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Abstract: Popular knowledge of the population structure and genetic diversity of a plant species is
essential for designing improvement strategies. The genotyping-by-sequencing (GBS) approach has
been used to simplify complex genomes and has become a popular high-throughput molecular tool
for selecting and breeding many crop plants, including those with large genomes. This study aimed
to construct a core collection of walnut (Juglans regia) germplasm using the GBS approach. A diversity
panel of 87 walnut initial genotypes, including 25 landraces, 12 cultivars, and 50 seedling populations,
mostly native to the Gansu Province of China, was subjected to GBS. A total of 110,497 high-quality
SNPs were identified and used for determining distinct clusters and an optimum number of sub-
populations. Structure analysis divided the genotypes into three distinct groups, which coincided
with their collection site and year, suggesting a certain degree of separation in the geographical
origin and pedigree among the three groups. To maximize germplasm utilization, the genotypes
were posteriorly grouped according to the subgroups obtained through GBS analysis. To minimize
subsample redundancy, the core collection was designed using a set of 6540 SNPs distributed across
all 16 chromosomes. Finally, a core collection comprising nine walnut genotypes (10% of the entire
genotype set), including five cultivars, three seedling populations, and one landrace, was assembled.
Genetic structure analysis indicated that the core collection has an uneven distribution in the landrace
collection, which could be related to environmental conditions, and the genotypes of the landrace
collection are similar. Overall, the results of this study and the establishment of the core collection
will facilitate the improvement of walnut in future breeding programs.

Keywords: walnut; genotyping-by-sequencing; core collection; genetic diversity

1. Introduction

The common walnut (Juglans regia L.; Juglandaceae) is a famous cultivated nut with
high economic and ecological value [1]. The consumption of J. regia by humans can be traced
back to Persia (7000 BCE) [2]. As an important nut crop, J. regia is cultivated in temperate
regions across the world. Today, China is the leading producer of walnuts, accounting
for 50% of the annual production worldwide [3]. Previous investigations indicate that
the evolutionary history of the common walnut first occurred in the highland region and
spread eastward into China via human migration along the Silk Road [4]. There, gene flow
became a significant factor influencing the genetic structure of common walnut populations,
followed by climate change and geographical transition [5–8]. The genus Juglans contains
more than 20 diploid (2n = 2x = 32) species [9]. Among these species, J. regia, J. mandshurica
(Manchurian walnut), J. sigillata (Iron walnut), J. hopeiensis (Ma walnut), and J. cathayensis
(Chinese walnut) are widely distributed in China [10,11]. Given the continued uncertainty
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regarding the location and number of refugia for J. regia, the geographic range of its origin
remains unclear; however, it is possible that J. regia originated from refugia in China [12,13].

Most of the walnut species are monoecious [14]. High genetic variation in the natural
populations of walnut may be attributed to sexual reproduction [15]. The existence of
protandry, which often leads to outcrossing, increases genetic variation within a species
and affects population structure. Under these circumstances, sexual reproduction further
enhances segregation among walnut populations, leading to high genetic diversity. These
genetic populations can serve as foundational germplasm in a variety of improvement pro-
grams. Sexually reproducing genotypes have been used for breeding cultivars with more
effective nutrient absorption and utilization capacities and have led to the identification of
candidate genes responsive to stress conditions such as extreme temperature, drought, and
high salinity/alkalinity. Walnut genotypes capable of sexual reproduction are usually more
suitable for the local environment than introduced varieties. With continued cycles of culti-
vation, harvesting, and selection, walnut genotypes retained by farmers adapt to the local
agroecosystem and environmental conditions, similar to how the ecotypes of wild species
adapt to the local environment over time for survival [16]. However, a comprehensive
and systematic understanding of walnut germplasm resources is lacking, and a number of
different genotypes with a common name (homonyms) and identical genotypes with differ-
ent names (synonyms) have been developed in walnut, affecting the commercialization of
walnut products. Moreover, ancient walnut germplasm resources, which are well-adapted
to the local environment and contain valuable genes, are constantly decreasing. Therefore,
the collection, preservation, and evaluation of local J. regia germplasm resources are crucial
for its genetic improvement [17]. Thus far, molecular marker methods based on DNA have
proven to be stable and reliable for genetic studies of walnut populations [18]. Although,
these molecular marker methods have largely solved the identification and screening of
walnut genotypes, the massive size of germplasm resources makes the selection process for
breeding targets extremely tough, which limits the subsequent utilization of these resources
in research studies. To overcome this problem, researchers developed the concept of a core
collection [19], which is a subset of the existing germplasm resources that represents the
genetic variability of the whole germplasm collection. The purpose of a core collection is
to simplify the management of a large number of genotypes while maintaining as much
genetic diversity as possible. Core collections can be established based on different types of
data, such as ecogeographical data, phenotypic data, and agronomic traits [20–22].

Recently, with advances in molecular marker and next-generation sequencing (NGS)
technologies, the genotyping-by-sequencing (GBS) approach has become increasingly
popular for large-scale germplasm characterization, which facilitates the identification of
high-performance genotypes and accelerates the development of highly efficient breeding
strategies by enabling the selection of chromosome-wide genetic diversity [23]. The GBS
method is highly suitable for the effective management of germplasm resources. Core
collections of some fruit tree species have been created to date [24–26]. Previously, studies
have been conducted to investigate the population structure of common walnut, and to
establish its core collection based on simple sequence repeat (SSR) [16,27], single nucleotide
polymorphism (SNP) [28], amplified fragment length polymorphism (AFLP) [29], and
random amplified polymorphic DNA (RAPD) markers [30].

Humans traded walnuts along the ancient Silk Road, scattering common walnut genes
across huge natural barriers and great geographical distances [5]. Gansu is an important
province in China on the northern Silk Road. The gene exchange between native and
Persian walnut germplasm resources obtained a large number of new walnut genotypes;
however, these germplasm resources are not well characterized. Therefore, in this study, we
aimed to evaluate the genetic diversity and structure of local walnut populations, establish
a core collection of common walnuts using the GBS technology, and consequently develop
large numbers of SNP datasets. The molecular data reported in this study, for the first time,
provide a detailed inventory of the local walnut genetic resources in Gansu Province, China.
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2. Materials and Methods
2.1. Plant Material

A set of 87 walnut genotypes (Supplementary Table S1) grown at the Walnut Germplasm
Resources Plot of Gansu Academy of Agricultural Sciences (106◦.13′ E, 34◦.749′ N, Figure 1)
were used in this study, including 50 seedling populations (specific origins unclear), which
have been used mainly for the selection of superior plants and exploration of germplasm
resources; 25 representative landraces, 2 of which represent ancient (800 to 1000-year-old)
walnut genetic resources; and 12 introduced varieties registered mainly in China, Japan,
and USA. These resources are suitable for cultivation in the Gansu Province of China. Fresh,
healthy leaves were collected from each genotype, frozen in liquid nitrogen, and stored at
−80 ◦C.
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2.2. DNA Isolation

Genomic DNA was extracted from the frozen leaves of all 87 genotypes using the
Plant Genomic DNA Kit (TIANGEN, Beijing, China), according to the manufacturer’s in-
structions. DNA degradation and contamination were monitored on 1% agarose gels. DNA
purity was checked using the NanoPhotometer® spectrophotometer (IMPLEN, Westlake
Village, CA, USA). DNA concentration was measured using the Qubit® DNA Assay Kit
with Qubit® 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA).

2.3. Library Preparation

GBS is an efficient method used for large-scale genotyping based on a reduced repre-
sentation library (RRL) and high-throughput sequencing. First, a GBS pre-design experi-
ment was performed. Restriction enzymes and sizes of the digested DNA fragments were
evaluated using training data. Three criteria were considered to improve the efficiency of
GBS: (i) suitable number of tags; (ii) even distribution of enzymatic tags; and (iii) no repeat
tags. To maintain the sequence depth uniformity of different fragments, a tight length
range was selected (approximately 50 bp).

Next, the GBS library was constructed using the pre-designed scheme. Genomic DNA
was incubated at 37 ◦C with MseI (New England Biolabs [NEB]), T4 DNA ligase (NEB), ATP
(NEB), and MseI Y-adapter N-containing barcode. Restriction-ligation reactions were heat-
inactivated at 65 ◦C, and then digested with NlaIII (NEB) and EcoRI (NEB) at 37 ◦C. The
restriction ligation samples were purified with Agencourt AMPure XP (Beckman). Then,
PCR was performed using the purified samples, Phusion Master Mix (NEB), universal
primers, and index primers with complete i5 and i7 barcodes. The PCR products were
purified using Agencourt AMPure XP (Beckman), pooled, and separated by electrophoresis
on a 2% agarose gel. Fragments 350–400 bp in size (including indexes and adaptors) were



Agronomy 2023, 13, 1786 4 of 12

isolated from the gel using the Gel Extraction Kit (Qiagen, Hilden, Germany), purified
using Agencourt AMPure XP (Beckman, Brea, CA, USA), and diluted for sequencing.

2.4. Illumina Sequencing

The purified PCR products were sequenced on an Illumina high-throughput sequenc-
ing platform to generate 150-bp paired-end reads. SNP genotyping and evaluation were
then performed. Sequence reads obtained from each sample were sorted according to
the barcodes. To ensure that the reads are reliable and without artificial bias (caused
by low-quality paired-end reads, which mainly resulted from duplicate base-calling and
adapter contamination), raw data in fastq format were passed through a series of quality
control (QC) procedures using in-house C scripts to remove reads containing ≥10% uniden-
tified nucleotides (Ns), >50% low-quality bases (Phred quality score [Q] < 5), and adapter
sequences (>10 nt aligned to the adapter, allowing ≤10% mismatches).

2.5. Mapping to the Reference Genome

Burrows-Wheeler Aligner (BWA) [31] was used to align the clean reads of each sample
against the reference genome (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/41
1/555/GCF_001411555.2_Walnut_2.0/GCF_001411555.2_Walnut_2.0_genomic.fna.gz, ac-
cessed on 28 June 2023). Sequence alignment and merging resulted, which were converted
to bam files using the SAMtools program [32]. If multiple paired-end reads showed iden-
tical external coordinates, only one paired-end read showing the highest mapping rate
was retained.

2.6. SNP Detection and Annotation

Variant calling was performed for all samples based on the reference genome sequence
using the SAMtools program [32]. SNPs with <20% missing data and <0.05 minor allele
frequency (MAF) were used for subsequent analysis.

2.7. Genetic Diversity and Population Structure Analyses

Phylogenetic analysis was conducted in MEGA 6 [33], and the evolutionary history
was inferred using the neighbor-joining method. The phylogenetic tree was drawn to
scale, and genetic distances were calculated using the number of differences method and
expressed as the number of base-pair differences per sequence. To ensure the reliability of
genetic relationships among branches, a total of 1000 bootstrap replicates were performed.
All positions containing gaps, missing data, and heterozygous sites were removed. The
phylogenetic tree was optimized using TreeView and NJplot version 2.3 [34].

To further understand the patterns of genetic relatedness, principal component analy-
sis (PCA) was carried out using the ‘prcomp’ function in R [35]. Population structure was
examined using STRUCTURE version 2.3.4 [36] to investigate the hypothetical number
of subpopulations (K) and to determine the ancestry partitioned to each genotype from
the inferred subpopulations. The ADMIXTURE method [37] was executed with correlated
allele frequencies and burn-in length of 100,000 iterations, followed by 100,000 Markov
chain Monte Carlo iterations. The following parameter setting was defaulted to the manu-
facturer’s recommended values. To identify the best K value, cross-validation error was
tested for K varying from 2 to 15. After considering 10-fold cross-validations, K with the
lowest cross-validation error was selected as the best K value.

2.8. Core Collection Selection

To maximize germplasm utilization, a core subset was selected based on individual ge-
netic diversity representative of the common genetic variation present within the collection.
The R package for Core Hunter version 3.2.1 [38] was used to generate the core collection
assembly, and 10 replications were performed to achieve repeated selection. Genotypes
captured by Core Hunter were compared with the phylogenetic tree to evaluate the core
subset’s representation of the collection’s overall structure.

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/411/555/GCF_001411555.2_Walnut_2.0/GCF_001411555.2_Walnut_2.0_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/411/555/GCF_001411555.2_Walnut_2.0/GCF_001411555.2_Walnut_2.0_genomic.fna.gz
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3. Results
3.1. Summary Statistics of SNP Calling

Statistics of the sequence data generated from the 87 genotypes after eight Ion Proton
runs are summarized in Supplemental Table S2. A total of 31,980,496,896 raw sequence
reads were obtained from all genotypes. After removing low-quality reads, adapter se-
quences, and unique alignments, 31,980,287,808 (99%) clean reads were obtained, with
an average GC content of 38.26%. In the clean reads, 96.06% and 89.56% of the base calls
showed average Q values of >20 (Q20) and >30 (Q30), respectively. Only SNPs scoring Q20
were used for the assessment of genetic variation. The average coverage of the genotypes
was 97.26%, with at least 1× coverage site in the reference genome at 11.91%, and the aver-
age sequencing depth was 8.89× (Table 1). Using SAMtools, a total of 110,497 (6.84%) SNPs
were aligned to the reference genome based on two filtering criteria (missing data < 20%,
MAF > 5%), and were finally selected for genetic diversity analysis.

Table 1. Statistics of sequencing depth and coverage.

Statistic Statistical

Mapped reads a 2,482,575
Mapping rate b 97.26%

Average sequencing depth c 8.89×
Coverage 1× d 11.91%
Coverage 4× e 5.57%

a Number of clean reads compared to the reference genome. b The percentage of clean reads that mapped to the
reference genome. c Average sequencing depth. d The percentage of coverage site with at least 1× in reference
genome. e The percentage of coverage site with at least 4× in reference genome.

3.2. Phylogenetic and Population Structure Analyses

PCA revealed a high degree of dispersion among the three groups (Figure 2). To-
gether, the two first principal components explained 17.9% of the genetic variation in the
87 genotypes (PC1, 10.4%; PC2, 7.5%).
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To investigate the evolutionary relationships among the 87 genotypes, a phylogenetic
tree was constructed with MEGA 6 using high-quality SNPS (Figure 3). Phylogenetic anal-
ysis revealed three distinct groups. Group I was the largest, with 36 genotypes (35 seedling
populations and 1 cultivar), and is hereafter referred to as ‘Seedling-population’; Group
II contained 22 genotypes (8 cultivars, 8 seedling populations, and 6 landraces), and is
hereafter referred to as ‘Cultivar’; group III contained 29 landraces (7 seedling populations,
3 cultivars, and 19 landraces), and is hereafter referred to as ‘Landrace.’ Most of the cul-
tivars were mixed with seedling populations and landraces, such as LLZL, LD-Z, MJ-52,
LCS, XSSR, and QBX-7, suggesting that these genotypes share the same origin.
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To assess in greater detail the population structure of the genotype’s diversity
panel, the SNP genotype dataset was further analyzed and used for the construction
of the phylogenetic tree through the model-based ADMIXTURE method carried out in
STRUCTUR [37]. The optimal subgroup classification (K = 3) was inferred based on
the lowest cross-validation error (Figures 4 and 5). In general, each population was
represented by each species. Population analysis also divided the 87 genotypes into
three groups, consistent with the results of PCA (Figure 2) and phylogenetic analysis
(Figure 3).
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3.3. Construction of the Core Collection

A core collection is a subset of the germplasm representing the diversity of the original
population and can be used for marker development and crop breeding. To establish the
core collection, a subset of the 110,497 high-quality SNPs (6540 core SNPs) with 4× read
depth, 80% minimum coverage across all 87 genotypes, MAF ≥ 20%, and polymorphism
information content (PIC) ≥ 30% were selected (Supplemental Table S3). Of the 6540 core
SNPs, 3407 (52.09%) were located in introns, 1289 (19.71%) in exons, 1407 (21.51%) in
upstream or downstream regions, 432 (6.61%) in 5′- or 3′-untranslated regions (5′/3′UTRs),
and 5 (0.08%) in splice site regions (Table 2). The core SNPs were distributed across all
16 chromosomes (Figure 6), with the highest number of chromosome 7; however, 13 core
SNPs could not be assigned to a chromosome (Table 3).

Table 2. Genomic distribution of core SNPs.

Genomic Region No. of Core SNPs Relative Proportion of Core SNPs (%)

Introns 3407 52.09
Exons 1289 19.71

Splice sites 5 0.08
Upstream/downstream

regions 1407 21.51

5′UTR/3′UTR 432 6.61
Total 6540 100
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Table 3. Chromosomal distribution of core SNPs.

Chromosome No. No. of Core SNPs Relative Proportion of Core SNPs (%)

Chr 1 531 8.12
Chr 2 403 6.16
Chr 3 462 7.06
Chr 4 361 5.52
Chr 5 234 3.58
Chr 6 399 6.1
Chr 7 592 9.05
Chr 8 377 5.76
Chr 9 282 4.31

Chr 10 522 7.98
Chr 11 529 8.09
Chr 12 359 5.49
Chr 13 486 7.43
Chr 14 351 5.37
Chr 15 279 4.27
Chr 16 360 5.5

Unknown 13 0.2
Total 6540 100

Among the 87 genotypes, 9 were identified with Core Hunter 3.2.1, representing 10%
of the entire allelic diversity in the collection (Supplemental Table S4), which is completely
in accordance with a sampling scale of approximately 5–40%. These nine genotypes
included 2 of the 36 seedling populations, 4 of the 22 cultivars, and 3 of the 29 landraces
(Figure 2). Comparison of the observed heterozygosity (Ho), expected heterozygosity (He),
and nucleotide diversity (π) revealed no significant difference between the primary set and
core collection (Table 4).

Table 4. Statistics of genetic diversity in the primary set and core collection.

Pop Ho p SE He p SE π p SE

All 0.4163 0.0138 0.0008 0.4208 0.0039 0.0004 0.4235 0.004 0.0004
Core 0.3309 0.0371 0.0014 0.3782 0.0121 0.0008 0.4104 0.0143 0.0009

Ho: average observed heterozygosity; He: average expected heterozygosity; π: nucleotide diversity; SE: standard
error; p: p-value.
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4. Discussion

Evaluation of genetic diversity is important for the genetic improvement of historically
under-researched species, such as J. regia. GBS is an NGS-based technique that requires
the analysis of only restriction enzyme sites in the genome sequence, thus allowing a
quick, low-cost, and effective analysis of many samples [39,40]. However, the GBS method
requires the establishment of a database based on enzyme digestion patterns, since the
efficiency of enzyme digestion will significantly affect the quality of database construction
and sequencing output, which can easily lead to data loss. In this study, more than
1.6 million high-quality SNPs were identified in 87 walnut genotypes. Among these SNPs,
6.84% (110,497 SNPs) passed the stringent filtering criteria (missing data < 20%, MAF > 5%);
this percentage was much higher than the 0.71% reported previously [41]. One of the main
reasons for the rapid decline in SNP number is the missing data, which often occurs in
GBS-based research [42,43], although other factors may also be responsible, such as the
incomplete Juglans reference genome sequence and short sequence alignment. Therefore,
with a large sample size, deficiencies can be compensated by data filling, and the design is
widely used in genome selection research [44,45].

The diversity panel of J. regia germplasm resources used in the current study was the
result of collections made by multiple groups. The 87 walnut genotypes were classified
into three major groups through phylogenetic analysis. In cluster analysis, more than half
of the genotypes showed a certain correlation with their geographical origin, but a small
number of mismatch phenomena were observed. For instance, three cultivars were placed
into the landrace group, with a mismatch rate of 10.34. This was probably because these
cultivars were selected from landraces or might have undergone gene flow. Thus, the
three cultivars should belong to the landrace group. Similar results have been obtained in
studies on other species [46]. In addition, the results of cluster analysis of cultivars provide
interesting insights into their pedigrees. For example, the source country of some cultivars
was different from their geographical origin; thus, our study provides new information
regarding the plant material. Our results indicated that some cultivars were derived from
crosses between genotypes from various countries of origin. Population structure analysis
is a widely used method for inferring hidden population structure in plant species [47].
In the present study, population structure analysis and PCA confirmed the three major
groups that did not correspond to geographical origin. A poor association between the
molecular marker data and the geographic origin of genotypes has also been reported
previously [30,48,49]. This may be caused by the extensive preservation and exchange
of germplasm to broaden the diversity of local breeding materials, which increases the
genetic similarity among materials in the local gene bank. Subsequently, after further
analyzing pedigree, germplasm collection, growth habit, and various source, we found
that pedigree was also the main factor for separation among the 87 walnut genotypes. This
explains why cultivars were crossed with landraces. Our work shows that all seedlings are
known hybrids. The pedigrees of 35 and 2 hybrids contained ‘XL-Z’ and ‘LP1-40’ cultivars,
respectively. Additionally, six hybrids contained different landraces in their pedigrees. The
surveyed landraces were collected in different years or from different climate zones and
geographical regions, and grouped close together, reflecting a low level of genetic diversity.
Therefore, the genetic diversity of landraces could be related to their adaptation to the
local environment, and growers likely played a crucial role in maintaining the genetic
diversity [50].

Core collections serve as vital resources in the germplasm resource bank and aim to
conserve as much genetic diversity of the original collection as possible within a small
number of genotypes [17]. The construction of a core collection can offer researchers and
breeders options for protecting the genetic diversity of plant species over the long term. In
recent years, with the progress in sequencing technology, molecular markers have been
used for the development of core collections [21–23]. Obviously, molecular markers are
more useful than morphological markers; molecular markers are based on DNA attributes,
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whereas morphological markers are frequently affected by epigenetic variation, which is
no special consideration if DNA is used alone.

Many algorithms are available for the construction of a core collection, including Power-
Core, Maximum Length Sub Tree (MLST), and Core Hunter [51]. Previous studies have shown
that core collections of walnuts constructed using multiple algorithms are highly similar [52].
In contrast, core Hunter is a powerful and flexible algorithm for the selection of core genotypes,
which exhibit high average genetic distance among germplasm resources and rich genetic
diversity as a whole. The core subset of the samples diversifies large germplasm resources
with minimal redundancy. Accordingly, a core collection of J. regia was developed in this study
based on GBS data using the R package Core Hunter software [38]. The results of statistical
analysis using the Student’s t-test were consistent with the standards of the core collection.
Assessment of initial and core collections by analysis of variance (ANOVA) revealed that all
molecular genetic variation arose within the collections, and the two collections possessed
similar genetic diversity. He reflects the richness and evenness of alleles within a population.
In the present research, the value of He was greater than that of Ho, indicating high heterozy-
gosity in the J. regia core collection. Overall, the constructed core collection represented the
initial collection, thus validating its effectiveness.

5. Conclusions

This work demonstrates the power of the GBS approach for investigating the detailed
population structure and genetic diversity of the local walnut germplasm resources and
utilizing this information to establish a core collection. The walnut seedling populations,
landraces, and cultivars collected from different geographical regions and in different
years were divided into three distinct groups. These germplasms were observed to have
differences in geographical origin and pedigree. The core collection identified from the
germplasm collection will be useful for the rational and economically sustainable man-
agement of the walnut germplasm while helping to preserve its genetic diversity. This
information can assist walnut breeders in designing more effective breeding programs
for improving particular traits of interest, such as abiotic stress tolerance, nut and kernel
quality, and disease resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agronomy13071786/s1, Table S1: the information of 87 genotypes;
Table S2: the output statistics of sequencing data; Table S3: the information of core SNP tag; Table S4:
core collection sample.
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