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Abstract: Crop row detection is one of the foundational and pivotal technologies of agricultural
robots and autonomous vehicles for navigation, guidance, path planning, and automated farming
in row crop fields. However, due to a complex and dynamic agricultural environment, crop row
detection remains a challenging task. The surrounding background, such as weeds, trees, and stones,
can interfere with crop appearance and increase the difficulty of detection. The detection accuracy
of crop rows is also impacted by different growth stages, environmental conditions, curves, and
occlusion. Therefore, appropriate sensors and multiple adaptable models are required to achieve
high-precision crop row detection. This paper presents a comprehensive review of the methods and
applications related to crop row detection for agricultural machinery navigation. Particular attention
has been paid to the sensors and systems used for crop row detection to improve their perception and
detection capabilities. The advantages and disadvantages of current mainstream crop row detection
methods, including various traditional methods and deep learning frameworks, are also discussed
and summarized. Additionally, the applications for different crop row detection tasks, including
irrigation, harvesting, weeding, and spraying, in various agricultural scenarios, such as dryland, the
paddy field, orchard, and greenhouse, are reported.

Keywords: crop row detection; navigation and guidance; machine vision; precision farming; agricultural
robots; smart agriculture

1. Introduction

The global population and food challenges have called for advances in agricultural
science. Integrating advanced technologies such as artificial intelligence, navigation, sens-
ing systems, and communication, modern agricultural equipment can improve agricultural
productivity and promote the development of smart agriculture [1]. Autonomous nav-
igation technology is essential in realizing the intellectualization and modernization of
agricultural machinery. This technology allows machinery to move with precision and
accuracy, perform field tasks efficiently, and monitor crop growth and health. Figure 1
depicts a few examples of field applications, including fertilization robots, irrigation robots,
weeding robots, and picking robots. However, the complexity and unstructured nature
of the agricultural environment pose a challenge to achieve accurate navigation and the
autonomous operation of agricultural machinery. Accurate row detection can effectively
promote autonomous navigation and the safe operation of robots and vehicles in agricul-
tural environments [2].

The application of robotic diversification operations through row detection makes
great sense for precision agriculture [3,4]. Based on crop row detection results, the motion
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controller guides the agricultural robot to operate automatically and safely without dam-
aging the crop by adjusting the forward speed and direction of the front and rear wheels.
The row detection-based navigation of agricultural machinery is widely used in different
agricultural tasks such as spraying, mowing, irrigation, harvesting, fertilization, and plant
protection [5]. The complexity and diversity of the agricultural environment necessitate
varying requirements to be met for crop row detection and the autonomous navigation of
agricultural robots. Typical agricultural scenarios include drylands, paddy fields, orchards,
and greenhouses. Drylands are usually uneven, and crop growth can be messy; paddy
fields have different water depths, and different crops can grow together; orchards have a
dense canopy of fruit trees, and there may be other weeds and plants growing with the fruit
trees; greenhouses have a variety of plants that need to be distinguished [6]. In addition,
curved crop rows are common in some agricultural fields due to topography. Curved crop
rows usually have complex shapes and occur not only in agricultural terraces but also in
flat plots with irregular geometry. This makes it difficult to accurately detect and measure
target crop rows, and the traditional line detection algorithm is difficult to cope with in this
situation as it can bring certain challenges for the safe navigation of agricultural robots [7].
Therefore, in order to improve the accuracy of crop row detection, appropriate sensors, and
computer algorithms need to be selected according to different application scenarios [8].
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With the development of computer technology and intelligent equipment, various
types of intelligent sensors and systems have been widely used for row detection in agricul-
tural environments to help solve the problem of the autonomous navigation of agricultural
robots [9,10]. Vision sensors have been extensively used as a reliable source of information
for agricultural robots due to the advantages of a wide measurement range, rich signal
information, and low costs [11,12]. Based on the detected crop row images, the information
on crop row spacing, contours, and obstacle locations can be obtained in real-time for
the robot to achieve row tracking and navigation [13,14]. Scholars have developed many
algorithms for crop row recognition, and path extraction based on the above vision sensors
and systems, including traditional methods and learning-based methods. Traditional crop
row detection methods are simple to implement, widely applicable, cost-effective, and
well-visualized [15]. However, environmental factors such as lighting and shading have
a deep impact on the accuracy and reliability of traditional crop row detection methods
in practical applications. In recent years, the development and application of machine
learning and deep learning have provided strong theoretical support for vision-based crop
row detection [16]. In image segmentation, feature detection, target recognition and other
visual information processing and machine learning can replace traditional methods to
reduce the interference of environmental noise and vegetation overlap and improve the
accuracy of crop row detection [17,18]. Moreover, traditional visual inspection techniques
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are prone to occlusion and missed detection in agricultural environments with high crop
density, such as fruit gardens, sorghum fields, and corn fields. In this case, LIDAR is a good
alternative, with strong penetration and high accuracy. In addition, multi-sensor fusion is
an important development direction in crop row detection. By integrating information from
multiple sensors, multi-sensor fusion makes up for the limitations of a single sensor and
improves the accuracy and robustness of crop row detection. In general, the application
of different sensors and their corresponding algorithms can effectively improve the crop
row detection accuracy and navigation robustness of agricultural robots and promote the
transition of modern agriculture to high efficiency, automation, and precision [19,20].

Despite the increasing popularity of this topic in agricultural navigation, the related
methods and applications based on crop row detection have not been summarized in detail
or systematically. This is detrimental to the understanding of agricultural robot navigation
methods based on crop row detection. Therefore, in order to promote the further development
of crop row detection technology and agricultural robotics navigation, this paper provides a
comprehensive review of the literature regarding the current state of research on crop row
detection. This paper is organized as follows: Section 2 provides a comprehensive introduction
to the concepts of sensors and systems in navigation systems, as well as their advantages and
disadvantages. In Section 3, recognition and detection algorithms and methods of crop row
are classified into two main categories: traditional methods and machine vision methods. The
applications of crop row detection in robot navigation are shown in Section 4 in accordance with
various perceptual conditions. Section 5 discusses the challenges and prospects of the theme.

2. Sensors and Systems for Crop-Row Detection
2.1. Monocular Cameras

Monocular vision is a fundamental building block for other vision systems, such
as binocular stereo-vision and multi-vision systems [21]. The imaging principle of a
monocular camera is to generate a projection onto the camera plane, reflecting the three-
dimensional (3D) world in a two-dimensional (2D) form [22]. According to different signal
readout processes, monocular cameras are usually divided into two kinds of image sensors:
the charge-coupled device (CCD) and the complementary metal-oxide-semiconductor
(CMOS) [23]. The advantages of the monocular camera include a simple structure, low
cost, and low power consumption, making it a convenient tool for crop row detection.
Additionally, monocular cameras can detect color, texture, and other features in agricultural
scenes, providing useful information for the positioning and navigation of agricultural
robots and vehicles [24]. However, due to the limited amount of information provided
by a single camera, auxiliary algorithms are often required to determine the distance of
the relationship between the target and the camera [25,26]. Moreover, depth information
cannot be directly collected from monocular cameras because of their single-view angle.

2.2. Binocular Cameras

The binocular stereo vision technique is commonly utilized in crop row detection because
it can provide precise and efficient depth information [27]. A binocular camera comprises two
monocular cameras and is commonly used as a passive rangefinder. By capturing two images
of an object from different positions, binocular cameras can determine the 3D geometric
information of the object by calculating the position deviation between the corresponding
points of the images [28]. This process is based on the principle of parallax, and it enables the
camera to accurately measure the distance to the object, providing important information for
crop row detection [29]. Stereo vision-based crop row detection has demonstrated superior
performance in challenging field conditions such as high crop density or varying lighting [30].
Compared to monocular vision, stereo vision is less sensitive to the effects of shadows
and sunlight, providing more reliable results in these environments [31]. However, the
configuration and calibration of binocular cameras can be complex and requires careful
attention to detail. Additionally, in the absence of texture features, stereo-matching algorithms
can fail to accurately identify the corresponding points between images [32].
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2.3. RGB-D Cameras

RGB-D cameras have become increasingly widespread in crop row detection due to
their capacity to capture both color and depth information [33]. Structured light and Time-
of-Flight (TOF) cameras, which are capable of measuring both RGB and depth information,
fall under the category of RGB-D cameras [34]. Structured light systems can capture both
2D planar and 3D depth information [35]. This system is composed of projectors, cameras,
image acquisition systems, and processing systems, which work together to project a
particular mode of a light signal onto the surface of the object to be measured and then
calculate the position and depth information according to the changes in the light signal on
the surface of the object [36]. ToF cameras work on the principle of emitting a short burst
of infrared light and measuring the time it takes for the light to return after reflecting off
objects in the scene [37]. The camera sensor detects the reflected light and calculates the
distance to each point based on the time of flight. These data are then used to create a depth
map of the scene, which provides information about the distances between the camera and
various objects within the field of view [38]. Unlike the passive range of binocular cameras,
RGB-D sensors can actively emit signal waves and capture these waves, which are reflected
back from objects [39]. The depth information obtained from RGB-D cameras provides
additional geometric information that can be used to detect crop rows and estimate plant
height more accurately [40]. However, the performance of RGB-D cameras may be limited
in situations where the crop density is high or occlusion. In such scenarios, some crop
plants may be hidden from view, or the depth of data may be noisy, leading to inaccurate
detection [41]. In addition, the processing of large amounts of 3D data generated by RGB-D
cameras is also a computationally intensive and time-consuming process [42].

2.4. Panorama Cameras

Panoramic cameras can enable the large-scale and dead-angle-free monitoring of crops
in the field [43]. Based on bionics technology, panoramic cameras work by using the spherical
mirror transmission and reflection of physical optics for imaging. By rotating the camera,
the photographic field can be scanned at a large angle, and the panoramic range can be
achieved by stitching technology, which is enough to reach 360◦ [44]. The remarkable feature
of panoramic cameras is that they can capture a large amount of the surrounding crop
structure information in a single image, making them more suitable for large-scale farmland
monitoring [45]. Fisheye panoramic cameras are one of the most commonly used types of
panoramic cameras in agriculture due to their broad field of view and ability to capture rich
environmental information [46]. However, the images captured by fisheye panoramic cameras
suffer from large distortion and lack the details required for accurate object detection, which
can limit their usefulness in certain applications [47,48]. To address these issues, deformation
correction techniques, such as equidistant, stereographic, or orthographic projection models,
can be used to rectify these images and remove the distortion [49].

2.5. Spectral Imaging Systems

The spectral imaging system is a combination of imaging technology and spectral
information acquisition technology, which shows great potential in crop detection applica-
tions [50]. This system obtains the data cube composed of 2D spatial information and the
one-dimensional (1D) spectral information of the measured object by spectral scanning [51].
According to different spectral resolution capabilities, common spectral imaging techniques
can be divided into multi-spectral, hyper-spectral, and ultra-spectral [52]. Hyperspectral
imaging systems provide a higher spectral resolution, enabling the more detailed and accu-
rate identification of different objects in the field. By acquiring spectral data and analyzing
the differences in their spectral reflection, this system can differentiate between crops and
non-crop areas more accurately [53,54]. However, for early-growing crops, which may have
similar spectral characteristics to weeds, spectral detection may not be as effective [55]. In
addition, processing a large amount of imaging spectral data quickly and reliably remains
a challenge for spectral imaging systems [56].
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2.6. LiDAR Sensors

LiDAR, which stands for Light Detection and Ranging, is a highly advanced and reliable
sensor that has been widely used in the field of crop row detection and robot navigation. This
sensor is known for its high precision, wide range, and powerful anti-jamming capabilities [57].
The principle of the LiDAR operation is based on the emission of visible or near-infrared light
waves by the transmitting system. These waves are then reflected off the target and detected
by the receiving system. The data obtained are subsequently processed to produce parameter
information, including distance [58]. LiDAR sensors have been utilized in crop row detection
to provide highly accurate and detailed 3D maps of crop canopies [59]. Additionally, LiDAR
sensors are able to penetrate vegetation and capture data from the ground surface, which
can aid in detecting crop rows even in highly vegetated fields [60]. However, the high cost
of LiDAR sensors remains a foremost drawback, limiting their use in small-scale farming
operations. Additionally, LiDAR sensors require high computational power to process large
amounts of data, which could be a bottleneck in real-time applications [61].

2.7. Multi-Sensor Fusion Systems

As mentioned above, both vision and LiDAR sensors have their own limitations in
crop row detection and robot navigation. The multi-sensor fusion system can exploit the
complementary and redundant nature of multiple sensor data to fuse different environmental
information and enhance the performance of crop row detection [62,63]. Considering the
variability of soil disturbance, vegetation level, and machinery speed in agricultural environ-
ments, the fusion of LiDAR and vision sensors can enable robust weed detection and crop
row tracking tasks [64]. Combining the plane data given by the LiDAR with the colorful
representation provided by the images, the noise of grass or leaves in the environment can
be eliminated, and the detection ability of crop rows improved [65]. Since the boundaries be-
tween harvested and unharvested crops in the field are not always straight lines, the fusion of
vision sensors with the Global Positioning System (GPS) is also an effective fusion scheme [66].
The use of vision sensors alone for crop row detection may result in missed detections during
image processing while using a GPS device alone can produce certain errors in determining
the navigation baseline. The fusion of vision and GPS improves the integrity of crop row
feature information extraction and enhances localization accuracy and detection robustness. In
addition, the fusion of vision sensors, encoders, and inertial measurement units (IMU) is also
common in crop row detection [67]. Although multi-sensor fusion systems have additional
complexities, these can be effectively mitigated by employing optimal techniques [68]. When
the data are optimally integrated, the information from different sensors can give an accurate
crop row detection model in the current agricultural environment.

3. Methods and Algorithms for Crop-Row Detection
3.1. Traditional Methods
3.1.1. Hough Transform (HT)

HT is a classical computer vision algorithm for crop row detection and navigation line
extraction [69]. The idea behind this approach is to transform the image-coordinate space to the
Hough-parameter space using the mapping relationship between points and lines, followed
by detecting the target lines in the image. The HT-based detection approach is robust to image
noise and outliers and performs well even in parallel structure crop fields with gaps [70]. To
improve the efficiency and accuracy of these inspection results, edge detection, and image
binarization are often performed prior to the HT-based detection process [71]. One limitation of
the classic Hough transform is its high computational complexity, which makes it unsuitable
for real-time applications. Another limitation of the classic Hough transform is its sensitivity to
noise and outliers. To address this issue, researchers have proposed various modifications to HT,
such as the Probabilistic Hough Transform (PHT), which uses a probabilistic voting scheme to
reduce the effect of noise and outliers [72]. Other modifications include the Directional Hough
Transform (DHT), which was designed to detect lines with a specific orientation [73], and the
Multi-scale Hough Transform (MHT), which detects lines of different scales [74].
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3.1.2. Linear Regression Method (LRM)

LRM is a widely utilized technique in detecting row crops in agriculture through image
analysis. In regression analysis, one or more independent variables are studied to determine
their impact on the dependent variable, with the aim of generating a hypothesis analysis [75].
The most common implementation of LRM is the least squares method, where the sum of
the squared errors between the predicted and actual values is minimized to find the best-fit
line. In the context of crop row detection, LRM can be used to predict the position and
orientation of crop rows using image data. The goal is to find a linear relationship between
the independent variables (such as pixel coordinates) and the dependent variable (crop row
position or orientation). Before applying LRM to crop row detection, image preprocessing
steps such as image segmentation and feature extraction can be performed to isolate the crop
rows from the background and extract useful features for regression analysis [76]. One of the
advantages of LRM is its simplicity and computational efficiency. However, it may encounter
difficulties in handling complex data with noise in farmlands. In such cases, additional
preprocessing steps, such as separating weed and crop pixels or using non-linear regression
techniques, may be necessary to improve the accuracy of the model [77].

3.1.3. Horizontal Strips Method

The horizontal strips method is a reliable approach for detecting crop rows using agro-
nomic image analysis [78]. The key concept of this technique is to divide the input image
into several horizontal strips, which can serve as regions of interest (ROI). Within each ROI,
feature points are determined based on the calculated center of gravity. Compared with
other crop row detection methods, the horizontal strip analysis method does not require an
additional image segmentation step, which improves the computational efficiency of image
processing and reduces storage space [79]. Moreover, this technique was clearly superior
in terms of real-time performance and precision in continuous crop rows with low weed
density. Nevertheless, the horizontal strip method might not perform well in agricultural
environments where crop rows are partially missing or overgrown with weeds, as these
factors can affect the accuracy of feature point detection. Furthermore, the accuracy of this
method is sensitive to the camera angle, which can affect the determination of feature pixel
values. To mitigate this issue, the vertical projection method is often used in conjunction
with the horizontal strip method to enhance accuracy [80].

3.1.4. Blob Analysis (BA)

The Blob Analysis (BA) method is a useful technique for crop row detection that
operates on binarized images to group connected pixels into blobs with the same gray
value [81]. The blobs that contain more than a certain number of pixels are then used to
generate straight lines that represent crop rows. Unlike other machine vision techniques,
BA considers features in an image as objects rather than individual pixels or lines, leading
to more accurate identification of crop rows [82]. This approach leverages the unique shape
and color characteristics of crop rows to accurately locate and identify them by calculating
the center of gravity and principal axis position of each crop row [83]. In crop row detection,
the BA technique has proven effective, particularly in situations where the crop rows have
a clear definition and a distinct contrast with the surrounding field, such as in the case of
newly planted crops with a different color or texture than the soil. However, BA may have
limitations in fields with a high weed density or an unclear crop row definition. In such
cases, the noise in the clustered blobs can lead to errors, which can affect the accuracy of
the crop row detection results [84].

3.1.5. Random Sample Consensus (RANSAC)

The RANSAC algorithm is a robust and widely used technique for row detection in
crops. The algorithm estimates a mathematical model and calculates the optimal solution
of parameters from a dataset that may contain outliers [85]. In crop row detection, outliers
can be weed points, soil points, or other objects that do not belong to the crop row. This
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property makes it suitable for the centerline fitting of crop rows, even when a significant
proportion of weed data points are present [86]. Furthermore, the RANSAC algorithm can
optimize point cloud matching and 3D coordinate calculations for complex 3D crop row
detection [87]. However, the effectiveness of the RANSAC algorithm depends on several
factors, such as the number of iterations, the threshold values, and the size of the data set.
In the case of crop row detection, the quality of the feature points extracted from the image
data also plays a crucial role in the success of the algorithm [88]. In recent years, several
variations of the RANSAC algorithm have been proposed to address some of its limitations
in crop row detection, such as the Progressive Sample Consensus (PROSAC) algorithm and
the M-estimator Sample Consensus (MSAC) algorithm [89].

3.1.6. Frequency Analysis

Frequency analysis is a signal processing technique for analyzing local spatial patterns,
which is widely used in crop row detection [90]. This mathematical method involves
converting images from the image space to the frequency space through frequency domain
filtering. By analyzing the resulting spectrum, this method can extract details from the
image and enhance object detection with some simple logical operations. Common methods
used in frequency-domain characterization include Fourier transform (FT), fast Fourier
transform (FFT), and wavelet analysis [91]. Through these methods, the grayscale levels
of weeds and shadows (tractors or crops) in field images can be attenuated, enabling the
efficient detection of the position and direction of crop rows [92]. However, the frequency
analysis method may not be suitable for the detection of curved crop rows with irregular
crop spacing. Furthermore, the accuracy of this method may be affected by factors such as
lighting conditions and the presence of noise in the image [93].

3.2. Machine Learning Methods
3.2.1. Clustering

The clustering algorithm is an unsupervised learning method that automatically
groups data points into clusters according to various standard attributes or features like
color, texture, or edge information [94]. This method does not require labeled data, which
makes it a useful tool for detecting crop rows. The cluster-based algorithm is known for its
quick detection of objects, high efficiency, and fast operation speed [95]. Data clustering
methods mainly include partition-based methods, density-based methods, and hierarchical
methods. Among these, the K-means clustering algorithm is the simplest and most com-
monly used method in crop row detection [96]. It can cluster data effectively, even when
weed pixels are present between rows and are significantly smaller than planting crops.
The scalability and efficiency of the K-means algorithm make it suitable for processing
large datasets in cropland [97]. However, it has been noted that the K-means algorithm
assumes that the clusters are spherical, equally sized, and have similar densities, which can
lead to over-clustering or under-clustering in certain situations [98]. In recent years, several
studies have attempted to address the limitations of traditional clustering algorithms in
crop row detection. For example, some researchers have used hybrid clustering algorithms
that combine the strengths of multiple clustering methods to achieve better results. Others
have developed clustering algorithms that can detect irregularly shaped clusters, such as
Gaussian mixture models (GMMs) or fuzzy clustering algorithms [99].

3.2.2. Deep Learning

Deep learning is a new research direction of machine learning that has been applied
to crop row detection [100]. Unlike traditional shallow learning, deep learning places more
emphasis on the depth and feature learning of model structures, with the goal of establish-
ing a neural network that can analyze and learn in a manner similar to the human brain.
This method has demonstrated significant improvements over traditional computer vision
algorithms for identifying crop rows, especially in challenging conditions such as variable
lighting, weather, and field conditions [101]. One of the main advantages of deep learning
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is that it can autonomously learn from large datasets and adapt to new data distributions.
This makes it well-suited for precision agriculture, where it can be used to identify crops,
pests, and diseases, optimize planting patterns, and monitor crop growth and health. Object
detection and semantic segmentation play crucial roles in crop row detection by enhancing
the accuracy and understanding of field images. Object detection algorithms enable the
identification and localization of crop rows within an image, allowing for the precise mapping
and measurement of their positions. This helps when optimizing planting patterns and
ensuring uniform spacing between the rows. Moreover, object detection enables the detection
of other objects or obstacles in the field, such as machinery or structures, which can help to
avoid potential collisions or disturbances during farming operations [102]. On the other hand,
semantic segmentation goes beyond object detection by providing detailed pixel-level labeling
of an image. In the context of crop row detection, semantic segmentation helps differentiate
the crop rows from other objects or background elements that are present in the image. By
accurately segmenting the crop rows, semantic segmentation facilitates the analysis of their
spatial distribution and arrangement [103]. It enables the identification of irregularities or
gaps between rows, which can indicate potential issues such as missing plants, weed infesta-
tions, or uneven growth. This information is invaluable for farmers when making informed
decisions regarding subsequent farming operations. Recent studies have used deep learning
techniques such as Faster R-CNN, YOLOv3, Mask R-CNN, and DeepLabv3+ to detect crop
rows from images captured by drones, tractors, or robots [104]. The significant challenge
of deep learning-based crop detection is a lack of annotated training data for specific crops,
growth stages, and field conditions [105]. Creating such datasets requires significant time and
resources, and their quality and size can significantly impact the accuracy and robustness
of the models. Moreover, the computational cost of training deep learning models can be
prohibitive for resource-constrained devices and systems [106].

4. Applications of Row Detection Based Navigation in Row-Crop Fields

Most crops are planted or cultivated in fields with regular parallel structures and spaced
line patterns. For one thing, this structure can make full use of land and space, help crop
growth and development, and increase crop yields [107]. For another, the crops grown in
rows are conducive to field operations and management, improving the working efficiency of
agricultural robots [108]. To achieve row detection-based navigation, various sensors, systems,
and detection algorithms have been developed and applied in different agricultural scenarios
such as drylands, paddy fields, orchards, and greenhouses [109]. For example, in dryland
fields, visible light and near-infrared cameras have been used to detect crop rows, while in
paddy fields, depth sensors and LiDAR have been utilized due to the presence of water. In
orchards, stereo vision and 3D laser scanning have been employed to detect tree trunks and
branches, which can be used as reference points for navigation. These technologies provide
dependable crop row information, which can facilitate the implementation of precise naviga-
tion in agricultural machinery [110]. Moreover, the focus and challenges of row detection in
different applications vary due to different applied objects, differences in image interpretation,
and differences in weed interference [102]. In irrigation, crop row detection usually needs to
identify the position of the crop row in vegetation-covered images, while in weed detection
and picking, crop row detection mainly assists when distinguishing crops from weeds [111].
In terms of weed interference differences, one of the main challenges in weed detection is
to accurately detect and segment weed areas, and crop row detection can help establish a
frame of reference for weed distribution analysis and targeted weed control. By contrast,
in harvesting, the main concern is to accurately detect and locate crop rows. The specific
implementations of crop row detection in different agricultural environments and applications
are detailed and summarized below [82].

4.1. Applications of Row Detection in Drylands

Dryland refers to arable land that relies on natural precipitation to grow crops, ac-
counting for about 65% of the total arable land [112]. Water and nutrients are the main
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factors affecting agricultural production in dryland. Common dryland crops include im-
portant food crops (legumes, cereals, potatoes, etc.), as well as typical cash crops (fiber,
oilseeds, etc.). In drylands, complex and diverse terrain, and unstable light conditions are
the main factors affecting the accuracy of crop row detection. To overcome these challenges,
intelligent technology can be employed to increase the precise identification of character-
istics such as the position, shape, and direction of crop rows [113,114]. This can provide
technical support for the guidance and operation of agricultural robots, making agricultural
production more intelligent and efficient. Table 1 details the applications of sensors for crop
row detection in drylands, including sensors, scenarios, methods, and crop row detection
accuracy (CRDA).

Table 1. A detailed summary of applications of sensors for crop row detection in drylands.

Application Sensors Scenarios Methods CRDA Work

Navigation

RGB and TOF camera Corn and wheat fields DBSCAN - [115]

Camera Cotton crops Iterative least squares method - [116]

Camera Corn crop field RASCM 97.90% [117]

GNSS and color
camera Cabbage field Pattern RANSAC 83% [118]

RGB camera Strawberry field Convolutional neural network (CNN) - [119]

RGB Camera Corn and soybean field Adaptive threshold RANSAC 92.18% [120]

Camera Soybean seedlings Least squares method (LSM) 90% [121]

ToF camera Corn and sorghum fields Euclidean Clustering algorithm and
Linear programming - [122]

Camera Crop field Sliding window technique - [123]

2D LiDAR Cotton field RANSAC - [124]

Stereo Camera Strawberry fields Adaptive multi-roi algorithm - [125]

LIDAR Maize fields LST and filter method 95% [126]

RGB camera Corn seedling LSM 93.8% [127]

Camera Crop imags Luminance partition correction and
Adaptive threshold - [128]

Camera Corn field Neural network model 97% [129]

LIDAR Corn crop LSM - [130]

3D laser and vision
camera

Winter canola and sugar
beet plants Pattern hough transform - [131]

Color camera Maize fields LSM - [132]

Camera Cotton field HT 100% [133]

Color video camera Soybeans, wheat
and cabbage Improved genetic algorithm (IGA) - [134]

RGB camera Maize fields LSM 92% [135]

3D-LIDAR Laser
scanner Maize rows RANSAC - [136]

DFK camera Maize field Radial basis function (RBF) algorithm 95% [137]

Color camera Wheat rows Vanishing point detection method
based on k-means clustering 90% [138]

Camera Cropland Quadrangle method - [139]

3D Stereo camera Cotton field Parallax distance measuring
method & HT 90% [140]
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Table 1. Cont.

Application Sensors Scenarios Methods CRDA Work

Weeding

RGB and NIR camera Ryegrass Deep neural network (DNN) - [141]

Monocular camera Flaxseed fields Contour algorithm 93.5% [142]

Camera Ryegrass Perspective projection method 90% [143]

Raspberry Pi Camera Carrot field PPHLT - [144]

Camera Corn field LRM - [145]

Camera Maize field CNN 85% [146]

Industrial camera Carrot fields CNN 89% [147]

Sequoia camera Canola field Design line scanner scans - [148]

Camera Maize field HT 93.58% [149]

Camera Cereal fields K-means clustering method 94% [150]

Monocular camera Maize fields LRM - [151]

- Maize fields HT and BA - [152]

RGB camera Cauliflower Multi-target tracking algorithm 99.3404% [153]

RGB camera Bean & spinach HT - [154]

LIDAR Crop field PEARL method 100% [155]

Multispectral
imaging system Sugar beet field HT and SVM 92% [54]

Camera Maize field LRM - [156]

Color camera Lettuce, cauliflower and
maize OTSU and median filtering 95% [157]

Multispectral camera Sunflower crops HT 75% [158]

Digital camera Corn field Morphological operations and
stepwise discriminant analysis 96% [159]

Camera Maize field Automatic threshold
adjustment method 80% [160]

CCD camera Lettuce and celeriac Template fitting algorithm 99% [161]

Irrigation

RGB-D camera Cabbage field K-means Clustering - [162]

Camera Beet field ENet and LSM 91.2% [163]

Raspberry Pi Camera Maize crop HT 100% [164]

Harvesting

Stereo camera Cotton field Pixel-based algorithm 92.3% [165]

LIDAR and
CMOS sensor Crop plantations PCA Transform 92% [166]

Binocular vision
camera Rice and wheat field Probabilistic Hough transform 96.025% [167]

Seeding

ZED camera Wheat field Mean Shift algorithm - [168]

DJI H20 sensor Corn crops CNN 99.35% [169]

LIDAR and camera Maize fields Ordinary linear regression method 92–94% [170]

Ploughing Digital camera Rice, rape and
wheat field LSM 96.7% [171]

Fertilization Multi-spectral camera Cabbage rows CNN 90.5% [172]

4.1.1. Row Detection for Irrigation

A dryland irrigation robot is intelligent equipment that realizes dryland irrigation and
has the characteristics of high efficiency, safety, and environmental protection [173]. It can
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adjust irrigation quantity and irrigation time, reduce labor costs and avoid the waste of water
resources [174]. Smart agricultural irrigation robots integrate unmanned driving, the Internet of
Things, multi-sensor fusion, and other modern technologies. Irrigation tasks between crop rows
can be performed by automatic irrigation robots in accordance with a set amount and time of
irrigation, relying on positioning equipment and predefined paths [175]. Information such as the
spacing of crop rows and the number of crop rows obtained by crop row detection technology,
combined with navigation technology, can support the decision-making of dryland irrigation
robots. Without human intervention, robots can independently judge the irrigation needs of
each location, thus achieving targeted irrigation. Various approaches have been proposed in
the design, development, and manufacture of irrigation robots. The flowchart of crop row
detection applications in drylands is shown in Figure 2. The development of vision-based
navigation in agricultural robots heavily relies on crop row detection, while machine vision
technology remains a critical area that requires significant improvement. To avoid crop crushing
by field machinery during irrigation, Wu et al. [176] proposed a partial differential equation
(PDE)-based diffusion method that reduced the effect of local interference and strengthened the
texture and detailed clarity of crop images. Considering the field variability of dryland crops,
Ronchetti et al. [177] combined the threshold segmentation algorithm, classification algorithm,
and Bayesian segmentation algorithm to effectively separate crop rows from soil background
and weeds, optimizing the operational management of irrigation robots and improving the
quality of crop yields. To solve the problem of slow visual navigation line extraction for
irrigation robots, Cao et al. [163] enhanced the ENet semantic segmentation network model
for the row segmentation of crop images in drylands. By designing the network structure of
shunt processing and compressing the traditional ENet network, the accuracy of the beet field
boundary’s location and row-to-row segmentation was improved. Faced with overwatering in
irrigation systems, Singh et al. [178] designed a MAMDANI fuzzy inference method, which
was applied to dryland irrigation robots to optimize the acquisition and processing of crop row
information, helping to better control water flow and automate dryland crop irrigation.
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4.1.2. Row Detection for Weeding

Efficient and environmentally friendly weeding robots working in drylands have
advantages in saving pesticides and promoting healthy crop growth. Equipped with
various sensors, intelligent control systems, and operating tools, weeding robots can
integrate sensing, decision-making, and control to achieve real-time and autonomous
weeding tasks [180]. The weeding robot’s sensing system, consisting of a variety of sensors
such as vision and LIDAR, is used to sense environmental information and work objects
in real time. With crop row detection, the robot can determine the spacing and number of
rows of the crop, thus distinguishing weeds from the crop and reducing false weeding [181].
Finally, the goal of the robotic weeding robot in walking and weeding is achieved in the
decision and control link. Due to the influence of illumination, weeds, and soil color, it is
not an easy task for weeding robots to locate and navigate between crop rows. Wendel
and Underwood [182] introduced a self-supervised training method that processed the
hyperspectral imaging data of corn crop rows. This could adapt to seasonal, light or
geographic variations and help distinguish confused weeds from crops, which supported
the plant classification efforts of weed control robots. Louargant et al. [54] combined
spatial and spectral information to detect linearly aligned maize seedlings and classified
pixels within and between rows of SVM. Additionally, the weed detection rate was 89%
through this method. Weeds within dryland crop rows can easily be mislabeled by crops
and affect the performance of spot spraying. To solve this problem, Ota et al. [162] used
deep learning and K-means clustering algorithms to detect cabbage rows and realize the
automation of mechanical weeding robots. Extracting the target features of weeds or
crops using traditional machine learning technology requires extensive manual feature
engineering and the manual tuning of parameters, which can be solved by exploiting the
powerful learning capabilities of deep learning. To minimize damage to the surrounding
crops while the weeding robot is working, Su et al. [141] used a geometric position-based
DNN learning method for segmentation training to improve the accuracy and speed of
identifying ryegrass weeds between the rows.

4.1.3. Row Detection for Harvesting

Automatic harvesting technology for mature crops in dryland has great prospects
in the agricultural robot industry [183]. The traditional manual harvesting method is
time-consuming and laborious, while intelligent harvesting robots can save labor costs
by virtue of their automation and mechanization. There have been many applications
for harvesting dryland crops such as corn, grain, and wheat. Harvesting robots sense
the terrain of the operating area and the height and location of the crop to determine the
harvesting mode. Their orientation and trajectory can be generated by a positioning system
installed in the vehicle, which allows for autonomous navigation and route planning. In
addition, harvester selection and harvesting strategies need to vary with different crop
types and characteristics. However, the image quality is easily affected by the change
in outdoor lighting conditions, and errors may be caused by shadows and excessive or
poor illumination through traditional color-based detection methods [184]. Considering
this difficulty in the parametric navigation of the harvester at the crop boundary, Benson
et al. [185] developed a new image processing method, namely an adaptive fuzzy sequential
linear regression algorithm. Trials in corn fields demonstrated the accuracy of this method
in crop row position and orientation, thus making the case for the more accurate navigation
of the combine harvester. Pilarski et al. [186] designed a Demeter automatic harvesting
system by combining a camera and GPS to solve the problem of the vision system being
easily affected by light conditions and crop distribution density. It optimized the tracking
and steering between crop rows and the navigation performance of harvesters. With the
purpose of solving the interference caused by the tilting and omission of ramie, a U-net
neural network-based method was applied by Chen et al. [187] for crop row detection to
improve the navigation line fitting for harvesters. In cotton fields, a number of components
and covers make it difficult to identify the track of crop rows. Therefore, Xu et al. [188]
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boosted the visual navigation system performance of a cotton-picking robot following
the Two-Pass algorithm, iterative method, and LSM method. Impending conditions that
robots face as they work include changing environments and vibrating machines, which
can make noise for navigation. Fue et al. [108] reduced the effect of environmental noise
and enhanced the performance of the boll harvester by sliding window and perspective
transformation algorithms to detect the left and right boll rows in 3D images. The results
showed that the vision system they designed achieved 92.3% accuracy when detecting
cotton rows.

4.2. Applications of Row Detection in Paddy Fields

Paddy fields means farmland with seasonal water accumulation every year; they are
often planted with aquatic crops such as rice, lotus roots, and gorgonians. The autonomous
navigation of farming machinery in paddy fields allows farmers to use agricultural re-
sources more efficiently and maintain ecological sustainability. Crop row detection and
robots in paddy fields can be combined to fertilize, irrigate, weed, harvest, and perform
other operations. This complex water environment is a major challenge for farm machinery
operating on paddy fields because water depth, water quality, and water temperature
can interfere with sensor data collection and processing. There are numerous uses for
crop row detection in paddy fields when paired with autonomous farming techniques, as
demonstrated in Figure 3. Additionally, Table 2 lists the applications of sensors for row
detection in paddy fields.
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Table 2. A detailed summary of applications of sensors for crop row detection in paddy fields.

Application Sensors Methods CRDA Work

Navigation
Industrial camera Treble-classification Otsu and

Double-dimensional clustering method - [98]

Industrial camera Double-dimensional adaptive clustering method 93.6% [191]
CCD camera K-means Clustering 82.35% [192]

Weeding
Camera Linear regression sliding window technique - [193]
Camera ESNet - [194]
Camera Sequential clustering algorithm & HT - [195]

Transplanting
Color camera CNN and LSM 89.8% [196]

Camera Improved Otsu method - [197]
Camera Radon transform - [198]

Harvesting Monocular camera Probabilistic Hough transform 94.8% [199]

Spraying Color digital
CMOS camera CNN 93.22% [200]

4.2.1. Row Detection for Transplanting

The deployment of transplanting robots in paddy field operations is essential for
increasing operational effectiveness and lowering the burden of physical labor [201]. The
rice transplanter is equipped with devices, including sensors and controllers, that can detect
information such as crop rows, soil quality, and moisture conditions in paddy fields in real-
time, which maintains the depth and spacing of rice seedlings and prevents inconsistent
depth and irregular spacing [202]. Currently, complex terrain, crop growth variability, and
high accuracy requirements are the main challenges facing rice transplanting robots in
paddy fields. It is not easy to obtain good crop segmentation in a complex rice paddy
environment. A color index-based segmentation method for rice seedlings was proposed
by [203], combining the conversion from the RGB to YCrCb color space and Otsu threshold
segmentation. It was applied to a visual crop row detection system to provide reliable
navigation information for the transplanter, and the experimental results also verified an
advanced segmentation effect and work quality. Keeping the rows of seedlings evenly
spaced is beneficial to increase rice yield and reduce crop damage, yet this remains a
challenge for autonomous navigation transplanters. In response, Lin et al. [196] developed
a Faster R-CNN algorithm for row detection to provide the navigation parameters for rice
transplanters and to control transplanting operations in rice fields in a more intelligent and
automated way. In view of the poor path adaptability of rice transplanters in the paddy
field, Liao et al. [197] improved previous research and designed an integrated positioning
method combining GPS, INS, and VNS to reduce rice seedling pressing and improve
detection accuracy.

4.2.2. Row Detection for Harvesting

Paddy field harvesting machinery can achieve the autonomous harvest of crops,
which has far-reaching significance for the realization of efficient and precise agricultural
automation. To assist in autonomous harvesting, paddy robots need to incorporate image
processing and machine learning techniques to determine the spatial distribution and
growth pattern of crop rows, as well as autonomously avoid obstacles and accidental
injuries [204]. Automatic harvesters have the characteristics of high performance, multi-
function, and strong flexibility and can effectively prevent over-tillage or under-tillage
in complex rice environments. However, harvesting in paddy fields presents unique
challenges compared to other row-crop fields due to the presence of standing water, which
may cause difficulties for machines to navigate and detect crop rows accurately [205].
Research on rice harvesting has led to many applications, especially in Japan, where
the technology is relatively mature. Mud and bubbles in the rice field can easily cause
interference in row detection. Therefore, Tian et al. [171] first combined a custom shear



Agronomy 2023, 13, 1780 15 of 30

binary image algorithm and an LSM algorithm to help detect high-stubble rice plants. Their
method has been proven to meet the needs of real-time processing due to a segmentation
speed of 0.6s and a segmentation accuracy of 96.7%. At present, the navigation path of
common harvesting robots in the market is prone to interference and is challenging to
identify accurately. Li et al. [206] identified paths by analyzing the 3D spatial geometric
relationships of rice fields and used an improved random sampling consistency algorithm,
and perfected boundary identification by collecting boundary angles. This experiment was
found to have a success rate of 94.6%. To avoid data errors caused by locally high crop in
images, Wang et al. [207] realized the detection of rice rows and boundary lines through a
series of conventional image processing algorithms, including morphological operations
and the Sobel operator. It ensured the stability of the harvesting robot’s guidance and work
in the paddy field.

4.2.3. Row Detection for Weeding

Paddy weeding robots safeguard the quality and yield of rice and other forms of
aquatic crop production [208]. The distinction between the crop and weed requires that
the paddy weed robot utilize sensors and algorithms to analyze the image information
containing the crop and weed. According to the preset weeding scheme, the control
system operates a robotic arm or spraying system to perform targeted weeding [209]. The
autonomous weeding robot demonstrates a strong working ability when weeding plants in
their early and late stages of growth, which helps reduce the impact of pesticide use on the
environment and the human body. However, the detection of crops in the paddy fields is
more challenging than in dry fields due to noise, such as green duckweed, cyanophytes, and
eutrophication water. To reduce the use of herbicides, Chen et al. [210] designed a machine
vision system based on passing a known point of Hough transform (PKPHT) to guide a
micro-weeding robot between rows of rice seedlings. Zhang et al. [211] proposed a real-time
crop row detection method based on a color model and nearest neighbor clustering, which
could accurately extract features and adapt to environmental changes. To facilitate the
weeding robot to weed the rice field environment without damaging the crop plants, Choi
et al. [212] designed robust regression and HT algorithms to extract navigation lines based
on rice morphological features. Given that weeds, duckweeds, and cyanobacteria growing
in paddy fields tend to interfere with rice crop detection, Zhang et al. [213] proposed an
improved sequential clustering algorithm and an angular-based image processing method.

4.3. Applications of Row Detection in Orchards

Orchards are typically agricultural lands that are planted with relatively tall trees or
shrubs, which belong to a semi-structured environment. Many tasks, including monitoring,
management, and harvesting, cannot be performed without the aid of orchard mobile
vehicles and robotic autonomous navigation platforms [214]. Fruit tree row detection can
help the robot to accurately locate the position and shape of fruit tree rows, and improve
the accuracy of the robot’s autonomous navigation, thus helping fruit farmers to better
manage their orchards and improve the yield and quality of fruit trees. Figure 4 shows the
navigation and path detection applications under the orchard canopy. The applications of
sensors for crop row detection in orchards are presented in Table 3.



Agronomy 2023, 13, 1780 16 of 30

Agronomy 2023, 13, x FOR PEER REVIEW 16 of 31 
 

 

plants, Choi et al. [212] designed robust regression and HT algorithms to extract naviga-
tion lines based on rice morphological features. Given that weeds, duckweeds, and cya-
nobacteria growing in paddy fields tend to interfere with rice crop detection, Zhang et al. 
[213] proposed an improved sequential clustering algorithm and an angular-based image 
processing method. 

4.3. Applications of Row Detection in Orchards 
Orchards are typically agricultural lands that are planted with relatively tall trees or 

shrubs, which belong to a semi-structured environment. Many tasks, including monitor-
ing, management, and harvesting, cannot be performed without the aid of orchard mobile 
vehicles and robotic autonomous navigation platforms [214]. Fruit tree row detection can 
help the robot to accurately locate the position and shape of fruit tree rows, and improve 
the accuracy of the robot’s autonomous navigation, thus helping fruit farmers to better 
manage their orchards and improve the yield and quality of fruit trees. Figure 4 shows the 
navigation and path detection applications under the orchard canopy. The applications of 
sensors for crop row detection in orchards are presented in Table 3. 

 
Figure 4. Applications of navigation and path detection under orchard canopy. (a) Mobile orchard 
robots; (b) Vision-based row detection in orchards; (c) LiDAR-based row detection in kiwifruit or-
chards [215]; (d) A visual representation of the simulation environment; (e) Visual representation of 
navigation path; (f) Representation of the linear and angular offsets of the robot in the coordinate 
system [216]. 

  

Figure 4. Applications of navigation and path detection under orchard canopy. (a) Mobile orchard
robots; (b) Vision-based row detection in orchards; (c) LiDAR-based row detection in kiwifruit
orchards [215]; (d) A visual representation of the simulation environment; (e) Visual representation
of navigation path; (f) Representation of the linear and angular offsets of the robot in the coordinate
system [216].

Table 3. A detailed summary of the applications of sensors for crop row detection in orchards.

Application Sensors Scenarios Methods CRDA Work

Navigation

Monocular camera Apple orchard CNN - [217]
RGB camera Apple orchard K-means clustering - [218]

RGB-D camera Vineyard and pear orchard Deep learning - [216]
LIDAR Vineyards HT 98.8% [219]
Camera Apple orchard LSM - [220]

Farming LIDAR Vineyards HT and filtering
algorithm - [221]

Spraying LIDAR Vineyard LSM - [222]
Tracking Color camera Vineyard LS and HT - [223]

Pollination and
harvesting Monocular Camera Kiwifruit orchard Fully onvolutional

neural network - [215]

Viticulture Tetracam ADC-lite Camera Vineyard Hough space
clustering 95.13% [224]

PA LIDAR Orchards and vineyards LRM 75% [225]

4.3.1. Row Detection for Picking

The selective harvesting of fruits and vegetables is one of the most time-consuming and
costly links in traditional agricultural production. The development of the orchard-picking
robot can effectively replace the manual picking of fruit, improve picking efficiency, and
reduce labor costs [226]. In the orchard environment, picking robots need to be equipped
with GPS positioning or a LIDAR sensor to realize autonomous positioning and navigation
and accurately move and locate the position of the fruit tree. Equipped with vision systems,
robotic arms, and pickers, the picking robot can autonomously identify the location, shape,
and ripeness of the fruit and accurately locate the fruit as well as complete the picking
task [227]. Fruit tree row detection is the basis of the picking robot’s ability to achieve
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autonomous navigation and positioning. The accurate detection of fruit tree rows can
help the picking robot to identify the position, shape, and distribution of fruit trees and
then determine the path and attitude of the robot, as well as the placement and expansion
of the robot arm [228]. In addition, it helps the robot to identify obstacles and passable
areas to avoid damage to fruit trees and other robots. However, fruit trees are diverse and
complex in form, and some fruit trees also have outstretched branches and weeds, which
can easily block the view of the picking robot, making it more difficult to detect fruit tree
rows [229]. Lyu et al. [219] applied the naive Bayesian classifier to detect tree trunk rows
and nadir points and generate a centerline by connecting these points as information for the
movement path or navigation of the picking robot. This algorithm was able to effectively
classify trunk points and noise points in the orchard and reduce the noise caused by small
branches, soil, and ground tree shadows. In response to the random spatial arrangement of
tree trunks and inconspicuous target differences in a wolfberry plantation, Ma et al. [230]
proposed an autonomous navigation method for a wolfberry-picking robot based on visual
cues and fuzzy control. This method extracts the trunk rows of wolfberry plants in the far
field of view and dynamically tracks the navigation line by calculating a variable-slope
region of interest. LiDAR can provide high-precision 3D maps for picking robots and
detecting and identifying fruit tree rows, fixed obstacles, etc. Blok et al. [231] evaluated the
applicability of the Kalman filtering (KF) and particle filtering (PF) localization algorithms
of 2D LiDAR scanners for the in-row navigation of a picking robot in apple orchards. The
results showed that for the in-row navigation of orchard-picking robots, the PF algorithm
with a laser beam model had better localization performance.

4.3.2. Row Detection for Spraying

Spraying robots are becoming increasingly popular in orchards due to their efficiency
and precision in applying pesticides and fertilizers to crops. Spraying robots are equipped
with tanks and spraying nozzles that can hold and distribute the necessary number of
pesticides and fertilizers, which reduces the labor and costs associated with manual spray-
ing [232]. These robots use advanced sensors and mapping technologies to accurately target
specific areas of a crop, avoiding obstacles and ensuring precise application [233]. Research
on orchard spraying robots for fertilization, pest control, weeding management, or other
controlled treatments is constantly improving. Fruit tree row detection plays an equally
important role in the operation of spraying robots in orchards. Based on fruit tree row
detection, spraying robots can navigate through orchard rows more quickly and accurately,
reducing the likelihood of missing crops or spraying too much in one area as well as the
time and resources required for spraying [234]. This can allow for the more precise and
effective application of pesticides and fertilizers. Kim et al. [235] proposed an intelligent
spraying system for the semantic segmentation of fruit trees in pear orchards. The system
applied the SegNet model to detect fruit trees and control nozzles to accurately spray pesti-
cides on them, which reduced the overall pesticide usage. In the framework of a vineyard
or orchard, Danton et al. [222] proposed a control method that applied LiDAR to sense fruit
tree row information and control the movement of the robot, and automate spraying. The
horizontal LiDAR was used to guide the spraying robot to ensure the accurate positioning
of the sprayer relative to the vegetation, and a vertical LiDAR was used to achieve an
estimate of the vegetation covered and optimize the spraying efficiency. Liu et al. [236]
used a 3D LiDAR sensor to perceive the information on fruit trees around the spraying
robot and performed 2D processing on the point cloud in the region of interest. The vertical
distance from the robot to the centerline of the fruit tree rows was determined using the
RANSAC algorithm based on the centroid coordinates on both sides of the fruit tree rows.
This method achieved automatic navigation and the precise variable speed spraying of the
spraying robot, reducing the amount of pesticide application, air drift, and ground loss and
effectively controlling the pollution caused by pesticides to the environment. To improve
the accuracy and reliability of the orchard spraying robot, Zhang et al. [237] designed an
integrated BDS/IMU navigation algorithm for the position and heading measurement
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based on error Kalman filtering. Combining the kinematic model and the pure tracking
model, the detection of citrus tree rows and the path tracking control of the spraying robot
were realized.

4.4. Applications of Row Detection in Greenhouses

A greenhouse is a kind of agricultural application scene with environmental control
equipment. Agricultural greenhouses consist of a skeleton and film covering to provide a
controlled space in which to grow crops [238]. Due to the partially structured characteristics
of greenhouses, their mechanization and automation are conducive to the implementation
of precision agriculture. Autonomous navigation and the control of agricultural robots
have a significant impact on the efficiency, productivity, and sustainability of greenhouse
farming. In the greenhouse environment, the navigation precision and accuracy of the
robot may be affected by the obstruction and influence of objects such as plants and
equipment [239]. The robot needs crop row detection to determine plant location, growth,
and health information and to better perform navigation, inspections, watering, fertilization,
and other operations. The relatively enclosed environment inside greenhouses causes
issues with signal interference, while insufficient lighting also impairs the accuracy of
vision sensors. Therefore, reliable sensors and algorithms need to be selected to apply to
crop rows in the greenhouse. Figure 5 illustrates the application of crop row detection
technology in greenhouse robot navigation. In addition, reliable sensors also play an
important role in the greenhouse. A detailed summary of sensors is displayed in Table 4.
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Table 4. A detailed summary of applications of sensors for crop row detection in greenhouses.

Application Sensors Scenarios Methods Work

Spraying
Industrial camera Cucumber

greenhouse Median point Hough transform [241]

2D LIDAR and stereo camera Strawberry greenhouse Hokuyo node production [240]
Camera Green vegetable greenhouse Vertical projection method and SA [243]

Picking Industrial camera Cucumber greenhouse Prediction point Hough
transform algorithm [187]

Camera Cucumber greenhouse LSM [244]

Inspection Camera Greenhouse HT [245]

Navigation Color camera Strawberry greenhouse HT [246]

4.4.1. Row Detection for Inspection

The greenhouse inspection robot is a kind of agricultural robot that is specially de-
signed to perform inspection tasks in a greenhouse environment. Equipped with various
sensors and cameras, these robots can collect data on the growing environment and health
of plants in the greenhouse, detect pests and diseases, and monitor levels such as tempera-
ture and humidity [247]. The introduction of intelligent inspection robots in greenhouses
can effectively improve the efficiency of greenhouse operations, reduce labor costs, and
promote the transformation of facility agriculture from manual inspection to intelligent
inspection [248]. With technologies such as maps, sensors, and algorithms, the autonomous
navigation system can help inspection robots avoid bumping into plants and equipment
in the greenhouse and plan the optimal path to optimize inspection time and energy con-
sumption. Due to the dense growth of plants and complex environmental conditions in
the greenhouse, the inspection robot needs to determine the position and growth of plants
through crop row detection so as to perform inspection operations more accurately. Based
on two Logitech C170 cameras mounted on the inspection robot, Mahmud et al. [249]
implemented crop detection and robot navigation using the BT709 grayscale, HSL, and
channel filtering algorithms. However, greenhouse crop row detection also has some diffi-
culties, such as light and shadow changes, crop overlap, etc. In a lemongrass greenhouse
environment, Mahmud et al. [245] obtained the coordinates of lemongrass using a color
segmentation method based on Marxian distance and used this as a probabilistic roadmap
input to achieve the navigation of the inspection robot. With an objective to achieve low-
cost and non-destructive inspection of crops in a greenhouse environment, Wang et al. [250]
designed information acquisition and motion control systems with a Raspberry Pi and an
embedded chip as the core, respectively, to integrate a greenhouse mobile inspection robot.
In the field of testing, it was found that the efficient measurement of crops and the agility
of the designed robot in motion improved the efficiency of greenhouse crop research and
inspection. It is a practical problem to realize the autonomous navigation of inspection
robots in a greenhouse environment with obstacles. Zhang et al. [251] designed a hyper-
volume estimation algorithm to shorten the navigation distance and perform autonomous
obstacle avoidance, solving the path-following problem between crop rows in greenhouses
and improving the efficiency of inspection robots with additional cost reductions.

4.4.2. Row Detection for Spraying

The greenhouse spraying robot is intelligent agricultural machinery equipment inte-
grating high-precision spraying technology, sensor technology, and mechatronics technol-
ogy [252]. A greenhouse robot usually consists of a robotic chassis and a robotic arm that is
equipped with a sprayer and a fertilizer tank, which is used to spray substances that are
necessary for plant growth. The greenhouse spraying robot automatically sprays water and
fertilizer based on environmental parameters in the greenhouse to ensure optimal growing
conditions for plants and reduce the use of chemical fertilizers and their negative impact
on the environment. Crop row detection can help to spray robots pinpoint the position and
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rows of plants so that spraying and curing can be performed more precisely and production
efficiency can be improved. Similar to greenhouse inspection robots, greenhouse spraying
robots may also face challenges in terms of false and missed inspections, occlusion and in-
terference, and complex environmental issues when performing crop row inspections [253].
Several studies have been proposed to develop greenhouse spraying robots. Guiding
vehicles through crop rows is a challenge in greenhouse spraying applications and has
become a focus of research by experts. Wang [246] successfully segmented the rows of
strawberry plants from plastic film, shadow, and light using a machine vision algorithm
of threshold segmentation and center point detection method. This scheme had the char-
acteristics of strong applicability and simple operation while meeting the requirements
of robustness and real-time for path detection and following greenhouse spraying robots.
Targeting the low efficiency and high cost of greenhouse robot operations, Xue et al. [243]
designed a multi-functional spraying robot to perform crop row detection on an RGB image
information output by vision sensors. The algorithms used included vertical projection and
strip division to help the spraying robot to perform path-following and spraying tasks in a
greenhouse with green vegetables. Using the RGB images of tomatoes and cucumbers in a
greenhouse, Chen et al. [241] innovated a crop row segmentation and detection algorithm
based on LSM and traditional HT algorithms. Robustness and rapidity were demonstrated
by achieving the fitting of a navigation path that took 7.13 ms on a tracked spraying robot
as an experimental platform. LIDAR has also contributed to the application of greenhouse
spraying robots because of their long-range and contactless advantages. Abanay et al. [240]
acquired the point cloud data of strawberry greenhouse crops based on an embedded
2D LIDAR sensor and applied an estimated value approach to guide the vehicle heading
and speed between rows while automating motion control through a pesticide spraying
applicator system.

5. Conclusions

In conclusion, crop row detection is a critical task in precision agriculture that enables
various agricultural applications, including pesticide spraying, crop health monitoring,
and weed detection. Traditional image processing techniques, machine learning-based
approaches, and deep learning-based methods are all viable options for crop row detection,
each with its own advantages and limitations. Nonetheless, recent advances in computer
vision and machine learning technologies have made deep learning-based methods, notably
convolutional neural networks, the most promising option for crop row detection.

Deep learning methods have demonstrated superior performance in various computer
vision tasks, including object detection and semantic segmentation, which are fundamental
to crop row detection. CNNs excel at learning complex features and patterns from large
datasets, enabling them to automatically extract relevant information from field images
and accurately identify crop rows. The ability of deep learning models to generalize well
to different lighting conditions, weather variations, and field environments has further
contributed to their suitability for crop row detection in real-world scenarios.

Despite the progress made, several challenges persist in the field of crop row detection.
One challenge involves ensuring the robustness of detection algorithms to handle diverse
lighting conditions and environmental factors, as agricultural settings can be highly variable
and unpredictable. Additionally, their scalability to different crops is essential, as crop
rows can exhibit variations in shape, size, and appearance across different plant species.
Integrating crop row detection with other agricultural technologies, such as robotics, drones,
and data analytics, also presents another challenge that requires seamless integration
and interoperability.

The prospects for crop row detection in precision agriculture are promising. Re-
searchers and industry experts are actively working on developing more accurate, efficient,
and scalable methods that address existing challenges. Advancements in deep learning
architectures, such as novel CNN architectures and attention mechanisms, hold the poten-
tial to further improve crop row detection performance. Furthermore, the fusion of crop
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row detection with other advanced technologies, including remote sensing, the Internet of
Things (IoT), and big data analytics, could enhance the overall effectiveness of precision
agriculture systems.

The future of crop row detection in precision agriculture looks promising as researchers
and industry experts continue to develop more accurate, efficient, and scalable methods
that can benefit farmers and improve agricultural sustainability. Overall, the advancement
of crop row detection in precision agriculture has the potential to revolutionize farming
practices, leading to improved productivity, resource management, and agricultural sus-
tainability. By leveraging the power of deep learning and embracing collaboration, the
future of crop row detection holds great promise for enhancing crop yield, minimizing the
environmental impact, and transforming the agricultural industry as a whole.
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