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Abstract: For high-speed robotic cut-and-catch harvesting, efficient trellis grape recognition and
picking point positioning are crucial factors. In this study, a new method for the rapid positioning
of picking points based on synchronous inference for multi-grapes was proposed. Firstly, a three-
dimensional region of interest for a finite number of grapes was constructed according to the “eye to
hand” configuration. Then, a feature-enhanced recognition deep learning model called YOLO v4-SE
combined with multi-channel inputs of RGB and depth images was put forward to identify occluded
or overlapping grapes and synchronously infer picking points upwards of the prediction boxes of
the multi-grapes imaged completely in the three-dimensional region of interest (ROI). Finally, the
accuracy of each dimension of the picking points was corrected, and the global continuous picking
sequence was planned in the three-dimensional ROI. The recognition experiment in the field showed
that YOLO v4-SE has good detection performance in various samples with different interference. The
positioning experiment, using a different number of grape bunches from the field, demonstrated
that the average recognition success rate is 97% and the average positioning success rate is 93.5%;
the average recognition time is 0.0864 s; and the average positioning time is 0.0842 s. The average
positioning errors of the x, y, and z directions are 2.598, 2.012, and 1.378 mm, respectively. The average
positioning error of the Euclidean distance between the true picking point and the predicted picking
point is 7.69 mm. In field synchronous harvesting experiments with different fruiting densities,
the average recognition success rate is 97%; the average positioning success rate is 93.606%; and
the average picking success rate is 92.78%. The average picking speed is 6.18 s× bunch−1, which
meets the harvesting requirements for high-speed cut-and-catch harvesting robots. This method is
promising for overcoming time-consuming harvesting caused by the problematic positioning of the
grape stem.

Keywords: trellis grape; cut-and-catch; YOLO v4; picking point; positioning

1. Introduction

Grapes are one of the most important fruits in the world [1], and China is the main
producer of grapes. Due to the intensification of grape industrialization and the increase in
demand, it has become a realistic remand to realize the automation of harvesting [2]. Vari-
ous prototypes of grape harvesting robots have been developed in China, Greece, Canada,
and other countries, which all adopt classic hand–eye calibration [3–5]. They all pick grapes
by stem clipping and cutting, heavily relying on visual positioning accuracy, and then place
the grapes into bins. Inadequate efficiency has become the key bottleneck standing in the
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way of meeting the actual needs of grape production. Significantly improving work effi-
ciency has become an urgent task in technical development. Inspired by the high-efficiency
mechanized harvesting of grain and leaf vegetables, a vision-based high-speed cutting-
and-catching harvesting robot is proposed by our team, which transforms the traditional
precise positioning and picking method into a continuous harvesting-by-vision method.
It provides new possibilities to break through the efficiency ceiling of robotic harvesting.
Different from the working process of combine harvesters, vision is still necessary for fresh
grape harvesting. Nevertheless, the need of vision technology for this cut-and-catch scheme
is greatly different from traditional harvesting robots.

At present, scholars from all over the world have made some progress in research on
the positioning of trellis grape picking points. Computer vision and deep learning methods
based on a convolutional neural network are widely used in the precise recognition of
ripe grape picking points due to their strong robustness, strong adaptability, and high
accuracy [6–10]. Fusing depth information to filter the foreground and background in
fruit recognition is an effective means to improve the accuracy of fruit recognition and the
robustness of the picking point location [11–13]. There are two main methods to accurately
position the picking point coordinates: traditional image processing models [14–17] and
deep learning models [18–21]; these methods directly detect grape stems and infer the
location of picking points after identifying the grapes. Jin. et al. [22] constructed a far–
close range stereoscopic vision system to identify grape ears and stems through image
segmentation and a morphological operation. Luo. et al. [23] proposed a method based on
binocular stereo vision to detect and extract the three-dimensional space coordinates of the
cutting point on the grape stem. Xiong. et al. [15] analyzed the shape of grapes and used
the Ostu threshold to segment grapes and stems to realize the positioning of disturbed
grape picking points. Lei. et al. [24] proposed a method based on image segmentation
and minimum angle constraints to determine the best grape picking points via corner
detection and K-means clustering. Yin. et al. [25] used a Mask R-CNN model to detect
a mask image of the target grapes for the collision-free picking problem and extracted a
grape point cloud to estimate the picking position, with an average accuracy of 89.53%,
a recall of 95.33%, and a time of 1.7 s. Kalampokas, T. et al. [26] proposed a regression
convolutional neural network (RegCNN) model to implement grape stem detection via
images. Li. et al. [27] proposed a grape and picking point detection model, YOLO-Grape,
by adding an attention mechanism and introducing depth separable convolution. However,
the diversity of fruit types and appearance, the variability of lighting conditions, and the
complexity of natural backgrounds often lead to poor recognition results. Additionally,
grape stems are frequently submerged by complex backgrounds and interference due to
occlusion caused by branches and leaves, as well as the similar color of grape stems and
vines, making it challenging to locate the picking point. As a result, research on identifying
grape clusters and subsequently inferring the picking point has been conducted often to
try and overcome these issues. Zhang et al. [17] used a machine vision reverse recognition
algorithm combined with a template-matching algorithm to infer the two-dimensional
positioning of grape picking points. Zhao. et al. [28] proposed a lightweight end-to-end
model of YOLO-GP to simultaneously detect grape clusters and predict the picking point
based on the grape bounding boxes. Although the interference of the background was
reduced, the impact of different end effectors on the estimation and calculation of the
picking point was not considered, which may easily lead to the inability of the end effector
to accurately clamp the grape stem.

The grape picking point detection algorithms currently being researched utilize the
method of accurately identifying fruit stems to achieve the precise positioning of the
picking point. However, this approach suffers from the issue of time-consuming visual
positioning, heavily relying on its accuracy. Moreover, the complex trellis environment
introduces numerous interference factors that hinder the recognition of grape stems. Firstly,
thinner fruit stems located behind branches and leaves cannot be detected due to occlusion.
Secondly, the similarity in color between grape stems and grape vines makes it difficult to
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extract them from complex backgrounds. Furthermore, it is necessary to accurately detect
the grape stem from a wide field of view through the method of close-range recognition
to precisely clip the fruit stem with the end effector. Close-range recognition can be
achieved by placing the camera close enough to the grapes, but this approach reduces the
camera’s field of view and makes global continuous picking sequence planning impossible.
Therefore, in this study a specific visual algorithm was proposed for high-speed robotic cut-
and-catch harvesting, which eliminates the need to directly locate the picking point of the
grape stem. This vision algorithm is based on the improved YOLO v4-SE model, enabling
the inference of picking points and avoiding interference from the complex background of
a trellis environment in fruit stem recognition.

The main contributions of this paper are summarized as follows:

• This paper proposed a three-dimensional ROI (ROI means the region of interest)
containing a finite number of grapes divided for subsequent harvesting work using
depth images and RGB images obtained using Realsense D455, with the model being
developed according to the structure of the robot body and working parameters.

• In this paper, the SE-Net attention mechanism module and the distance threshold
segmentation module were deeply integrated into the feature-enhanced YOLO v4-SE
model with multi-channel inputs to realize the synchronous recognition of multi-target
grapes in the three-dimensional ROI, including overlapping or occluded grapes and
grapes imaged completely.

• After the synchronous recognition of multi-grapes, a method based on the inference
from the center point of the prediction boxes was proposed for the rapid positioning
of the grape stem picking point for the first time, combining a disc knife cutting end
effector and the physical properties of the trellis grapes. It relied on Gaussian distance
weights to plan the picking sequence in the three-dimensional ROI.

2. Materials and Methods
2.1. System Analysis
2.1.1. Technical Solution of the High-Speed Cut-and-Catch Robot

The horizontal trellis cultivation of table grapes, shown Figure 1, is performed by
drawing metal wires on the beams connected to the vertical cement columns, so as to form
a grid surface parallel to the ground. Trellis grapes are structurally adjacent and hang
vertically under the barbed wire in a vertical posture. The horizontal trellis cultivation of
table grapes has the following characteristics.
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Figure 1. Relative parameters of horizontal trellis cultivated grapes.

(1) The distribution of ripe grapes is random and discrete; only relying on high-speed
cut-and-catch machinery harvesting will affect work efficiency. It is necessary to plan
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the picking sequence first and then combine the high-speed cut-and-catch operation
method to really improve work efficiency.

(2) The length of a main stem is generally between 5.5 cm and 10.8 cm after field investi-
gation and measurement, which is ideal for high-speed cut-and-catch harvesting with
a disc knife end effector. However, it is necessary to position the picking point of the
stem to avoid damaging the grapes or colliding with the trellis in the height direction
during the cutting process.

(3) The terrain of the trellis vineyard is uneven, which will affect the working height of
the disc knife cutting end effector. Thus, it is necessary to adjust the working height
of the end effector by positioning the picking point, which can reduce working errors
caused by uneven terrain.

Due to the cultivation characteristics of trellis grapes, Figure 2 shows the high-speed
cut-and-catch harvesting robotic solution. It consists of a vision system, an operational
harvest system, a chassis self-propelled system, and a harvesting fruit bin-lifting mechanism.
In order to meet the vision technology requirements of this robot solution, a rapid rough
positioning technology for picking points based on the disc knife cutting end effector
is proposed for the first time in this paper. Rough positioning refers to a picking point
positioning method with certain precision based on the upward inference achieved with
the vision system, which is suitable for the disc knife cutting end effector with a continuous
cutting method, certain working diameter, good error tolerance, and efficient catching
after cutting.
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Figure 2. Various functional systems of the robot.

The Realsense D455 depth camera in the vision system is mounted on the middle of
the robot tail and can obtain full and sufficient RGB images and depth images of trellis
grapes. The operational harvesting system consists of an IX-NNN7020 SCARA robotic arm
and a disc knife cutting end effector. A SCARA robotic arm is installed in the center of
the robot body. The disc knife cutting end effector is attached to the end effector of the
SCARA robotic arm and always faces the front of the robot. The output of the picking
point coordinates and the planned picking sequence of the vision system drive the robotic
arm for movement and the end effector for continuous cutting. The chassis self-propelled
system realizes the walking. Through the position information of the picking points that is
fed back by the vision system, the height of the fruit bin is adjusted to catch the cut grapes
smoothly. The high efficiency and continuous harvesting of the robot are finally realized
through the high cooperation between the vision scheme and the robotic solution.
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2.1.2. Overall Visual Scheme

Trellis vineyards have many unique structural features. To realize the robot solution
for continuous cutting and catching and achieve the high-speed advantage of the disc knife
cutting end effector, the formulation of the special vision scheme should meet the following
requirements in this special working environment.

(1) Considering the working width limitations imposed by the trellis vineyard, the vertical
profiling that avoids colliding with the trellis, and the elimination of interference of
irrelevant and complex fruits, foreground, and background in the walking operation,
this paper designs a three-dimensional ROI to achieve a robotic solution for continuous
cutting and catching. This restricted harvest region containing only a finite quantity
of grapes is the three-dimensional ROI for robotic harvesting.

(2) The vision algorithm mainly includes the synchronous recognition of a finite quantity
of grapes, the inference of picking points upwards along the fruit, global continu-
ous picking sequence planning, and visual feedback, which all serve for the three-
dimensional ROI, so as to realize high-speed continuous cutting and catching for the
disc knife cutting end effector.

For the high-speed cut-and-catch robotic harvesting of the trellis grape, the robot will
cut all the grapes that meet the harvesting requirements after one recognition and make
them fall into the fruit box. Aiming to deliver high-speed continuous harvesting using the
robot, the field of view of the far-range field of view and the positioning information of the
picking point determine the overall vision scheme design of the robot (Table 1).

Table 1. Key hand-eye positions and parameters of the high-speed cut-and-catch trellis grape
harvesting robot.

Key Position Related Hardware Parameters
Related Parameters of

Horizontal Trellis
Cultivated Grape

Vision Information

Far-range field of view

• Workspace of SCARA robotic arm;
• Fruit bin installation position and size;
• Work features and methods of disc knife

cutting end effector;
• Work width of robot

• Fruiting height
• Distribution regularity
• Stem length
• Fruit shape
• Fruit size

RGB and depth image
information of grapes

Picking point
• Disc knife working parameters

Pixel and spatial information
of picking point• Height of SCARA robotic arm end effector

• Height of fruit bin-lifting mechanism

The overall framework of the visual scheme for the high-speed cutting and catching
harvest robot is shown in Figure 3.

(1) Firstly, the regularity of fruit distribution, the structure of the robot body, and working
parameters are determined using the trellis grape viticulture environment and the
purpose of high-speed cutting and catching. The structure of the robot body is
formed by mutual cooperation between the maximum working area of SCARA, the
installation position and size of the fruit bin, and the features and working methods
of the disc knife, which all help to clarify the relationship between Realsense D455
and the end effector.

(2) Secondly, a three-dimensional ROI of a finite number of harvest grapes is marked out
according to the above information. Then, a feature perception-enhanced model is
used for the synchronous recognition of the trellis grapes in the three-dimensional
ROI. The picking points of the multi-grapes are synchronously inferred upwards
along the fruit recognition boxes.

(3) Thirdly, the rough positioning of the picking points using the fusion of multi-dimensional
information is confined to the cutting area with differences in three-dimensional
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directions, and then the picking points are calculated reliably and quickly based on
the corner information.

(4) Finally, picking points are sent to the PLC controller continuously on the basis of the
global continuous picking sequence planned in the ROI area, and occluded and over-
lapping grapes are separated with the fusion of depth information during the process,
which significantly helps to improve the efficiency of the cutting and catching robot.
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2.2. System
2.2.1. System Architecture

As shown in Figure 4, the software and hardware composition of this robot includes
using Intel Realsense SDK 2.0 to call Realsense D455, using ROS to deploy each functional
module in Jetson Nano, and using Pytorch and YOLO v4-SE to realize the grape detection
and picking point positioning. By using the trellis grape information collected using the
Intel Realsense D455 camera as a feedback signal, the signal is input into a Jetson Nano
board for image processing and model recognition, relying on setting distance thresholds
to process the three-dimensional coordinate information of a limited number of mature
grapes picking points within the obtained area. The SCARA X-SEL controller is utilized
to perceive the relative position information between the current position of the robotic
arm and the target ripe grapes and finally to guide the disc cutter to reach the specified
position area. By comparing the real-world target grape pose information with the expected
pose information given by using the deep learning model, the processed control signals
Signal 1 and Signal 2 are used to drive the robotic arm and the cutting end effector, realize
the positioning and cutting of the target grape using the robot, and establish closed-loop
control of the system.
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2.2.2. “Eye-to-Hand” Configuration

According to the field research, we drew a space size map of 1.4 m × 2.2 m in the
trellis vineyard, as shown in Figure 5. The optimal working width of the picking robot
is 1 m by getting rid of the weed area around the working corridor of the robot and the
supporting column area, which can avoid collisions with the trellis and the fruit.
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The Realsense D455 camera installed at the midpoint of the tail of the harvest robot is
placed 350 mm behind the base center of the SCARA robotic arm at a height of 185 cm above
ground, therefore avoiding collisions with the trellis and acquiring images of multiple
bunches of whole grapes. The camera always faces the front of the robot, which is consistent
with the working orientation of the disc knife cutting end effector. The color field of view
of Realsense D455 is 90◦ × 65◦, and the depth field of view is 87◦ × 58◦. In order to obtain
reliable depth information and RGB information and accurately align the depth image with
the RGB image, the field of view of Realsense D455 is set to 87◦ × 58◦, operating as the
working field of view of the robot’s vision (Figure 6).



Agronomy 2023, 13, 1618 8 of 24Agronomy 2023, 13, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 6. Realsense D455’ s field of view. 

2.2.3. Three-Dimensional ROI 
The length of the large arm of the SCARA robotic arm is 350 mm, and the farthest 

extension distance of the robotic arm is 700 mm. In order to prevent the large arm of the 
robotic arm from being over-folded and affecting work efficiency, the optimal working 
range of the robotic arm is 150 mm–700 mm. The fruit bin is installed at the midpoint of 
the front end of the harvest robot, and the distance from the base of the SCARA robotic 
arm is 400 mm. In order to prevent the collision between the robotic arm and the fruit bin 
and ensure that the target grapes are caught within the fruit bin smoothly, the distance 
from Realsense D455 to the inside of the fruit bin is set as the minimum depth, and the 
distance from Realsense D455 to the center of the fruit bin is the maximum depth. Accord-
ing to the minimum depth and maximum depth, this paper divides an ROI area for lim-
ited bunches of harvest grapes, as shown in Figure 7. 

 
Figure 7. ROI area formed using maximum depth and minimum depth. 

Figure 6. Realsense D455’ s field of view.

2.2.3. Three-Dimensional ROI

The length of the large arm of the SCARA robotic arm is 350 mm, and the farthest
extension distance of the robotic arm is 700 mm. In order to prevent the large arm of the
robotic arm from being over-folded and affecting work efficiency, the optimal working
range of the robotic arm is 150 mm–700 mm. The fruit bin is installed at the midpoint of the
front end of the harvest robot, and the distance from the base of the SCARA robotic arm is
400 mm. In order to prevent the collision between the robotic arm and the fruit bin and
ensure that the target grapes are caught within the fruit bin smoothly, the distance from
Realsense D455 to the inside of the fruit bin is set as the minimum depth, and the distance
from Realsense D455 to the center of the fruit bin is the maximum depth. According to the
minimum depth and maximum depth, this paper divides an ROI area for limited bunches
of harvest grapes, as shown in Figure 7.
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In the actual growing environment of the grapes, there are interferences from different
factors, such as the background trellis and the vineyard ground. The distance threshold
is used to segment the depth information fed back by the depth camera, and the optimal
segmentation threshold is determined according to the optimal working range of the
SCARA robotic arm and working width of the robot. In this way, the complex background
and unstable foreground of the target grapes are eliminated.

In order to ensure the working width of 1 m and avoid too many grapes outside the
working space of the robotic arm appearing in the field of view of Realsense D455, the
vertical distance between Realsense D455 and the plane behind the fruit bin is set as the
minimum depth limit, which is 750 mm. The vertical distance between Realsense D455 and
the front plane of the fruit bin is taken as the maximum depth limit, which is 1350 mm.
Considering the diameter range of ripe grapes is 6.8–17.2 cm, the maximum depth distance
threshold setting range of Realsense D455 is determined according to the camera and the
relative position of the SCARA robotic arm, and it is between 900 mm and 1300 mm.

As shown in Figure 8, according to the imaging and recognition effects of different
distance thresholds of Realsense D455, it is found that the model cannot recognize all
grapes within the camera range due to complex background interference when the distance
threshold is not set; within the distance threshold range of [750, 900]–[750, 1000], the camera
can only accept some of the end effector images and cannot fetch other grape images that
meet harvest requirements. At the [750, 1100] distance threshold, some grape images can
be obtained, but missing detection is still apparent. At the distance threshold interval of
[750, 1200]–[750, 1300], the camera has the best imaging and detection effect, which can
eliminate most interference from complex foliage foregrounds and irrelevant backgrounds
and realize the recognition within the camera’s field of view of all grapes that meet the
harvest requirements. However, if [750, 1300] is used as the optimal threshold segmentation
interval, this may result in large grapes falling out of the fruit bin after cutting.
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Figure 8. Imaging and recognition effect pictures of Realsense D455 with different distance thresholds.

According to the relevant parameters of the high-speed operation area, the distance
threshold interval of [750, 1200] is applied to the trellis environment where the robot
practically works, as shown in Figure 9. The recognition effect before and after threshold
segmentation in the actual harvesting process of the trellis vineyard environment is com-
pared. It is found that at the optimal depth threshold interval, not only is the interference
from the complex foliage foreground and irrelevant background in the field of view of
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the camera eliminated, but the recognition effect of the model is also good at this time.
The detection of all target grapes that meet the harvest requirements in the field of view
is realized.
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Figure 9. Comparison of recognition effects before and after threshold segmentation in the actual
picking process of the trellis vineyard environment.

According to the relevant parameters of the high-speed operation area, the distance
threshold interval of is applied to the trellis environment where the robot practically works,
as shown in Figure 9. The recognition effect before and after threshold segmentation in
the actual harvesting process of the trellis vineyard environment is compared. It is found
that at the optimal depth threshold interval, not only is the interference from the complex
foliage foreground and irrelevant background in the field of view of the camera eliminated,
but the recognition effect of the model is also good at this time. The detection of all target
grapes that meet the harvest requirements in the field of view is realized.

2.3. Algorithm
2.3.1. Algorithm Structure

Multivariate information including RGB images and depth images is acquired, which
is then input to the feature-enhanced deep learning model. At the same time, samples
with different variables are collected with the same device for the training of the feature-
enhanced deep learning model. As Figure 3 shows, the vision algorithm for high-speed
cut-and-catch includes the following functions.

(1) The multi-target grapes in the three-dimensional ROI can be synchronously identified,
which is beneficial to the global continuous picking sequence established in the three-
dimensional ROI.

(2) The pixel coordinates of the picking point can be inferred by using the corner infor-
mation of the prediction box output from the feature-enhanced deep learning model.

(3) After the spatial coordinate transformation, according to the Gaussian distance
weight and dual-indicator spatial coordinates that sort the picking point in the three-
dimensional ROI, the global continuous picking sequence is planned.

2.3.2. Multivariate Image Acquisition

The trellis grape images used for training and testing in this experiment were col-
lected at Erya Vineyard, Jurong Grape Technology Comprehensive Demonstration Base,
Jurong City, Jiangsu Province. The image acquisition device is an Intel Realsense D455
camera. An RGB image and corresponding depth image are captured using Intel Realsense
SDK 2.0 simultaneously, as shown in Figure 10, which will be aligned for further deep
learning detection.
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Figure 10. RGB image and corresponding depth image.

There are 200 images of each variety of trellis grape with different colors, with a total of
800 images, as shown in Figure 11. The collection time focuses only on the period between
July and September 2021. The camera is installed at a height of 185 cm from the ground,
and the view distance ranges from 30 cm to 150 cm.
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Figure 11. Four different varieties of trellis grapes.

Due to the complexity of the actual harvesting trellis environment, the samples of fruit
overlapping, fruit occluded, and strong light-affected color changes in the captured images
are added, which are indicated by blue boxes, as shown in Figure 12.
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Figure 12. Samples that are overlapping, occluding, and strongly affected by light. Note: Sample 1. is
a sample of ripe grapes overlapping or occluding each other. Sample 2. is a sample of grapes affected
by strong light.

The labeling method of the trellis grape depth image is the same as that of the RGB
image, and the grape labeling in the image should be as consistent as possible. The labeling
method for overlapping and occluded grapes is shown in Figure 13. The overlapping
and occluded grapes are marked as grape 2 and grape 3, respectively, and input into the
deep learning model for training, so that they can be distinguished in the recognition and
positioning process of subsequent harvesting.



Agronomy 2023, 13, 1618 12 of 24

Agronomy 2023, 13, x FOR PEER REVIEW 12 of 25 
 

 

(occluded grapes). The generalization ability and robustness of the model are improved 
by increasing the sample size of overlapping and occluded grapes in the dataset. 

  
Figure 13. Labeling of overlapping and occluded grapes. Note: Grape 1 indicates the complete 
grape imaged within the camera’s field of view; grape 2 indicates the overlapping grape in the 
image; grape 3 indicates the occluded grape in the image. 

2.3.3. Feature-Enhanced Model for Synchronous Recognition of Trellis Grapes 
For high-speed cut-and-catch harvesting, the accurate recognition of grapes and the 

positioning of picking points in three-dimensional ROI are key prerequisites. YOLO v4, 
as one of the most advanced real-time detection models, can simultaneously output cate-
gory anchor boxes and probabilities during the detection process. It is further optimized 
on the basis of YOLO v3, which improves the overall performance of the model signifi-
cantly [29].  

The attention mechanism is a biological imitation vision mechanism. The area of in-
terest is screened out by quickly scanning the global image, so as to invest more attention 
resources and suppress other useless information [30]. In a dense trellis environment, each 
grape can have a complex background, and it becomes a small target. SENet (Squeeze-
and-Excitation Networks) [31] is an efficient attention mechanism, with its structure 
shown in Figure 14. It can rapidly select and focus on salient objects in complex scenarios. 
Its core SE module (SE block) is mainly composed of two parts, squeeze and excitation, 
running a channel attention mechanism in tandem. 

 
Figure 14. Structure of SENet. 

Since the actual harvesting environment of trellis grapes is relatively complex, the 
collected images were easily interfered with by the overlap of vines, leaves, fruits, as well 
as the intensity of light, which cases an excessive background depth, thus affecting the 
accuracy of recognition and causing difficulty for the subsequent harvest performed by 
robot. The feature perception ability for trellis grapes in the YOLO v4 recognition model 

H×W×C

x

H×W×C

Scale

1×1×C 1×1×C

Squeeze

Excitation

Figure 13. Labeling of overlapping and occluded grapes. Note: Grape 1 indicates the complete grape
imaged within the camera’s field of view; grape 2 indicates the overlapping grape in the image; grape
3 indicates the occluded grape in the image.

During the training process for YOLO v4-SE, three types of labels are used for training
including grape 1 (complete grapes), grape 2 (overlapping grapes) and grape 3 (occluded
grapes). The generalization ability and robustness of the model are improved by increasing
the sample size of overlapping and occluded grapes in the dataset.

2.3.3. Feature-Enhanced Model for Synchronous Recognition of Trellis Grapes

For high-speed cut-and-catch harvesting, the accurate recognition of grapes and the
positioning of picking points in three-dimensional ROI are key prerequisites. YOLO v4, as
one of the most advanced real-time detection models, can simultaneously output category
anchor boxes and probabilities during the detection process. It is further optimized on the
basis of YOLO v3, which improves the overall performance of the model significantly [29].

The attention mechanism is a biological imitation vision mechanism. The area of
interest is screened out by quickly scanning the global image, so as to invest more attention
resources and suppress other useless information [30]. In a dense trellis environment, each
grape can have a complex background, and it becomes a small target. SENet (Squeeze-and-
Excitation Networks) [31] is an efficient attention mechanism, with its structure shown in
Figure 14. It can rapidly select and focus on salient objects in complex scenarios. Its core
SE module (SE block) is mainly composed of two parts, squeeze and excitation, running a
channel attention mechanism in tandem.
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Figure 14. Structure of SENet.

Since the actual harvesting environment of trellis grapes is relatively complex, the
collected images were easily interfered with by the overlap of vines, leaves, fruits, as well
as the intensity of light, which cases an excessive background depth, thus affecting the
accuracy of recognition and causing difficulty for the subsequent harvest performed by
robot. The feature perception ability for trellis grapes in the YOLO v4 recognition model
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is enhanced by integrating the SENet attention mechanism so that it can focus more on
the target area of a trellis grape, which can help to achieve efficient and accurate grape
detection. The new recognition model for trellis grapes is called YOLO v4-SE.

The YOLO v4-SE model, an improvement over YOLO v4, incorporates the SENet
attention mechanism after the feature fusion layer, as illustrated in Figure 15. The YOLO
v4-SE model automatically calculates the importance of each feature map based on the
correlation among the feature maps extracted from the input trellis grape image. The
calculated importance values are then utilized to enhance the discriminative features of the
trellis grapes themselves during the YOLO v4-SE detection process. Additionally, they help
suppress interference caused by complex environmental factors, improving the accuracy of
detection, which can realize efficient detection in the three-dimensional ROI.
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2.3.4. Rough Positioning of Picking Points with Fusion of Depth Images and RGB Images

During the fruit harvesting process, the accuracy of picking point positioning is pri-
marily influenced by errors in the depth as well as in the horizontal and vertical directions.
Errors in the depth direction and left–right directions will cause the disc knife to fail to cut
the fruit. At the same time, it is easy to collide with the fruit or the trellis if the error in
height direction is too large. Therefore, the accuracy requirements in the three directions
of x, y, and z are given by this paper to limit the rough positioning of the picking points,
which can aid the disc knife cutting end effector in successfully cutting the grape without
damage as well as in avoiding collisions.

This paper presents a three-dimensional positioning method that incorporates differ-
ential rough positioning accuracy to optimize efficiency. It was found during field research
that the diameter of the circumscribed circle at the widest point of mature grapes ranges
from 6.8 cm to 17.2 cm. Therefore, the cutting end effector used by the harvesting robot
proposed in this paper is a disc knife with a diameter of 60 mm. The cutting speed of the
disc knife is fast. At the same time, it has enough error tolerance for the positioning of the
trellis grape picking points during the picking process. Figure 16 illustrates the coordinates
of the true picking point (m, n, p) and the predicted picking point (x1, y1, z1). A circular
plane picking area with a radius of 30 mm is formed using the working diameter of the
disc knife cutting end effector to allow enough error tolerance, which is centered on the x
and y coordinates of the true picking point.
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(1) Accuracy requirements in the x and y directions:√
(x1 −m)2 − (y1 − n)2 ≤ 30 mm (1)

(2) Accuracy requirements in the z direction:

z1 ≤ l l ∈ (55 mm, 108 mm) (2)

where l is the measured main stem length of the grape.
After the grapes on the trellis are ripe, they can often fall vertically in the air due to the

support of the grape clusters, and the fruit stems are naturally and vertically downward.
The disc knife cutting end effector has a large radius, a high cutting speed, and enough error
tolerance. The method of directly locating the grape picking point [32] cannot meet the high-
speed cutting and catching work requirements of the disc knife because of its long-time
consumption. Therefore, this paper proposes for the first time a rough positioning method
for trellis grape picking points based on prediction boxes from YOLO v4-SE. Compared
with the complex traditional contour extraction algorithm, a center point calculation based
on the corner information of the prediction boxes and the synchronous inference of picking
points upwards along the prediction boxes of multi-grapes demonstrate good reliability
and stability, which can significantly improve efficiency. The positioning flowchart of this
method is shown in Figure 17.

A frame of image randomly read from the real-time video stream of trellis grapes
is captured using Realsense D455; then, this image is divided into n × n grid cells. If
the center point of the grape (object) falls in the grid, then the grid is responsible for
predicting this target grape. Each layer network predicts the position information and
confidence information of the bounding box, as well as the position information of the four
corner points (top, left, bottom, right) that correspond to the bounding box. The target
fruit is obtained via depth distance threshold segmentation. The interference of complex
foliage foreground and irrelevant background outside the distance threshold range is
eliminated. Then, the multi-target grapes can be synchronously identified. The prediction
boxes obtained using YOLO v4-SE are retained for subsequent information processing.
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In order to meet the working requirements of a high-speed harvest with the cutting
end effector and avoid the time-consuming drawback of precise positioning, the prediction
box can be regarded as the minimum bounding rectangle of the target grape. As shown
in Figure 18, the center point based on the corner information of the prediction box and
the predicted picking point are on the same straight line. Point 1. on the grape stem is the
true picking point, and Point 2. at the center of the upper edge of the prediction box is the
predicted picking point. The pixel coordinates of the picking point (Point 2.) at this time can
be calculated by relying on the coordinate information of the center point of the prediction
box. Due to the working characteristics and physical parameters of the cutting end effector,
Point 2. can replace Point 1. as the picking point, thus avoiding a time-consuming process
and realizing the rapid positioning of the picking points.
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The pixel coordinates of the center point of the prediction box:

(x, y) =
(

R + L
2

,
T + B

2

)
(3)

The pixel coordinates of predicted picking point (Point 2.):

(x, y) =
(

R + L
2

, T
)

(4)

where R, L, T, and B are the right value, left value, top value, and bottom value of the four
corner points of the prediction box, respectively.

Sufficient error tolerance of the picking area is formed using the working diameter
of the disc knife cutting end effector. However, this paper still uses part of the calculation
in the model to reduce the error between the true picking point and the predicted picking
point. In this way, the sacrifice of the precision of the model to directly predict the picking
point is avoided while improving the positioning speed of the grape picking point.

The depth information used for model calculation is obtained from the center point of
the grape prediction box. Since the surface of the imaged grape is not smooth and there are
gaps between the fruit grains, the depth information of the center point of the prediction
box is corrected using the mean filter algorithm. As is shown in Figure 19, this paper takes
the center point of the prediction box as the center and draws a purple area with a fixed size
of w

4 ×
w
4 . Outliers in the depth values of all pixels in the purple area are eliminated, then

the average is used as the depth value of the center point of the target grape, and the depth
values of all remaining pixels in the area are calculated. This method can be expressed as
Equation (5).

g(i, j) =
1(w
4
)2

w
4

∑
s=− w

4

w
4

∑
t=− w

4

f (i + s, j + t) (5)

where f(i,j) represents the depth value of the pixel of row i and column j in the depth image,
and g(i,j) represents the new depth value of the pixel of row i and column j in the depth
image after mean filtering.
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Figure 19. Picking point positioning error compensation calculation.

At the same time, this paper uses a calculation in three directions to improve the
accuracy of the inference of the grape picking points upwards along the prediction boxes.
As shown in Figure 19, the prediction box can be used as the minimum bounding rectangle
of the target grape. Since the grape itself is center-symmetrically distributed along the
fruit stem, half the width of the prediction box is used as the radius, and the center point
is moved by a radius distance along the y direction and taken as the center of the circle,
which is then used to draw a blue circle in the figure.

The error in the horizontal direction is denoted as n, and its relationship with the
deviation angle θ of the true and predicted picking point and the compensation parameter
z of the height direction should satisfy Equation (6).

n
z + h

= tanθ (6)

The measured length of the main stem of the mature grapes falls within the range
of 5.5 cm to 10.8 cm. A parameter compensation in height direction is added to avoid
damage to the fruit after the spatial coordinate conversion. Therefore, the parameter is
set to 1.8 cm. By incorporating a compensation in the height direction, the picking point’s
spatial coordinates are adjusted to ensure that it is positioned above the target grape, thus
preventing unnecessary harm during the picking process. After the three-dimensional
coordinate conversion, the error compensation of the picking point space coordinates can
be expressed as Equation (7).

(m, n, p) = (x1 + (z + h)tanθ, y1 + rmax, z1 + z)
rmax = w

2
z = 1.8 cm

(7)

2.3.5. Real-Time Continuous Picking Sequence Planning in Three-Dimensional ROI
for Multi-Grapes

Previously, our deep learning model identified and removed overlapping and oc-
cluded samples of grapes. Therefore, to enable high-speed cut-and-catch robotic harvesting
and ensure real-time updates of the picking sequence, it is necessary to plan the picking
sequence only for mature grapes that are completely imaged in the three-dimensional
ROI. This ensures that the picking sequence is refreshed in real-time. The overlapping
grapes become complete grapes after the previous grapes are picked; the robot still picks
the complete grapes imaged in the previous field of view. The robot picks according to the
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sequence of coordinates of picking points stored in the PLC controller. After picking the
current complete grape, the image will be refreshed to identify the subsequent overlapping
grapes and re-plan their picking sequence.

As shown in Figure 20, in order to ensure the picking sequence refreshes and continu-
ously sends the spatial coordinates of the picking points to the PLC motion controller in
real-time, the pixel coordinates of the picking points obtained using the rough positioning
method after the above-mentioned picking sequence planning need to be transferred into
the robot base coordinate system through an intrinsic matrix and extrinsic matrix. The
spatial coordinates of the picking points can be obtained at this point to guide the disc knife
to approach and cut the grapes. Additionally, the Z value of the space coordinates of the
picking point can adjust the height of the fruit bin-lifting mechanism, so that the fruit bin
can catch the cut grapes smoothly.
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Figure 20. Spatial coordinate of picking point acquisition.

Taking the base coordinate system of the SCARA robotic arm as the center of the
coordinate system, a Gaussian kernel function is used to assign distance weights to each
grape in the three-dimensional ROI:

G(x, y, z) =
1

2πσ2 e−
x2+y2+z2

2σ2 (8)

where G(x, y, z) is the Gaussian kernel function, (x, y, z) are the spatial coordinates of the
picking points, and σ2 is the mean squared deviation. The distance weights of the grapes
determine how far they are from the disc knife cutting end effector. The less distance, the
higher its weight. Each grape is then sorted by its weight.

3. Experimental Results and Discussion
3.1. Experimental Environment and Conditions

Model experiments are conducted with Windows 10 running a deep learning worksta-
tion graphics card, 2× Quadro RTX 5000, with 64 GB of video memory; CPU model Intel(R)

Xeon(R) Gold 6248, 3.00 GHz, 2.99 GHz; and a deep learning framework Pytorch (Python 3.6,
Pytorch 1.2, torchvision 0.4). During training, the batch size is set to 8. The initial learning
rate is set to 0.001. The epoch is set to 100. In order to prevent the over-fitting phenomenon
of the model in the training process, the weight decay (also called L2 regularization) is set
to 5 × 10−4.

The field experimental site of the grape-harvesting robot is at Erya Vineyard, Jurong
Grape Science and Technology Integrated Demonstration Base, Jurong City, Jiangsu Province.
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3.2. Feature-Enhanced Deep Learning Model Field Application

In order to verify the effect of the feature-enhanced deep learning model in this paper
and present the difference in the recognition results more intuitively, under the same test
set collected at Erya Vineyard, focusing on the occlusion caused by stems and leaves,
the overlapping grapes, green grapes, purple grapes, and grapes affected by strong light,
the application effects of the initial model, YOLO v7, YOLO X, Faster R-CNN, and the
improved YOLO v4-SE model are compared, as shown in Figure 21 and Table 2.
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Table 2. Performance of different models for trellis grapes (score_threshold = 0.5).

mAP/% Precision/% Recall/% F1

YOLO v4 93.87 93.43 93.58 0.93
Faster R-CNN (resnet50) 94.76 69.61 94.61 0.82

YOLO X 94.88 87.80 92.31 0.90
YOLO v7 94.27 93.06 89.33 0.91

YOLO v4-SE (Our) 95.21 95.75 95.83 0.95

The improved YOLO v4-SE model, with the same dataset, has the highest precision
rate for grape recognition, with a precision rate of 95.75% (Table 2). The mAP rate of YOLO
v4-SE is 95.21%, which is 0.94%, 0.33%, 0.45%, and 1.34% than that of YOLO v7, YOLO
X, Faster R-CNN, and YOLO v4, respectively. The YOLO v4-SE model proposed here
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achieved the highest score, reaching 0.95, which indicates that it has better robustness and
can meet the requirements of efficient trellis grape detection.

As shown in Figure 21, the red rectangular box is the prediction result, the red arrow
indicates the missed detection of the target, and the yellow arrow indicates the false
detection of the target. It can be seen from Figure 21 that the improved YOLO v4-SE
model proposed in this paper has good detection performance for samples with occluded
grapes, overlapping grapes, green grapes, purple grapes, and grapes affected by strong
light, and the improved model can mostly identify the target trellis grapes that are missed
or occluded in the image. At the same time, it also can be applied to the detection of grapes
of different colors and the working environment affected by strong light, which is ideal
for robotic harvest. Although the improved YOLO v4-SE also has missed detection under
strong light conditions, the grapes eligible for robot harvesting are all correctly identified.
Therefore, YOLO v4-SE with high recognition accuracy is suitable for the complex trellis
grape cultivation environment and trellis grape harvesting.

Interestingly, we found that YOLO v4-SE with feature enhancement can still accurately
identify most of the grapes in a scene where green grapes and purple grapes are mixed
under strong lighting conditions. It shows that YOLO v4-SE can be applied for recognition
in the purple and green grape picking task under complex conditions.

3.3. Field Positioning Accuracy Verification Test

The PLC motion controller was used to send the 3D spatial coordinate information after
pixel coordinate conversion to the SCARA robotic arm, realizing communication between
the coordinates of the model-identified fruit and the robotic arm as well as conducting the
overall prototype picking experiments. The field work process of the prototype is shown in
Figure 22.
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Figure 22. Prototype field work.

In order to analyze the overall working performance of YOLO v4-SE in more detail,
and to test the accuracy of the spatial coordinate information of the target fruit fed back via
the model to the prototype, a target fruit model predicted and recorded true picking points
in 3D during the field experiment. The spatial coordinate information, the relative position
of the disc knife cutting end effector, and the picking point are shown in Figure 23.
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The verification test of the picking point positioning accuracy in the three-dimensional
method takes the true picking point of the grapes on the trellis as the target point, moves
the disc knife cutting end effector to reach the true picking point of the trellis grapes, and
records the position coordinates of the disc knife cutting end effector at this time; then, the
algorithm in this paper is used to identify the trellis grapes in the three-dimensional ROI
using the high-speed cut-and-catch trellis grape picking robot, and then the trellis grape
picking points are estimated quickly and roughly based on the prediction boxes. When the
relative distance between the actual picking point and the predicted picking point is within
30 mm, the positioning is considered successful.

Ex =
∑N

i=1|xp−xt|
N

Ey =
∑N

i=1|yp−yt|
N

Ez =
∑N

i=1|zp−zt|
N

Er =
√(

xp − xt
)2

+
(
yp − yt

)2
+
(
zp − zt

)2

(9)

As shown in Equation (9), Ex, Ey, and Ez indicate the average positioning errors of the
x,y, and z directions in the base coordinate system of the SCARA manipulator. Er indicates
the average positioning error of the Euclidean distance between the true picking point and
the predicted picking point. (xp, yp, zp) indicates the spatial coordinate of the predicted
picking point of the target grape. The spatial coordinates of the predicted picking points
are calculated by the positioning model. (xt, yt, zt) indicates the spatial coordinate of the
true picking point of the target grape. The spatial coordinates of the true picking point
make the outer edge of the maximum cutting force of the disc knife close to the grape stem
by controlling the SCARA robotic arm. The spatial coordinates of the center of the disc
cutter read in the X-SEL controller of the robotic arm at this time are recorded, which is the
true picking point.

In this paper, trellis grape picking point positioning experiments with five kinds of
different numbers of bunches in a three-dimensional ROI were recorded. All of the bunch
experiments were carried out three times, with a total of fifteen groups of experiments. The
test results are recorded in Table 3.

Table 3. Picking point positioning results.

Grape
Bunches

Recognition
Success
Rate/%

Positioning
Success
Rate/%

Average
Recognition

Time/s

Average
Positioning

Time/s
Ex/mm Ey/mm Ez/mm Er/mm

1 100 100 0.085 0.075 2.58 2.06 1.32 7.16
2 100 100 0.091 0.081 2.55 1.83 1.09 7.85
3 100 88.9 0.082 0.095 2.36 2.02 1.44 7.59
4 91.7 91.7 0.093 0.086 2.83 2.08 1.67 8.85
5 93.3 86.7 0.081 0.084 2.67 2.07 1.37 7.00

average 97 93.5 0.0864 0.0842 2.598 2.012 1.378 7.69

The picking point positioning test species tested 15 times with different numbers
of grape bunches show that the average recognition success rate is 97%; the average
positioning success rate is 97%; the average recognition time after 15 tests with different
numbers of grape bunches is 0.0864 s; the average positioning time after 15 tests with
different numbers of grape bunches is 0.0842 s. The average positioning errors of the x, y,
and z directions are 2.598, 2.012, and 1.378 mm, respectively. The average positioning error
of the Euclidean distance between the true picking point and the predicted picking point
is 7.69 mm, which is far smaller than the 30-mm working radius of the disc knife cutting
end effector.
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3.4. Synchronous Harvesting Experiment in Field

In the trellis environment, the size of the three-dimensional ROI of the robot is used as
the standard, and the grape fruiting density within the area is investigated. It is found that
the density of the sparsest part of the grape fruiting is 2 bunches×mm−2, and the density
of the densest part of grape fruiting is 11 bunches×mm−2. Therefore, this paper designs a
synchronous harvesting experiment using a high-speed cut-and-catch harvesting robot in
the trellis environment with a gradient of 2 bunches×mm−2. When the target grapes are
in the three-dimensional ROI of the robot, the robot stops walking and harvests, recording
the relevant indexes at this point in time. Three synchronous harvesting experiments are
carried out for different fruiting densities, with a total of fifteen groups of experiments. The
average values are taken and recorded in Table 4.

Table 4. Synchronous harvesting experiment in field results.

Fruiting Density/
Bunches×mm−2

Recognition
Success Rate/%

Positioning
Success Rate/% Collision Harvesting

Time/s
Picking

Success Rate/%
Picking

Speed/s×Bunch−1

2 100 100 × 12.4 100 6.2
4 100 100 × 23.33 100 5.833
6 100 88.87 × 31.93 88.87 5.95
8 91.7 95.83

√
44.97 91.67 6.14

10 93.3 83.33
√

56.7 83.33 6.80
average 97 93.606 - - 92.78 6.18

As is shown in Table 4, under the different fruiting densities, the average recognition
success rate is 97%; the average positioning success rate is 93.606%; and the average picking
success rate is 92.78%. Under the fruiting densities of 2–6 bunches×mm−2, the harvesting
times are 12.4, 23.33, 31.93 s, respectively, and no collision occurred. Under the fruiting
densities for 8–10 bunches×mm−2, the harvesting times are 44.97 and 56.7 s, and some
collision occurred. The main reason for the missed harvesting phenomenon in the two
groups of experiments (8–10 bunches×mm−2) is the positioning error of the target grape
picking point itself. Although in the identification process, overlapping or occluded grapes
have been eliminated in the process of the picking sequence planning, when they are close
to the imaged complete grapes, collisions will still occur. However, such collisions rarely
take place. Picking speed refers to the time required to complete a single picking task per
unit time. The average picking speed is 6.18 s× bunch−1, which meets the harvesting
requirements for high-speed cut-and-catch harvesting robots.

3.5. Discussion

In the feature-enhanced deep learning recognition model field application, the feature-
enhanced YOLO v4-SE model with multi-channel inputs has good detection performance
for samples with occluded grapes, overlapping grapes, green grapes, purple grapes, and
grapes affected by strong light. In the field positioning accuracy verification test, from the
single-bunch and multi-bunch grape picking point positioning experiments, it can be found
that the number of grapes that require a positioned picking point has almost no impact on
the recognition time and positioning time of the visual recognition and positioning model.
However, during the recognition process for grapes, the shaking caused by wind speed
often affects the accuracy of picking point positioning. Strong lighting will cause the edge
outline of the grapes to be blurred, resulting in inaccurate position information for the
acquired grape bounding box. The acquired bounding box is smaller than the complete
bounding box, and accurate center point information cannot be extracted from the acquired
bounding box.

In the synchronous harvesting experiment in the field, although in the recognition
process overlapping or occluded grapes have been eliminated in the process of picking
sequence planning, when they are close to the imaged complete grapes, their distance
weight values are similar or the same, which will still lead to collisions. However, such
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collisions rarely take place. The disc knife rotates too fast, which will cause the grapes with
a light weight to be thrown behind the knife disc, which produces picking failures.

Therefore, YOLO v4-SE can realize precise recognition for grapes and the rapid posi-
tioning of picking points in the high-speed cutting and catching operation designed for
trellis grapes.

4. Conclusions and Future Works

In this study, we successfully developed a rough positioning method for high-speed
cutting and catching harvesting robots. The method utilized the depth information from
the structure of the robot body to build a three-dimensional region of interest where
grapes were synchronously identified via a feature perception-enhanced model combined
with multi-channel inputs of RGB and depth images. At the same time, synchronous
inference based on the recognition boxes of the multi-grapes provided corner information
for reliable and fast picking point calculation, which was confined to the cutting area
with differences in three-dimensional directions. Additionally, this method planned the
global continuous sequence in the three-dimensional region of interest and also solved the
problem of sequence planning for the picking of occluded and overlapping grapes.

Next, we will attempt to verify and further optimize our method through field experi-
ments. At the same time, we will optimize the model structure and reduce the size of the
model so as to lower its weight and accelerate the detection speed. We will also build a
dataset for trellis grapes in a real trellis vineyard during the night to meet the night work
requirements for high-speed cutting and catching harvesting robots. In future research, we
consider using inertial unit, electronic compass, or gyroscope to measure the roll angle,
pitch angle, heading angle, and altitude (ground fluctuation height) of the prototype and
introduce these parameters into the algorithm model to reduce the errors in the depth
data acquired by the Realsense D455 caused by the tilt of the prototype, so as to improve
robot scene adaptability and anti-interference ability. Thus, we will help fruit growers to
realize rapid and efficient harvesting during the ripening period of trellis grapes as well as
promote the modernization and intelligence of agriculture.
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