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Abstract: Fruit flies cause production losses in mango orchards affecting fruit quality. A National
Campaign against Fruit Flies (NCFF) evaluates farm status using the fruit flies per trap per day index
(FTD). Traps with attractant are installed manually within orchards in Mexico, but counting the flies
trapped every week requires excessive numbers of trained personal. Electronic traps (e-traps) use
sensors to monitor fruit fly population, saving labor and obtaining the real-time orchard infestation.
The objective of this work was to acquire an image within a e-trap at 17:00 when an insect was
detected and binarize the information in real-time to count the number of flies. Each e-trap was
implemented with a polyethylene PET bottle screwed to a tap containing an ESP32-CAM camera.
E-traps from several hectares of mango trees were sampled and transmitted through WSN wireless
sensor networks. This original system presents a star topology network within each hectare with the
long range LoRa transceiver at the central tower. It receives the fly count from five e-traps and finally
transmits data to the house tower end point. Another contribution of this research was the use of a
DJI mini2 for acquiring the e-trap data, and the 8-ha flight took 15 min and 35 s. This period can be
reduced if the drone flies higher.

Keywords: automatic traps; image analysis; mango orchard; star node WSN; DJI mini2; transmission towers

1. Introduction

Fruit flies (Diptera: Tephritidae) cause production losses up to billions of dollars per
year around the world, with USD 242 million losses per year reported only in Brazil [1].
In Mali, 50% of the national mango production was lost due to fruit flies [2]; economic
losses result from quarantine restrictions imposed by importing countries. Fruit fly females
use fruit sugar content during their oviposition process, and their larvae feed from mango
pulp [3,4]. Other fruits attacked by fruit flies with marketable losses include raspberries [5],
almonds, and olives [6].

Fruit infestation is not always highly correlated with fly population [7]; instead, it
varies under climatic changes [8,9]. Temperature, relative humidity, and light intensity
influences female flies’ infestation [10]. The adult Mexican fruit fly is larger than a housefly;
it has green eyes and transparent wings. These fruit flies are captured by detection traps
that are set within the insect area named the infested zone. Several dry traps are sold in the
market, including Tephri-Trap [11–14], McPhail-Trap [11,13,15] and Multi-Lure Trap [16].
Commercial food baits are available for fruit fly monitoring, but their performance depends
on climate and fruit fly species [12,15–17]. The food bait used to attract and catch the flies
depends on the trap’s volume and form. Efficient mass trapping controls the Mediterranean
fruit fly (Ceratitis capitate) without presenting environmental impacts [18].
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Fully automatic fly-monitoring systems can identify species [19], but semi-automatic
systems require human experts to identify and count the trapped insects. The human
expert analyzes the images captured by the camera equipped on the trap [20]. In order to
provide better detection, electronic circuits monitor the flies entering the trap [21]. Minia-
turized image sensors have reduced costs in fruit fly monitoring systems [22,23]. Counting
algorithms [24] employ threshold algorithms [25], and texture and shape analysis [26] iden-
tified whiteflies in plant leaves with 85% accuracy. Recently, artificial intelligence has been
effectively introduced in precise farming [27,28]. Deep convolutional networks (R-CNN)
are being used for object detection in traps and are considered an accurate predictor of their
locations [29,30].

UAVs can collect, process, and store data in real time [31,32]. UAVs used as aerial base
stations enhance WSN capacity, coverage, and energy efficiency [33]. Multi-UAVs used for
pest detection in large farms have tested several intelligent algorithms [34]. New data gath-
ering algorithms [35,36] have been proposed to save data from soil ports in UAVs. Many
researchers have investigated the compatibility of UAV and LoRa networks for enabling
IoT applications [37,38]. UAV data collection algorithms [33] have considered multi-data-
rate transmissions (DR) and contact duration time (CDT). Autonomous navigation and
scheduling minimizes data collection time [39], combining two Reinforcement Learning
(RL)-based frameworks. Several data collection problems in WSNs utilizing UAVs have
been analyzed and discussed [40]. A UAV trajectory gives coverage to a set of ground
nodes, avoiding the use of several UAVs that need to be connected to each other [41].

The objective of this research was to develop inexpensive handmade polyethylene
(PET) traps in Mexico to capture flies within mango orchards [42] and transmit the collected
information wirelessly to the producer and government agencies. With the use of these
systems, the quantity of technical experts employed for analyzing fly traps decreases,
obtaining a better governmental fly control. The electronic trap developed for this study,
unlike similar products, counts the flies and generates an alarm when the first fly per
hectare has been detected. Each electronic trap with LoRa transmission represents a node
and uses a novel star topology within each hectare to gather infestation information. As
mango orchards rarely possess WIFI connectivity, LoRa wireless systems turn out to be
very important. The information is finally transmitted to a final end-device at the house
through LoRa transmission or by means of a mini-drone that can cover greater distances.

The article is structured as follows: Section 2.1 reviews the construction of the elec-
tronic trap with each of the circuits employed. Section 2.2 analyzes the image analysis
technique used for fly detection. Section 2.3 focuses on the wireless communication network
architecture, including a DJI mini2 covered in Section 2.4. Section 3 shows all the results
obtained from electronic trap monitoring, transmission evaluation and FTD analysis from
three seasons. Section 4 describes some discussion concerning its performance. Finally,
Section 5 includes some conclusions.

2. Methodology

Fly infestation was monitored during 2019–2021 in a commercial mango orchard
located in Loma Bonita (17◦25′47′′ N, −101◦11′19′′ W, 17 m ASL), in the state of Guerrero,
Mexico. The 8-hectare orchard presents 35-year-old trees, and the trees are planted with the
traditional 10 × 10 m spacing. Therefore, 100 trees were grown per hectare, as shown in
Figure 1. The experiment tests the fruit fly detection system comprehensively. The system
considered a vision system for the detection of the fruit-fly, its wireless transmission system,
and the introduction of routes with drones to acquire information from several hectares.

2.1. IoT Fly Monitoring System

At the mango orchard, five traps were hung per hectare randomly. The minimum
distance between traps was of 40 m, and the yellow circles in the orchard map show where
the traps were hung (Figure 1). Traps sheltered from sunlight [14] were suspended from
branches with wires coated with grease at heights ranging from 3 to 5 m above ground. The
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grease prevents predatory activity of ants against dead adult flies within the trap. A food
attractant known as CeraTrap was used as bait in the traps as it attracts both males and
females [14,42]. CeraTrap (Bioibérica, Barcelona, Spain) is an enzymatic hydrolyzed protein
that maintains a high level of attraction which lasts for at least one month. Flies were
collected weekly from the traps, preserved in 70% ethanol, and returned to the laboratory
to estimate a daily capture rate. Every 15 days, the bait was replaced in the traps.
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Figure 1. E-traps and transmission sites in the 8-hectare mango orchard. Green circles represent mango
trees, and yellow circles show trees with e-traps. Violet diamonds represent transmission towers.

Partial automatic monitoring systems have been developed where human experts
observe acquired images to count trapped flies [20,43]. In this design, the ESP32-CAM
containing an OV2640 camera, identifies and counts the flies trapped per day. The cheap
ESP32-CAM module (Figure 2a) is a low power consumption system ideal for remote
monitoring IoT applications. The ESP32-CAM module contains a microcontroller with
Bluetooth, Wi-Fi, and an SD card [44,45]. Its DIP format allows it to be easily and quickly
integrated into any application, and the data obtained can be sent to any embedded device.
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The FTDI module (Figure 2b) uses a FTDI FT232R chip to provide an effective commu-
nication method between modern USB supported devices and RS232 serial devices. The
top-trap casing design was completed using Solidworks version 2022 software. It isolates
the ESP32-CAM module, leaves an access to extract the SD card easily, and presents a reset
button. The design was 3D-printed using a hard plastic and was then screwed to a 500 mL
PET bottle, Figure 2c.

The program is uploaded to the ESP32-CAM module through the FTDI module,
Figure 3a and the Arduino IDE 2.0 software employs “AI Thinker ESP32-CAM”. The TX
and RX pins are connected and once the program is loaded, the blue-line bridge is removed
and the flash is pressed. Finally, the red module is detached, keeping only the supply
voltage from the external battery. Physical connections are shown in Figure 3a, and a
phenolic plate (Figure 3b) keeps the ESP32-CAM protected.
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An infra-red (IR) sensor triggered the camera power supply whenever an insect
entered the trap [46], avoiding excessive energy consumption. The infrared radiation
PIR sensor (mod HC-SR501, Panasonic, Osaka, Japan) was inserted inside the trap, close
to the insertion hole, to detect any kind of motion; this is shown in Figure 4a. The PIR
(pyroelectric) sensor board uses the single trigger mode, and starts its operation when the
control pin is set to zero (Figure 4b). The multivibrator output rises to five volts once insect
movement is detected by the PIR sensor. This output is introduced to a flip-flop memory
that stores its high value. Two pulses were detected due to the presence of two insects by
the motion sensor, as depicted by the top signal, shown in Figure 4b. Although several
insects are detected, the flip flop will stay constant at 5 V, meaning that the camera only
flashes once. The ESP32-CAM has an internal RTC (Figure 4a), and when the time is 17:00,
it checks port 1.0 to ask whether insects were detected, and if so, acquires an image and
stores it in the SD card.
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Figure 4. (a) Block diagram of the control system for acquiring images. (b) Control timing signals at
the PIR board. (c) ESP32-CAM software settings.

The ESP32-CAM webserver page was used to program the main settings of the ac-
quired image. These parameters include resolution, brightness, and contrast settings,
shown in Figure 4c. The camera had a 1/4′′ lens size and was placed 20 cm over the
Ceratrap liquid. It captured images with a resolution of 320 × 240 (QVGA). Camera image
exposure and gain were fixed at 100 and 5, respectively. Contrast, brightness, and saturation
applied to the picture varied between −2 and 2. Brightness was set to 1, and saturation was
set to −2. Grayscale images save considerable space in memory and operational time for
fly detection. During programming, a special effect was set to 2, corresponding to grayscale
imaging. Once the camera takes a picture in each trap (node), real-time image processing
takes place.

The number of flies are counted daily, and the information will be available to the
producer through the LoRa transmission system, shown in Figure 5. The LoRa transmitter
was fixed close to the trunk in Figure 5a and at the top of canopy at Figure 5b.
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2.2. Image Analysis

Embedded systems use computer vision techniques to detect flies within traps [47].
Segmentation techniques remove background image pixels, and the remaining pixels
contain information from the fly or flies [48–51]. The grayscale image uses less memory,
and during binarization, each pixel intensity is compared to a threshold value. Trapped
flies were detected by comparing the pixel value in two successive grayscale images [52],
with A(x,y) as the actual image and P(x,y) as the previous one. When both images are equal,
no flies entered the trap. This operation can activate an alarm but cannot identify the fly
species. The image processing algorithm used to detect the flies is shown in Figure 6.
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Figure 6. Image processing block diagram.

An 8-bit grayscale image was acquired every day at 17:00 by the ESP32-CAM, as
explained earlier. If the PIR sensor detected an insect within the trap, the grayscale image
was saved in a SD and binarized. The image stored from the previous day was subtracted
from the actual image to remove the background pixelwise. Sixty grayscale images were
inserted into the ImageJ 1.41 software (LOCI, University of Wisconsin, Madison, WI, USA)
to obtain their histograms. These histograms were used to obtain the threshold value, to
binarize the image. Once the flies were binarized, the dark images were counted, and the
value was saved in a register within the ESP32.

Figure 7a shows a grayscale image that has one fly and without eliminating the
background by subtraction. The threshold value for binarization was 190, and the fly
appears in black. All the CeraTrap liquid appears in white, and the PVC external vegetation
gives a black value, shown in Figure 7b. Another RGB image presented three insects, an
ant, a house fly, and a fruit fly, all floating over the yellow food bait, shown in Figure 7c. If
we only wanted the insects to appear in the segmented area, two thresholds were used. The
fruit fly is encircled in red while the housefly is surrounded by an orange circle (Figure 7d).
Several new software’s are being developed to optimize segmentation in ImageJ [53,54].
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thresholding. (c) Color image with several flies acquired with the ESP32-CAM. (d) Binary image of
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2.3. LoRa Communication

LoRa is a Chirp Spread Spectrum (CSS) modulation technology that encodes informa-
tion through chirps with a linear variation of frequency over time. The frequency used in
North America is 915 MHz with three different bandwidths: 125 kHz, 250 kHz, or 500 kHz.
As the bandwidth BW increases, a higher quantity of bytes can be sent in the same amount
of time. Data transmission rate varies from 300 bps to 50 kbps, depending on the spreading
factor (SF) and channel bandwidth settings [55]. With a higher spreading factor (SF = 12),
the transmission can reach a greater distance, even as its data rate decreases. The coding
rate CR is the final parameter and is related to the time-on-air required to transmit a packet.
As CR becomes smaller, a greater time is required to transmit a packet as the time-on-air
will be higher. In order to extend the communication range for this experiment, a spreading
factor of 11 was selected along with a BW of 125 and a CR of 4/5 [56].

This experiment uses a TTGO LoRa32-OLED V1 module for each node connected to
the ESP32-CAM. The module based on an ESP32 microcontroller [57] presents a SEMTECH
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SX1276 LoRa chip working at 915 MHz [58]. This module has been programmed in Arduino
IDE [59]. In the first WSN, the ESP32-CAM sends the processed value with the number
of flies trapped to the TTGO LoRa32-OLED V1 module nearby the trap height. In the
second WSN, the TTGO LoRa32-OLED V1 module is fixed at the top of a 20 m tower,
Figure 5. The ESP32-CAM communicates through its Bluetooth 4.2 LE module (BLE) with
the TTGO Module.

The received signal strength indication (RSSI) measured in dBm, points out the
strength of the signal that is reaching the receiver. As RSSI approaches 0, the signal
arriving at the receiver improves. A relationship between distance and RSSI is given by the
FRIIS equation [55], (Equation (1)). The constant A is the received power in dBm when the
distance between the transmitter and receiver is 1 m, and n is the loss constant for a given
environment. The n value used in a controlled environment is 2.

RSSI = −
(
10× n× log10(d)− A

)
(1)

The distance between the receiver point and the transmitter node was measured with
a laser (mod. Metron 60 BT, Sola, Austria). This sensor is very precise as it measures a
distance of 50 m with an error of 1.5 mm. When trunks interfered with the optical ray,
measurements were taken by sections. The final distance to the tower was obtained by the
Pythagoras theorem (Equation (2)) after measuring variables d1 and d2. These distances are
shown with semicolon lines in Figure 8.

d =

√
d1

2 + d2
2 (2)Agronomy 2023, 13, x FOR PEER REVIEW 11 of 28 
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LoRa Communication Systems

Three different data communication systems were tested, and each trap corresponds
to a node. The first two nodes use LoRa static systems, meanwhile the third uses drone-
tower combinations.

In the first WSN system, data was transmitted from each trap (node) to the LoRa
receiver near the house (Figure 8). A point-to-point communication system was employed
where the LoRa transmitter was at a height varying between 3 and 5 m based on the tree
trunk and branches. The receiver was placed at a height of 20 m over the house tower.
The receiver module measured the RSSI, and the transmitting packets presented up to
20 bytes of data information; two bytes correspond to the tree number and the other
byte to the quantity of flies. Packet loss was determined as the percentage of bytes of
information received against the total number of bytes sent. Blue lines in Figure 8 represent
distances below 200 m between traps and house tower. Green lines represent those traps
that have a distance higher than 200 m and lower than 380 m to the LoRa receiver. Red
lines present distances between the trap transmitter and the house receiver longer than
380 m. Provisional values of trapped flies were inserted into the embedded system to test
the efficiency of the communication system.

The second LoRa static transmission system presents a star topology (Figure 9). Each
hectare marked with a black square or rectangle presents a star topology network with a
receiver at the center of four or five transmitting traps (nodes). Each nearby trap (node)
can be connected to a central gateway so that all data packets are aggregated to it without
coordination between them [60,61]. The LoRa transmitters were initially placed over the
trap at a height of 5 m and the LoRa transceiver fixed at a height of 20 m over a tower; each
tower was placed at the middle of a hectare (square center).
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appears. The central tower of each hectare of mango trees is marked with a circle filled with orange
color. The transceiver in each central tower receives the data from the e-traps following the blue
arrow routes. The transceiver from each tower transmits the data to the house end node.
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The TTGO LoRa32-OLED V1 module at the top of the tower works as a transceiver and
has the ability to receive and transmit data. The module was programmed with Arduino
IDE, and the block diagram illustrates the constants used by the LoRa transceiver (915 MHz,
CR = 4/5, BW = 125 kHz, SF = 11), shown in Figure 10. The data is collected daily at 18:00
when the system is reset and wakes from its sleeping routine. The system starts receiving
data from each trap at 18:00. The first trap (node) will transmit data for 2 min, and the
embedded system decodes the data package (Figure 11) which contains tree number 41 and
the quantity of flies being trapped (3). In the example of Figure 11, each trap will transmit
at a different time towards the receiver-end node fixed at the tower. The resultant packet
elaborated by the TTGO LoRa32-OLED V1 module has 8 bytes (41 03 48 00 57 02 63 05)
with the black bytes as the tree number; the next byte, shown in red font, is the number of
flies (Figure 11). Once the data is encoded the package is transmitted to the main tower at
18:15, shown in Figure 10. After 30 s, the system will go to sleep until next day. The module
uses only one antenna for both receiving and transmitting.

Agronomy 2023, 13, x FOR PEER REVIEW 13 of 28 
 

 

 

Figure 10. Programming of the TTGO LoRa32-OLED V1 module. 

  

Figure 10. Programming of the TTGO LoRa32-OLED V1 module.



Agronomy 2023, 13, 1736 11 of 24

Agronomy 2023, 13, x FOR PEER REVIEW 14 of 28 
 

 

 

 

Figure 11. Data transmitted within the traps (nodes) of one hectare. The black bytes correspond to 

the tree number and the red number indicates the number of flies counted at the specific trap at 

the tree. Each e-trap is sampled at a different time avoiding data interference. 

2.4. UAV Data Collection System 

The last communication system used a mobile drone platform (Figure 12) with a 

LoRa mounted on it. UAVs (Unmanned Aerial Vehicles) are aerial vehicles remotely 

driven with no pilot on board [62]. Waypoints allowed the DJI mini2 drone (Shenzhen DJI 

Sciences and Technologies Ltd., Shenzhen, China) to fly a predetermined path using GPS 

coordinates; altitude, speed, and camera settings were programmed by the operator for 

each waypoint. A similar autonomous UAV flight used a DJI GS Pro with a preplanned 

flight path [63]. Route planning should consider orchard environment, area and UAV fea-

tures to program the optimum autonomous flight [64]. 

The DJI mini2 flight altitude was set at 30 m (Figure 12a,c), and the drone speed at 

1.5 m/s. Once the UAV views a tower it descends 5 m, Figure 12c. A two-dimensional route 

planning took into account tree size for UAV safety. The operator programmed the UAV 

manually to transit a given route using waypoints, (Table 1 and Figure 13). The waypoints 

given by WP1-THa1, WP2-THa3, etc., represent the different towers set on the mango 

farm. In point WP5, the UAV will rotate during its flight by 90°, so that it can arrive to 

WP6-THa6 (Table 1 and Figure 13). The autonomous mission used Litchi, a flight app for 

the DJI drone for tracking and getting the data from the towers. The TTGO LoRa32-OLED 

V1 module from each tower was programed as shown in Figure 10, and the data package 

was transmitted to a LoRa 1276 receiver (Semtech, France) at the UAV unit. 

Table 1. Waypoints containing travel distances and time on air. 

Waypoints X, m Y, m Time on Air, s Comments 

WP1-THa1 100 0 66.7 
Arrives to tower 1, takes measure-

ments 

WP2-THa3 0 90 60 Takes measurements in tower 3 

WP3-THa7 0 90 60 Takes measurements in tower 7 

WP4-THa8 100 0 66.7 Takes measurements in tower 8 

Figure 11. Data transmitted within the traps (nodes) of one hectare. The black bytes correspond to
the tree number and the red number indicates the number of flies counted at the specific trap at the
tree. Each e-trap is sampled at a different time avoiding data interference.

2.4. UAV Data Collection System

The last communication system used a mobile drone platform (Figure 12) with a LoRa
mounted on it. UAVs (Unmanned Aerial Vehicles) are aerial vehicles remotely driven with
no pilot on board [62]. Waypoints allowed the DJI mini2 drone (Shenzhen DJI Sciences and
Technologies Ltd., Shenzhen, China) to fly a predetermined path using GPS coordinates;
altitude, speed, and camera settings were programmed by the operator for each waypoint.
A similar autonomous UAV flight used a DJI GS Pro with a preplanned flight path [63].
Route planning should consider orchard environment, area and UAV features to program
the optimum autonomous flight [64].
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Figure 12. (a) UAV flying over the trees in open space. (b) UAV returning from the route. (c) UAV
heights during data acquiring routine.

The DJI mini2 flight altitude was set at 30 m (Figure 12a,c), and the drone speed at
1.5 m/s. Once the UAV views a tower it descends 5 m, Figure 12c. A two-dimensional route
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planning took into account tree size for UAV safety. The operator programmed the UAV
manually to transit a given route using waypoints, (Table 1 and Figure 13). The waypoints
given by WP1-THa1, WP2-THa3, etc., represent the different towers set on the mango
farm. In point WP5, the UAV will rotate during its flight by 90◦, so that it can arrive to
WP6-THa6 (Table 1 and Figure 13). The autonomous mission used Litchi, a flight app for
the DJI drone for tracking and getting the data from the towers. The TTGO LoRa32-OLED
V1 module from each tower was programed as shown in Figure 10, and the data package
was transmitted to a LoRa 1276 receiver (Semtech, France) at the UAV unit.

Table 1. Waypoints containing travel distances and time on air.

Waypoints X, m Y, m Time on Air, s Comments

WP1-THa1 100 0 66.7 Arrives to tower 1, takes
measurements

WP2-THa3 0 90 60 Takes measurements in tower 3
WP3-THa7 0 90 60 Takes measurements in tower 7
WP4-THa8 100 0 66.7 Takes measurements in tower 8

WP5 180 0 120 Moves to clean area without trees
and turns by 90 degrees

WP6-THa6 0 80 53.3 Takes measurements in tower 6
WP7 0 90 60 Turns after 90 m by 90 degrees
WP8-THa2 110 0 73.3 Takes measurements in tower 2
WP9-THa5 0 80 53.3 Takes measurements in tower 5
WP10-THa4 100 0 66.7 Takes measurements in tower 4
Endpoint 200 0 133.3 Return pointAgronomy 2023, 13, x FOR PEER REVIEW 16 of 28 
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filled and orange circles represent the e-traps and towers within the orchard. Each black frame with a
roman number corresponds to a hectare of mature mango trees.
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2.5. Flies Monitored per Season

A monitoring network consisting of 40 traps was used to capture adult fruit flies. The
traps with all their components and circuits were developed in the Irrigation laboratory at
the Universidad Autonoma Chapingo. CeraTrap bait was added to the traps before hanging
them on the trees. Four traps were hung per hectare on random trees around a central
tower that contained the fifth trap. Fly presence was checked daily at the house tower
receiver, and every week, traps were checked at the orchard by technical personnel [65],
changing the trap with a new one that had fresh bait.

The fruit flies per trap per day index (FTD) determined plant health and its infestation
according to the National Campaign against Fruit Flies (NCFF). The index was calculated
from the number of fruit flies caught within all the traps per day [65].

3. Results

The Ceratrap fluid is a yellow color with R, G, B values of 206, 232, 181, respectively
(Figures 7c and 14b). The fly floating over the liquid has R, G, B values of 180, 173, and 058,
respectively. The PET bottle hanging (Figure 14a,b) from a tree branch or structure moves
with variable wind. A blue plastic pressure strap was designed and built to fix the bottle
to the tree branch. Three holes within the strap allow ropes to fix the bottle to different
branches and avoid movement, shown in Figure 14c.
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Figure 14. (a) PET trap hanging in the lab. (b) PET trap hanging in the tree after 3 weeks with the
same bait. (c) PET trap surrounded by a plastic structure to avoid movement.

As the day advanced, CeraTrap and fly RGB values varied; they were more difficult
to analyze at noon, shown in Table 2. Eight-bit grayscale values acquired in the morning
(9:00 am) were 204 and 133 for CeraTrap and flies, respectively. In the afternoon, all RGB
and grayscales values decreased, and the grayscale difference was the highest (215%), so
images were taken in the afternoon at 17:00.

Table 2. Average raw RGB image data values of flies and CeraTrap fluid during the day.

Time of CeraTrap Fly

Day Red Green Blue Gray Red Green Blue Gray

morning 203 239 155 204 175 159 054 133
noon 237 255 174 225 201 184 102 160

afternoon 141 175 089 140 107 092 011 65
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Eight flies were introduced into 10 traps and fly detection analyzed at three hours (9:00,
12:00, 17:00) under three thresholds (Th1, Th2 and Th3), Table 3. The optimum threshold is
always given by Th2.

Table 3. Fly detection efficiency at noon, morning and afternoon for three different thresholds.

Detection Efficiency (%)

Variable Morning 9:00 Noon 12:00 Afternoon 17:00

Th1 Th2 Th3 Th1 Th2 Th3 Th1 Th2 Th3

Threshold 155 187 213 177 212 230 83 122 149
Detection
efficiency 75 100 12.5 75 100 12.5 100 100 12.5

In the afternoon, the best threshold (Th2 = 122) showed flies in black on a white
background. The pixels surrounding the trap’s polyurethane circle within the image
remained black (Figure 15a,b). With Th1 = 83 in the afternoon, this contour became white,
and the fruit-fly area decreased by 42%; detection efficiency was still 100%. With a higher
threshold of 149, efficiency decreased to 12.5% and the ellipsoidal fly shape became square.
At noon, with a threshold Th2 of 212, fly detection accuracy was 100%, but the outer contour
from the PET bottle image became white. Two black small figures similar to flies were
found outside the circle with Th1 = 83, reducing the detection efficiency to 75%; each fly
area decreased by 64%. In the morning, the best threshold was Th2 with a value of 187. For
Th1 = 155, the detection efficiency and fly area decreased to 75% and 57%, respectively.

Agronomy 2023, 13, x FOR PEER REVIEW 18 of 28 
 

 

Table 3. Fly detection efficiency at noon, morning and afternoon for three different thresholds. 

 Detection Efficiency (%) 

Variable Morning 9:00 Noon 12:00 Afternoon 17:00 

 Th1 Th2 Th3 Th1 Th2 Th3 Th1 Th2 Th3 

Threshold 155 187 213 177 212 230 83 122 149 

Detection ef-

ficiency 
75  100 12.5 75 100 12.5 100  100 12.5 

In the afternoon, the best threshold (Th2 = 122) showed flies in black on a white back-

ground. The pixels surrounding the trap’s polyurethane circle within the image remained 

black (Figure 15a,b). With Th1 = 83 in the afternoon, this contour became white, and the 

fruit-fly area decreased by 42%; detection efficiency was still 100%. With a higher thresh-

old of 149, efficiency decreased to 12.5% and the ellipsoidal fly shape became square. At 

noon, with a threshold Th2 of 212, fly detection accuracy was 100%, but the outer contour 

from the PET bottle image became white. Two black small figures similar to flies were 

found outside the circle with Th1 = 83, reducing the detection efficiency to 75%; each fly 

area decreased by 64%. In the morning, the best threshold was Th2 with a value of 187. 

For Th1 = 155, the detection efficiency and fly area decreased to 75% and 57%, respectively. 

During calm weather, the flies catched by the trap were found floating over the fluid 

in the center of the bottle, as shown in Figure 15a. However, under windy conditions, the 

CeraTrap fluid moved the flies to the side of the PET bottle, shown in Figure 15b. Thresh-

old values for binarization were obtained using the ImageJ software, and images were 

acquired at 9:00; the threshold value was 186 in both images (Figure 15). Although binari-

zation results were easy to achieve, automatic counting results were difficult because all 

the outer contour from the PET bottle is also black. If the image was XORed with F0 pix-

elwise, outside contour elimination worked in 40% of the cases. 

 

Figure 15. Binarized image of flies using a single threshold (a) floating over the CeraTrap fluid and 

(b) at the side of the PET bottle. 

The limited embedded computational power avoids the use of RGB images, so gray-

scale imaging was employed by the ESP32-CAM. When images from two consecutive 

days are subtracted, the value must be null if the number of flies is the same. This condi-

tion is not true if flies slide over the liquid surface before the second image is taken. A 

Figure 15. Binarized image of flies using a single threshold (a) floating over the CeraTrap fluid and
(b) at the side of the PET bottle.

During calm weather, the flies catched by the trap were found floating over the fluid
in the center of the bottle, as shown in Figure 15a. However, under windy conditions, the
CeraTrap fluid moved the flies to the side of the PET bottle, shown in Figure 15b. Threshold
values for binarization were obtained using the ImageJ software, and images were acquired
at 9:00; the threshold value was 186 in both images (Figure 15). Although binarization
results were easy to achieve, automatic counting results were difficult because all the outer
contour from the PET bottle is also black. If the image was XORed with F0 pixelwise,
outside contour elimination worked in 40% of the cases.
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The limited embedded computational power avoids the use of RGB images, so
grayscale imaging was employed by the ESP32-CAM. When images from two consec-
utive days are subtracted, the value must be null if the number of flies is the same. This
condition is not true if flies slide over the liquid surface before the second image is taken. A
correlation was obtained between the fruit fly image processing count and the PIR sensor
pulses, as shown in Figure 16.

Agronomy 2023, 13, x FOR PEER REVIEW 19 of 28 
 

 

correlation was obtained between the fruit fly image processing count and the PIR sensor 

pulses, as shown in Figure 16. 

 

Figure 16. Flies detected by the PIR sensor against those found by threshold and background sub-

traction algorithm. 

A 0.9827 correlation was obtained between the insect count from threshold-based bi-

narization and PIR pulses and is shown with blue line. An R2 = 0.94 with background sub-

traction was obtained, but the slope was higher. A higher quantity of flies resulted from 

subtraction imaging as the flies do not remain in the same location. For example, PIR 

counted 19 flies while the subtraction image algorithm counted 26. 

3.1. Communication of Data 

In the first transmission experiment, distance from nodes (traps) to the house tower 

varied between 100 and 500 m. Data were introduced to the LoRa module before the traps 

were hung on the trees to analyze their performance. Data arriving to the house receiver 

were averaged and RSSI and data packet loss plotted, shown in Figure 17. Vegetation in-

terfered with the transmission and the receiver RSSI (yellow line) decreased from −80 dBm 

at 100 m to −120 dBm at 400 m, shown in Figure 17. At distances more than 400 m, data 

packet loss increased drastically from 30% to 70% and the system was no longer used. 

Indoor simulated RSSI results were very different from the real measurements, as shown 

by the green line in Figure 17. 

Figure 16. Flies detected by the PIR sensor against those found by threshold and background
subtraction algorithm.

A 0.9827 correlation was obtained between the insect count from threshold-based
binarization and PIR pulses and is shown with blue line. An R2 = 0.94 with background
subtraction was obtained, but the slope was higher. A higher quantity of flies resulted
from subtraction imaging as the flies do not remain in the same location. For example, PIR
counted 19 flies while the subtraction image algorithm counted 26.

3.1. Communication of Data

In the first transmission experiment, distance from nodes (traps) to the house tower
varied between 100 and 500 m. Data were introduced to the LoRa module before the traps
were hung on the trees to analyze their performance. Data arriving to the house receiver
were averaged and RSSI and data packet loss plotted, shown in Figure 17. Vegetation inter-
fered with the transmission and the receiver RSSI (yellow line) decreased from −80 dBm
at 100 m to −120 dBm at 400 m, shown in Figure 17. At distances more than 400 m, data
packet loss increased drastically from 30% to 70% and the system was no longer used.
Indoor simulated RSSI results were very different from the real measurements, as shown
by the green line in Figure 17.
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Figure 17. RSSI, packet loss for different distances during data transmission within experiment one.

The star topology (second experiment) used class A LoRaWAN end nodes. Trap end-
nodes with class A can only transmit during two specific time windows before they enter
a sleep state and cannot send acknowledgment messages to the transmitter [66,67]. Each
end-device transmits data to a receiver end device without verifying its availability. The
LoRa application of this second experiment was set to transmit 10 bytes of data every 2 min.
If the variables are SF = 11, BW = 125, f = 915 MHz, and CR = 4/5, the packet duration on
air will be 578 ms. If the system transmits 20 bytes, its airtime will be 744 ms, representing
only half of the tower LoRa receiving period.

In this star topology experiment, distance from the transmitter to the receiver ranged
from 50 to 60 m. The transmission crossed through several branches, affecting the strength
of the signal (RSSI) that was reaching the ESP32 LoRa module. Several trunks were gathered
to provide a diameter section of 0.6 m, providing an RSSI = −114 dBm within safe limits,
but there was also a 63% data packet loss (Table 4). Trees were pruned to avoid transmission
problems, shown in Figure 18a,b. Dense vegetation included trunks, leaves, and branches,
but trunks and thick branches attenuated the electromagnetic transmission considerably.
The LoRa transmitter was taken to the top of the tree (Figures 5b and 18c), minimizing data
package-loss within the system. Communication between the orchard and house tower
took place within open space, shown in Figure 9.

Table 4. RSSI and data packet loss measured at the receiver after passing through a branch with
different diameters.

Branch RSSI, dBm Packet Data Loss, %

Diam, cm Avg Std. dev. Avg. Std. dev.

0.15 −70 2.49 0 0
0.4 −89.1 3.48 3 3.5
0.65 −114.4 7.79 63.5 8.51
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Figure 18. Tree (a) having dense vegetation, (b) after being pruned, and (c) transmitter module at the
top of the canopy.

The UAV-tower transmission system was carried out only during 2021 and using ten
flights. In the first flight, the route took 813.3 s without acquiring data before the UAV
returned home. Time on air data transmission from each tower was 578 ms, which can be
reduced to 41.2 ms by using a spreading factor of 7.

Route programming allowed for a window of 2 min per tower, and the UAV could
receive data several times. Transmission from 8 towers took 16 min, which added 13′55′′

min to the flight transit of; the total flight time was therefore 29 min 55 s. This period is
close to the battery discharge limit. The route was rescheduled to optimize transit time
and battery consumption, shown in Table 5. It takes 15 min and 35 s to move over the
trees and receive data from each tower. For example, in tower-3, UAV operation starts at
18:16:35 and is receiving data for 20 s; the UAV will then move to tower 7 for 60 s, shown in
Table 1. This type of programming helps to synchronize between tower transmission and
UAV receiver timing, allowing three times as much data to be sent. Class B transmission
protocol was used between the tower (node) and the UAV receiver. In class B, nodes are
synchronized with the network using properly timed reception windows [68]. Some UAVs
incorporate sensors for taking air measurements and transmitting them through a LoRa
node to a gateway [69].

Table 5. Scheduled transmission for each tower, including transit flights between towers (V).

Tow 1 Tow 3 Tow 7 Tow 8 Tow 6 Tow 2 Tow 5 Tow 4

Start Time 18:15:00 18:16:35 18:18:05 18:19:35 18:23:05 18:25:05 18:26:40 18:28:20

End Time 18:16:30
V1–V3

18:18:00
V3–V7

18:19:30
V7–V8

18:23:00
V8–V6

18:25:00
V6–V2

18:26:35
V2–V5

18:28:10
V5–V4

18:30:35
HOME

3.2. Fly Detection per Day

Fruit fly adult population shows fluctuations throughout the year [70]. In this orchard
at Loma Bonita, Guerrero, Mexico, Anastrepha obliqua was the main fruit fly species trapped,
but a small quantity of Anastrepha striata specimens were also found. Both varieties were
common throughout the coast and were captured at mango farms during 2016 at the village
of Atoyac [65]. Flies captured during the three seasons were expressed as FTD being
sexually immature flies more attracted to traps that use CeraTrap [71]. The number of A.
obliqua flies captured during 2017 and 2018 at Loma Bonita was 393 and 462, respectively.
A maximum of 20 A. striata were captured per year before 2019. The plan developed to
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decrease fruit fly infestation was to rapidly collect mango fruit from the soil and release
sterile males. These sterile males were released by helicopters in February 2019 so that
they would mate with females who would then lay unviable eggs [72]. Technical personnel
checked the traps every week during 2019. During 2020, data were downloaded at the
tower close to the house from the 40 electronic traps. Trained personal checked the traps
to determine the presence of new flies, and 85% were successful, with some errors being
noted as the presence of other insects within the traps. The total number of flies collected
during the entire 2019–2021 seasons were 41, 69, and 61, respectively. In June 2020, 20 flies
were captured in the 40 traps, which was the highest amount (Figure 19). Only five flies
appeared per week in the traps, and two flies were found in a trap near the water pond.
During August of 2019 and 2020, no flies were trapped as the weather was dry (Figure 19),
and the weeds-grasses within the tree rows died. Storms were present beginning in April
2021 and continuing until mid-September, causing a higher incidence of insects. With poor
mango quality standards, fruit flies will affect orchards and supermarkets [73]. Therefore,
cheap electronic traps can become proper insect control.
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4. Discussion

E-traps pair bait to attract flies with sensors to detect and count the insects [71]. Once
the infestation is known, experts can help to control it without applying excessive amounts
of insecticide. The number of pulses provided by PIR infrared sensor within the PET
trap indicates the number of insects that entered [74]. As we used a flip flop, it was only
counted once per day; the concept was to employ the trap as an alarm and save energy. A
small solar panel would maintain a constant charge on a lithium battery. If this flip flop is
removed, pulses can be counted by the microcontroller and provide a more accurate result
of the number of flies trapped. A sound sensor and the PIR sensor can detect that an insect
entered the trap but cannot identify whether it was a fruit fly [75]. The use of optoacoustic
sensors can provide better fly detection within traps [76]. An image sensor based on the
ESP32-CAM presented up to 3.2 Megapixels, higher than the 2 megapixels recommended
to classify insects [74]. However, due to energy restrictions, the 320 × 240-pixel resolution
image was used. In the future, the electronic trap will be able to advise the technician when
the attraction bait is no longer effective. Changes in the fluid’s color and level within the
bottle provides additional information. The IoT ESP32-CAM system detects the presence of
fruit flies and transmits the trap number together with the number of flies counted daily
through a LoRa system.

Image analysis that is carried out within embedded systems for shape classification
and recognition should consider their limited computational power and reduced mem-
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ory [77,78]. Memory size will depend on the number of arrays per image [79,80], whether
they are RGB or grayscale, and their quality (bits per pixel). Memory access in embedded
image processing systems dominates its energy consumption [80]. It was found that a
single global threshold was not enough to obtain a perfect classification of the flies, shown
in Figure 20a, as the black contour was prone to error counting. The automatic system
employed two thresholds [81], and when the pixel intensity was within both thresholds,
the pixels became black, otherwise it was left in cero, shown in Figure 20b; the thresholds
used were 72 and 151. The percentage of fruit fly detection was 100%. Segmentation and
detection results provide a rough count of the number of fruit flies trapped but does not
provide an algorithm that can prevent beetles or houseflies from being counted. Deep
learning techniques combined with image processing are actually used to count insects
with precision [75]. Foliage reduced light incidence to the bottle, and when trees had more
branches, CeraTrap RGB values varied throughout the day. Deep learning techniques are
also required to optimize binarization under variable lightning patterns.
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If more traps are added by hectare, the point to point will not work properly in the
star topology. Information will collide when two or more transmissions overlap [82,83] at a
single receiver. As transmission time increases, the probability that a collision takes place
is higher. As a common destination node, a gateway [59,84] should substitute the LoRa
receiver node. When nodes send to a single end-point, the total time required to transmit
all nodes’ data to the destination module is reduced [27]. Wireless systems configured in
a star topology, with nodes and a gateway device, use only one hop, eliminating latency
problems. Multi-channel gateways can operate up to eight multiple frequency channels at
the same time [84].

Transmission within mature mango trees can be highly attenuated by foliage and
trunks. Propagation models are used to predict propagating signal path loss caused by
vegetation in the 230 MHz–95 GHz frequency range [85]. Attenuation was low at tree
trunk level at distances up to 350 m, but increased rapidly after 400 m [85]. Coverage area
decreases with foliage and requires tests to determine the number of nodes and distance to
receiver [86]. In our experiment, the height of transmitter and receiver antennas improved
transmission distance and reduced data package loss.

Low-altitude platform UAVs working at altitudes below 100 m are used for precision
agriculture and WSN networking [87]. UAV flights can reduce shadow and vegetation
blockage effects [86]. Drones can dynamically collect data from distributed nodes and
enhance network coverage. Static data collection by system2 did not consumed more power
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than with the tower-UAV system as timely transmissions were programmed precisely. A
limiting factor in a UAV-based data collection system is its’ flight time restriction, but with
larger capacity lithium-ion batteries, flight time can last up to 30 min [88]. The total time
required for the flight over the 8-hectare farm to acquire data was a little more than 15 min,
so capturing data from 15 hectares is possible. The method can be repeated after storing
the route and waypoints, but rural farmers do not easily become accustomed to the process.
If the UAV is elevated to 100 m, it can have a field of view of 5 hectares and could recover
data from five towers instantly. The 15-hectare data could be acquired in 10 min. UAV
communications systems work by using one frequency to control the aerial vehicle from
the ground via a remote pilot while another frequency transmits data or videos [89].

Fruit flies sampled with electronic traps from 2019 to 2021 were plotted in Figure 19.
Federal officials impose a quarantine if an infestation is detected. The NCFF plant protection
categories consider a zone to be Free Fruit Fly when FTD = 0.0 and low prevalence when
FTD ≤ 0.01. If FTD > 0.01, the zone has to take plant protection actions. Measurements
higher than FTD < 0.0023 were encountered in the three years, corresponding to a weekly
count of six flies per trap. Wasps and other beetles were found dead inside the trap.

5. Conclusions

Accurate determination of fruit-fly infestation is of great importance in different
scientific fields. In this paper, a commercial electronic trap with a ESP32-CAM system
was experimentally tested with an algorithm that uses limited computational power pro-
gramming and memory. Each electronic trap provides low-cost nodes with IoT wireless
transmission. As the ESP32-CAM takes a grayscale picture that is binarized by the em-
bedded system, it allows for one or more clear fruit fly morphological features within the
image; fruit fly morphological details within the image include the insect’s body and head.
After binarization, counting provides the quantity of insects trapped in a given period of
time. As illumination varies throughout the day with canopy density, a single threshold
did not distinguish the flies properly. A window with two thresholds eliminated all the
CeraTrap bait liquid background as well as the outside vegetation.

Generally, five traps are hung per hectare, so a star network topology of LoRa was
employed per hectare. It provides shorter distances between end nodes and the receiver,
making it helpful for dense vegetation spaces. This method is much cheaper than point-
to-point end devices as a central receiver is used by the communication. The receiver was
fixed to the top of a 20 m tower, but in some cases, packet loss occurred when trunks and
branches interfered with the signal sent by the trap nodes, so pruning was necessary to
reduce losses.

A DJI mini2 UAV scanned the data from same towers. At first, the UAV flew at a
height of 30 m and took 15 min and 35 s to return home after scanning the 8-hectare route
and collecting the data. At a higher flight altitude, route time can be reduced. Annual
trap monitoring is still in progress, and, through the FTD, can determine the health of the
farms. These electronic traps have shown excellent behavior and will be providing more
information about fruit fly infestation in mango orchards.

In the future, several orchards with traps should be installed to maintain control of
any fruit fly infestation. The alarm will help to determine the appearance of fruit flies and
an odor-level sensor can provide an alert for when the CeraTrap fluid has to be replaced.
With these traps, the technical personnel can work more efficiently.
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