tech-
niques allow for the extraction of information on plant health and physiology, providing
the most detailed spectral characteristics from narrow and continuous spectral bands [30].

Identifying the appropriate spectral regions (in this study, the visible-near infrared
range was used) for distinguishing diseases in sugarcane was fundamental for selecting
spectral regions to configure the hyperspectral camera and formulate the indices for disease
detection in sugarcane crops. Therefore, for the experiments, the camera was configured to
reconstruct the spectral reflectance function with a higher level of spectral details in the
regions where the diseased leaves can present more significant differences compared to the
leaves of healthy plants.

2.1. Study Area

Two study areas were selected to carry out the experiments (sugarcane crop 1 and
sugarcane crop 2), located in the state of São Paulo, Brazil.

The sugarcane crop 1 was in the municipality of Euclides da Cunha Paulista (Inter-
mediate geographic region of Presidente Prudente). The planted area of sugarcane in 2021
was the municipality covers 4094 hectares (40.94 km2) [31]. The coordinates of the study
area in the WGS84 system are 22◦23′51′′ S, 52◦31′3.90′′ W. The sugarcane crop 2 was in
the municipality of Brodowski (Intermediate geographic region of Ribeirão Preto). The
planted area of sugarcane in the municipality covers 14,394 hectares (143.94 km2) [31], and
the coordinates of the study area in the WGS84 system are 21◦6′54′′ S, 47◦34′43′′ W.

In sugarcane crop 1, there were plants of a mosaic-susceptible variety in an early stage
of mosaic infection, and in sugarcane crop 2, there was another sugarcane variety also
mosaic-susceptible, in a more advanced stage of mosaic infection.

Due to the field limitations and for safety reasons, a few samples of healthy sugarcane
leaves (12 samples) and samples of leaves infected with the mosaic virus of sugarcane
(12 samples) were collected from the two study areas (Figure 1). In sugarcane crop 1,
two healthy and infected samples were collected (samples 11 and 12, Figure 1a), and
in sugarcane crop 2, ten healthy and infected samples were collected (samples 1 to 10,
Figure 1b).
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Figure 1. Study areas. (a) Sugarcane crop 1, located at Euclides da Cunha Paulista, with an early stage
of mosaic infection. (b) Sugarcane crop 2 at Brodowski, with an advanced stage of mosaic infection.

Spectroradiometric measurements of healthy and infected sugarcane samples were
collected aiming at: (1) producing reference material for the construction of the spectral
library used in the radiometric calibration process of the hyperspectral images; and (2) for
the identification of the sensitive wavelengths, which enhances differences between healthy
and diseased leaves (see details in Section 2.2).

2.2. Index Design for Identifying Sugarcane Mosaic Virus

Figure 2 shows the flowchart of indices design steps, which are detailed in this section.
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Clear differences between the healthy and infested leaves appeared, as can be visu-
alised in Figure 3.
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Figure 3. (a) Healthy leaf of sugarcane cultivar. (b) Leaf infected with mosaic virus.

Spectral measurements were carried out in laboratory conditions. The FieldSpec®

UV/NIR spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) with a FOV
of 1◦ covering a spectral range of 325 nm to 1075 nm was used for spectral measurement.
The samples were placed on a black background to avoid transmission of light through the
samples and introduce uninterrupted reflections back to the sensor. A Spectralon® board
was used to calibrate the spectroradiometer, and a sample of healthy leaves and leaves
infected with mosaic was measured.

Ten spectral measurements were made for each sample with the spectroradiometer,
and the average spectral data were processed to generate the estimated biconical reflectance
factor (BCRF) [32,33].

Spectral processing was carried out to minimise the effects of noise coming from the
atmosphere and electronics. A mean filter smoothing with 10 sampled wavelength size
was applied to the original BCRF spectrum based on the average set of values within a
wavelength window. This processing step provided smoothed spectra.

To identify sensitive spectral regions that could distinguish the healthy and diseased
leaf, differences were calculated between the spectra of each kind of leaf, resulting in a
spectral difference based on Carter [34]. For the sample of leaves, reflectance differences
were calculated by subtracting the mean leaf reflectance of a healthy leaf from that leaf
infected by mosaic at each wavelength. The average spectra of the two study cases were
used in this analysis. Thus, healthy leaves were compared to the leaves infected by mosaic.

The sensitivity analysis, as detailed by Carter [34], was carried out by dividing the
difference between the BCRF spectra by that of a healthy leaf. This procedure was carried
out to identify the wavelength in which the BCRF showed a greater pathogenic influence.

Upon completing the spectral analysis stage, the position of the red edge was deter-
mined for the leaf samples by calculating the first derivative in the region ranging from 690
nm to 740 nm. The highest derivative representing the red edge position is found within
the above wavelength range [35].

Wavelengths that presented the largest differences between the healthy and diseased
leaves were selected to be included in the index design.

Indices using the spectral data of the samples of sugarcane leaves were calculated
using some of the BCRF identified as sensitive to the presence of pathogens in sugarcane.

2.3. Index Evaluation

Figure 4 shows a flowchart of the index evaluation. The phases included the hyper-
spectral images collection using a UAV, hyperspectral image processing, application of
indices, and analysis of results.
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2.3.1. UAV Image Collection and Processing

Hyperspectral images were acquired with the Rikola hyperspectral camera (Figure 5a)
onboard a multirotor UAV model SX8 (Figure 5b) with eight propellers flying over sugar-
cane crop 1.
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Figure 5. (a) Rikola hyperspectral camera, (b) multirotor UAV model SX8.

The Rikola model DT-2014 hyperspectral camera with a Fabry–Pérot interferometer
(FPI) (Figure 5a) was used to acquire images in the spectral range of 500 to 900 nm and
with 25 spectral bands. The camera bands can be set automatically or manually (Rikola
Ltd., Oulu, Finland, 2014) [36]. In this case, the bands of the hyperspectral camera were
configured based on the spectral analysis of the samples of sugarcane leaf, centred at the
following wavelengths (in nanometers) and full widths at half maximum (FWHM): 506.1
(15.6); 520.0 (17.5); 535.5 (16.4); 550.8 (15.2); 564.7 (16.6); 580.1 (15.1); 591.5 (14.7); 605.6 (13.8);
619.5 (14.6); 629.9 (15.9); 650.3 (24.1); 660.3 (24.1); 670.0 (21.7); 680.1 (21.0); 689.6 (21.7); 699.6
(21.9); 709.7 (20.8); 720.0 (20.8); 729.6 (20.8); 740.5 (20.6); 749.7 (19.4); 770.5 (19.4); 790.1 (18.5);
810.2 (17.7); 829.9 (18.6).

The flight height was 160 m, providing images with a ground sample distance (GSD)
of approximately 0.11 m. Guo et al. [37] concluded that the optimal spatial resolution
aiming for diseases monitoring in crops was 0.1 m. During the field study, targets were
installed for the geometric and radiometric correction processes. Ground control points
were surveyed with a global navigation satellite system (GNSS) receiver to obtain their
accurate coordinates. Radiometric targets were assembled with ethylene vinyl acetate
(EVA) in white, grey, and black colours. The EVA targets used for radiometric calibration
were measured using the FieldSpec HandHeld® UV/NIR spectroradiometer model ASD,
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obtaining their spectra in the range from 325 nm to 1075 nm with a sampling interval of
1.6 nm and FOV of 1◦ [38].

The hyperspectral image cubes underwent a dark current correction process using a
dark target to eliminate noise from the camera electronics. As the images presented spatial
displacement between spectral bands, it was also necessary to perform coregistration
among these spectral band images. Given the geometric calibration data and the initial
coordinates of the exposure stations by GNSS receiver, the spectral bands’ images were
processed using the Metashape software to compute the exterior orientation parameters
with the bundle block adjustment method. A digital surface model (DSM) was produced
so that the geometry of the acquisition was retrieved.

The radiometric correction process for the hyperspectral images was performed in
the software developed by Honkavaara [39], which considers illumination differences and
performs a transformation to a standard acquisition geometry, and consequently minimises
the effect of bidirectional reflectance distribution function (BRDF) considering the viewing
angle of each pixel in relation to the canopy surface as well as the angle of incidence of the
solar radiation based on Walthall Model [39].

The spectral bands’ images were orthorectified using exterior and interior orientation
parameters, the digital surface model (DSM) with 0.50 m GSD and radiometric correction
parameters [40–42].

Using radiometric reference targets, the reflectance calibration of the orthomosaic
of hyperspectral images was performed with the empirical line method. Empirical line
calibration is based on linear regression, in which the factors of transformation param-
eters of digital numbers (DNs) into physical values, in this case, hemispherical conical
reflectance factors (HCRFs) [43] are calculated. For more details on hyperspectral image
cubes processing, see Moriya et al. [44].

2.3.2. Application of Vegetation Indices

Vegetation indices are obtained by radiometric measurements supporting the extrac-
tion of information about vegetation characteristics. In this experiment, the ability of some
indices to detect diseases was assessed. Table 1 shows the indices applied to the orthomo-
saic of the hyperspectral images. A histogram contrast stretching was applied to the indices
images. Considering the pixels values distribution in this histogram, the minimum and
maximum values were adjusted based on the percent clip. The interval slicing produced
a pseudo-colour image, and colour values were associated with the thematic classes of
the experimental area. The highlighted areas by the indices were compared to the field-
checked sample points to verify the potential of vegetation indices to detect diseased areas
affected by the mosaic virus.

Table 1. Vegetation indices used in this experiment.

Indices Formulation Autor

Simple ratio (SR) SR = pnir
pred

Birth and Macvey, 1968 [45]

NDVI NDVI = ρnir−ρred
ρnir+ρred

Rouse et al., 1974 [46]

Normalised difference vegetation index red
edge (NDVI705) NDVI705 = ρ750−ρ705

ρ750+ρ705
Gitelson and Merzlyak, 1994 [47]

Carotenoid reflectance index 1 (CRI1) CRI1 = 1
ρ510
− 1

ρ550

Gitelson et al., 2002 and Gitelson et al.
(1997) Gitelson and Merzlyak
(1994) [48–50]

Photochemical reflectance index (PRI) PRI = ρ531−ρ570
ρ531+ρ570

Gitelson et al., 2002 [48]

Carotenoid reflectance index 2 (CRI2) CRI2 = 1
ρ510
− 1

ρ700
Gitelson et al., 2002 [48]

Plant senescence reflectance index (PSRI) PSRI = ρ680−ρ500
ρ750

Merzlyak et al., 1999 [50]

Modified chlorophyll absorption ratio index
(MCARI) MCARI = [(ρ700 − ρ670)− 0.2(ρ700 − ρ550)] ∗

(
ρ700
ρ670

)
Daughtry et al., 2000 [51]
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Table 1. Cont.

Indices Formulation Autor

New vegetation index (NVI) NVI = ρ777−ρ747
ρ673

Gupta et al., 2002 [52]

Transformed chlorophyll absorption
reflectance index (TCARI) TCARI = 3[(ρ700 − ρ670)− 0.2(ρ700 − ρ550)] ∗

(
ρ700
ρ670

)
Haboudane et al., 2002 [53]

Triangular vegetation index (TVI) TVI = 0.5
(
120
(
ρnir − ρgreen

))
− 200

(
ρred − ρgreen

)
Broge and Leblanc, 2000 [54]

Anthocyanin reflectance index 1 (ARI1) ARI1 = 1
ρ550
− 1

ρ700
Gitelson et al., 2001 [55]

Anthocyanin reflectance index 2 (ARI2) ARI2 = ρnir

(
1

ρ550
− 1

ρ700

)
Gitelson et al., 2001 [56]

Optimised soil adjusted vegetation index
(OSAVI) OSAVI = 1.5∗(ρnir−ρred)

(ρnir+ρred+0.16)
Rondeaux et al., 1996 [55]

Red edge position determination (REP) REP = 700 + 40
[

ρred edge−ρ700
ρ740−ρ700

]
Clevers, 1994 [56]

2.3.3. Statistical Analysis

To verify the accuracy of the classification results based on different indices, confusion
and statistical matrices of the kappa coefficient (Equation (1)) were used [57–59].

KAPPA =
∑

q
i=1 pii −∑

q
i=1 pi+p+i

1−∑
q
i=1 pi+p+i

(1)

where N is the number of classification pixels in the class q, Nij is the total of lines, and Mi

is the total of columns, pii =
Nij
N , pi+ = Ni

N e p+i =
Mi
N .

q
∑

i=1
pii is the main diagonal sum,

and
q
∑

i=1
pi+p+i is the sum of the product of the elements of the marginal rows and columns.

Field samples of diseased sugarcane and other classes, including samples of healthy
sugarcane, bare soil, and weeds, were used. In the accuracy analysis, 80 sample points
selected in the field were used (35 samples of healthy, 35 samples of sugarcane infected
with mosaic, and 10 samples of others). Figure 6 shows the spatial distribution of plants
inspected in the sugarcane crop. Due to access limitations resulting from the high density
of the sugarcane crop, it was only possible to check areas close to the edges.
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Figure 6. Spatial distribution of validation samples. Green dots represent healthy samples, red
dots represent samples infected with mosaic and blue dots represent other types of samples (bare
soil/weed).

At the crop, it was also possible to verify the presence of weeds and some areas with
failures in the plantation line. Figure 7 shows an example of the plants infected with the
mosaic virus. Note that diseased plants were smaller than healthy plants.
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3. Results
3.1. Spectral Analysis

The sugarcane spectra measured in the laboratory with a spectroradiometer are de-
picted in Figure 8. Figure 8a shows the spectra of healthy samples, and Figure 8b the
spectra of sugarcane infected with mosaic. As can be seen in Figure 8d, curves attenuate
only around the peak of 550 nm (the green light wavelength region). In the case of sugar-
cane samples infected with mosaics, this attenuation was due to the reduced amount of
chlorophyll in the leaves.

The sample infected with mosaic (Figure 8d) was close to the spectral signature of a
healthy sugarcane leaf, differing in intensity primarily in the spectral region from 400 nm to
500 nm. Furthermore, there was a decrease in BCRF in the green and red spectral regions.

In the range from 535 to 700 nm, the sample infected with mosaic virus showed similar
features, differing only in BCRF intensity. These regions are believed to be significant
for differentiating between healthy plants and plants with some sort of alteration, either
resulting from a pathogenic origin or due to senescence. In the visible spectral region from
400 nm to 700 nm, the samples infected with mosaic showed lower BCRF values than
healthy leaves.

Concerning the near-infrared region, all the samples showed high BCRF values.
Among the samples analysed, the mosaic-infected leaf exhibited the lowest values be-
cause the measurements were carried out in the laboratory, free of atmospheric influence,
which could affect all the other sugarcane leaf samples. Therefore, to detect spectral fea-
tures in a way to differentiate between diseased and healthy plants, the BCRF difference
was calculated by subtracting the BCRF values of a healthy leaf from the values of leaves
infected with mosaics (Figure 9a). Overall, there was a similarity in the BCRF difference
curves of healthy leaves and those infected with mosaic.

A peak in the region of 530 nm was observed in the BCRF difference curve between
the healthy sample and the one infected with mosaics (Figure 9a). Additionally, a dip in
the BCRF difference curves between the healthy leaves and those infected with mosaics
can be seen near 665 nm. This change in this wavelength appears either as a peak or a dip
due to the absorption of chlorophyll a. This feature of maximum absorption of the pigment
appears in the region of 660 nm.

For some BCRF difference curves between the healthy leaves and those infected with
mosaic, other dips were identified at 705 nm wavelength.

A sensitivity analysis, as described earlier by Carter [33], was carried out to identify the
wavelengths at which the BCRF exhibited the greatest relative sensitivity values (Figure 9b).
A peak at 530 nm and a dip at 680 nm can be seen in the sensitivity curve for the sample
infected with mosaics. There is a plateau in the range from 415 nm to 620 nm and a dip near
the 700 nm region, both of which enable the identification of the sugarcane leaf samples
infected with mosaics.
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The sample infected with mosaic (Figure 8d) was close to the spectral signature of a 

healthy sugarcane leaf, differing in intensity primarily in the spectral region from 400 nm 

Figure 8. Sugarcane leaves spectra measured using a spectroradiometer. (a) Sugarcane healthy
spectra (H-healthy). (b) Sugarcane with mosaic virus spectra (M-Mosaic). (c) Mean spectra with
standard deviation error of sugarcane healthy and infected with mosaic virus. (d) Mean spectra of
healthy sugarcane and infected with mosaic virus.
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The most relevant features of the spectral analysis of the sugarcane leaves infected
with different pathogens can be summarised as follows: A peak in the 530 nm region was
observed in the BCRF difference; 700 nm is a significant region because it is located near
the red edge position for sugarcane infected with mosaics (705 nm).

Based on this analysis, an index was formulated by combining the HCRF of those
wavelengths that are more sensitive to pathogens in sugarcane for mosaic virus detection,
and it was proposed as the anthocyanin red edge index (AREI). This index was formulated
to be applied and tested with hyperspectral image bands, considering the HCRF measured.
In this sense, the wavelengths were chosen from available bands in the hyperspectral image.

This index for sugarcane mosaic detection also comprises the normalised ratio of
two wavelengths, 530 nm and 700 nm. In this case, the 530 nm wavelength was chosen
because it presented a prominent peak in the spectral analysis of the HCRF difference
between healthy leaves and those infected with mosaics. The 530 nm wavelength was
selected because the highest sensitivity in the spectral analysis was achieved near this
region (531 nm). The wavelength 700 nm was used because it is close to the red edge region
(705 nm), as it was identified for sugarcane infected with mosaics in the spectral analysis.

Anthocyanin Red Edge Index (AREI) =
HCRF700 − HCRF530

HCRF700+HCRF530
(2)
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3.2. Application of Indices in Hyperspectral Images

Figure 10 presents the resulting vegetation indices maps obtained from the hyper-
spectral mosaics. For visual analysis, infected areas are highlighted in yellow. The indices
that most emphasised the regions infected with sugarcane mosaic (Figure 10) were the
NDVI, NDVI705, NVI, ARI2 and AREI. The PRI, CRI1 and CRI2 indices emphasised the
hyperspectral image noise, and the MCARI, TCARI and REP indices did not detect the
mosaic in sugarcane orthomosaics. The AREI index had a better performance in identifying
the regions affected by mosaic since it is based on the wavelengths sensitive to the presence
of this virus.
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Figure 10. Results of classification by density slicing of vegetation indices for areas of sugarcane
infected with mosaic. (a) SR, (b) NDVI, (c) NDVI705, (d) PRI, (e) CRI1, (f) CRI2, (g) PSRI, (h) NVI,
(i) TVI, (j) MCARI, (k) TCARI, (l) ARI1, (m) ARI2, (n) OSAVI, (o) REP, (p) AREI.

For each classified index map, the global accuracy (Congalton et al. [60]; Landis and
Koch [61]) of the mapping and the kappa coefficient were calculated (Table 2). The highest
kappa coefficient values were obtained for the AREI (a global accuracy of 0.94 and kappa
coefficient of 0.87), ARI2 (a global accuracy of 0.85 and kappa coefficient of 0.69), NVI (a
global accuracy of 0.78 and kappa coefficient of 0.56) and NDVI705 (a global accuracy of
0.71 and kappa coefficient of 0.41).

Table 2. Global accuracy and kappa coefficients of vegetation index result for mosaic-infected
sugarcane areas.

Indices Global Accuracy Kappa Omission Error of
Sugarcane with Mosaic (%)

Inclusion Error of Other
Classes (%)

SR 0.63 0.27 20.00 45.09
NDVI 0.70 0.35 60.00 17.64

NDVI705 0.71 0.41 34.29 32.35
CRI1 0.58 0.13 54.28 48.38
PRI 0.69 0.35 42.85 33.33

CRI2 0.49 −0.06 68.57 60.71
PSRI 0.46 −0.09 60.00 61.11
NVI 0.78 0.56 8.57 31.91
TVI 0.66 0.33 28.57 40.47

MCARI 0.63 0.22 54.29 40.74
TCARI 0.45 −0.19 42.85 41.17
ARI1 0.69 0.40 5.71 41.07
ARI2 0.85 0.69 20.00 15.15

OSAVI 0.68 0.35 28.57 39.02
REP 0.50 0.09 5.71 53.52

AREI 0.94 0.87 2.86 10.52

Even presenting an overall accuracy value of 0.69, the classification image based on
PRI was considered noisy. Similarly, CRI1, MCARI, TCARI, and REP indices provided
poor results.

Considering the omission and inclusion errors, the AREI provided the best perfor-
mance, with 2.86% and 10.52%, respectively. Analysing the kappa coefficient of the indices,
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the ARI2 had good and consistent results, with omission and inclusion errors of 20.0%
and 15.15%.

4. Discussions

The sugarcane spectra showed features typical of vegetation. The general characteristic
of the spectral curve of the sugarcane canopy was a low reflectance in the visible light
region (400–700 nm), peaking between 550 nm and 560 nm, the wavelength regions of green
light [62]. Hence, reflectivity and transmittance are observed to be low due to the absorption
of pigments in the sugarcane leaves [63]. In the visible region, the high absorption of
electromagnetic energy is due to the presence of photosynthetic pigments [62,64]. The three
main classes of plant pigments are chlorophylls, carotenoids, and phycobilins [65]. In the
case of sugarcane leaves, the pigments found are those typical of green leaves and include
chlorophyll a and b, carotenoids, xanthophylls and lutein [65].

The spectral features of diseased and healthy sugarcane leaves differed, differing in
intensity primarily in the spectral region from 400 nm to 500 nm, and there was a decrease
in BCRF in the green and red spectral regions in the infected leaves. Krezhova et al. [66]
noted similar behaviour when analysing tobacco leaves inoculated with TSWV (tomato
spotted wilt virus) and found that even a sample leaf in the asymptomatic stage exhibited
this behaviour.

Jones et al. [67] analysed the spectral features of tomato leaves infected with the
bacterial disease Xanthomonas perforans, and noted higher absorption in the light blue
region (450–495 nm) and the red-light region (620–750 nm) and reduced absorption in the
green light region (495–570 nm), with a minimum absorption of approximately 550 nm.

Analysing vine leaves infected with Grapevine leafroll disease caused by virus_3,
Naidu et al. [16] noted differences between diseased and healthy leaves mainly at the
green light peak (550 nm), the near-infrared (900 nm) and in the mid-infrared (1600 nm to
2200 nm). Naidu et al. [16] noted that maximum differences at 550 nm and 680 nm indicate
a change in the absorption of chlorophyll by the infected leaves. Furthermore, wavelengths
near 530 nm represent the second peak of maximum fluorescence in the green region of
vegetation [68,69].

Additionally, the spectral region near 550 nm can indicate the absorption of carotenoid
pigments. Another characteristic feature of carotenoid absorption is noticeable in the BCRF
difference curves at 510 nm. Carotenoids, yellow, orange, and red pigments [70], contribute
to the energy supply to the photosynthetic system [71]. The plant’s natural colour can be
altered when physiological changes occur, caused by a deficiency in nutrients or water, or
when the plant is attacked by a pathogen that destroys its cells, causing necrosis [72]. Thus,
when a plant is stressed or in the senescence stage, chlorophyll pigments can disappear,
enabling other pigments, such as carotene, to become apparent [13].

In addition, Puchades [73] carried out a genetic and symptomatic characterisation
of the sugarcane mosaic virus and observed differences in pigments concentrations such
as chlorophyll a, chlorophyll b and total carotenoids, which were correlated with the
percentage of mosaic virus infection. The results from our study also showed that the
presence of the virus causes changes in the spectra of sugarcane.

The slant at 665 nm was observed in all spectra difference curves of the sugarcane leaf
samples analysed, indicating a possible relationship with the absorption of chlorophyll at
660 nm [65,74].

Several vegetation indices are found in the literature using 700 nm wavelengths in their
formulations [49,52,56]. This wavelength is associated with the absorption of chlorophyll
a [65,74]. At a closer wavelength (665 nm), the spectra difference appeared as a valley in all
samples analysed in the spectral analysis stage.

Gamon et al. [75,76] used a wavelength of 531 nm to formulate the photochemical
reflectance index (PRI). Even though the overall accuracy value of the PRI was 0.69, the
resulting mosaic virus classification image was considered noisy and of poor quality, with
omission and inclusion errors of 42.85% and 33.33%, respectively.
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The PSRI is an indicator of stress, senescence, and fruit maturation processes, as it is
associated with carotene pigment (Merzlyak et al. [50]); in the case of this experiment, it
had an accuracy of 0.46 to detect mosaic virus. ARI1 and ARI2 indices related to content
anthocyanin pigment [55] obtained accuracies of 0.69 and 0.85, respectively.

The NVI was developed to improve the biomass monitoring capacity of the NDVI [53],
and the NDVI705 is a modification of the NDVI based on the red edge developed by
Gitelson and Merzlyak [47], which is correlated with the presence of chlorophyll and decid-
uous vegetation. It performed quite well, providing an overall accuracy of 0.78, a Kappa
coefficient of 0.56, and omission and inclusion errors of 8.57% and 31.91%, respectively.

The ARI2 index presented an interesting performance for detecting diseases in sug-
arcane for mosaic virus detection. This index is used to estimate the concentrations of
anthocyanin [55], a pigment present in plants and fruits, which is responsible for the combi-
nation of red and blue colours. In the case of sugarcane leaves, the found pigments, such as
chlorophyll a and b, carotenoids and anthocyanin, are typical of green leaves [27,77,78]. It
provided an overall accuracy of 0.85 and kappa of 0.69, and omission and inclusion errors
of 20.00% and 15.15%. This performance was substantial according to the standards of
Landis and Koch [61], indicating that ARI2 may be a potential index for the detection of
mosaic virus in sugarcane.

This study developed a new index AREI, which presented a high potential for the
detection of mosaics in sugarcane. This index was developed based on a spectral analysis
performed to identify disease-sensitive wavelengths in sugarcane, which was essential for
identifying combinations of wavelengths for the formulation of the index.

The AREI considers the 530 nm wavelength associated with anthocyanin absorp-
tion [22]. This wavelength is used in laboratory measurements of anthocyanin concentra-
tions using spectrophotometry [23]. Van den Berg and Perkins [24] proposed using the ratio
of 530 nm and 940 nm wavelengths to obtain the anthocyanin content by the anthocyanin
content index (ACI). This information further reinforces the importance of anthocyanin
pigments concerning the stress caused by pathogenic agents in sugarcane.

The wavelength 700 nm is associated with the red edge position in sugarcane infected
with mosaic and combined with the wavelength of 530 nm, allowed for the detection of
mosaic in sugarcane. It provided the best performance, with an overall accuracy of 0.94
and kappa of 0.87, and omission and inclusion errors of 2.86% and 10.52%.

The results obtained from this evaluation constitute a significant step towards detecting
diseases in sugarcane. The identification of indices capable of detecting diseased plants
is important because it facilitates data processing, allowing suitable management when
aiming to quantify the damaged area. In this case, study, approximately 40% of the crop
area was affected by the disease.

In addition, these results enable the use of sensors designed for imaging in the appro-
priate spectral bands for monitoring the sugarcane crop. The contribution of this work to
agriculture relies on the specification of appropriate indices for monitoring an important
disease in sugarcane crops and in the production of maps in support of the georeferenced
crop management.

5. Conclusions

This article presented a methodology for formulating specific spectral indices for
disease detection in sugarcane. In the first stage of the research, wavelengths sensitive
to pathogens in sugarcane were identified based on spectroradiometric measurements.
From these results, the bands of a hyperspectral sensor were configured, and an index
for detecting the mosaic virus in sugarcane was proposed. Hyperspectral images were
acquired from a sugarcane field infected with this mosaic virus via a UAV, and the processed
orthomosaics were used to compute vegetation indices found in the literature and the index
proposed in this work, the AREI.

The indices that contributed to the detection of the regions infected with sugarcane
mosaic were NDVI, NDVI705, NVI and ARI2. However, AR1 and ARI2 stood out the
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most among the indices found in the literature. The study shows that all of the indices
commonly used in evaluations of the health of agricultural crops were not accurate in
detecting phytosanitary problems. Among the indices analysed, those presenting the
highest accuracy were the AREI, which exhibits high potential for the detection of mosaic
in sugarcane, based on digital image analysis. In some cases, a specific index has to be
formulated to solve a phytosanitary problem. For example, the AREI, showed greater
accuracy in detecting phytosanitary problems in sugarcane crops.

The results show the importance of wavelengths associated with the concentration of
chlorophyll and anthocyanin and the position of the red edge for the detection of diseases in
sugarcane. However, it is necessary to carry out more tests to verify whether the variations
in the phenological stage and sugarcane variety, among other features, may influence the
spectral behaviour of sugarcane and whether the development of other indices is necessary.
Another suggestion would be to test AREI with multispectral aerial or satellite images.
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