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Abstract: In order to clarify the temporal and spatial changes in the internal photothermal environ-
ment in an open-field agrivoltaic system (OAVS), this paper took the OAVS in eastern China as the
research object and divided the internal area into the southern area, middle area and northern area,
according to the spatial structure. Further, a photothermal environment test was conducted in the
above three areas in the summer and winter. The results showed that the summer average daylight
rate (Rm-avg) in the middle area was 66.6%, while the Rm-avg in the other two areas was about 20%,
with no significant difference. In the winter, the light environment in the southern area was slightly
better, and the Rm-avg in the above three areas was 26.4%, 24.7% and 19.7%, respectively. On the
whole, the relationship between the thermal environmental factors and the solar radiation intensity
was consistent. Further, a 3D model of an OAVS was established using Autodesk Ecotect Analysis
2011, and the internal light environment was simulated. Compared with the measured values, the
relative error was less than 10%, which verified the reliability of the OAVS model. Then, the model
was used to reveal the temporal and spatial changes in the light environment of the OAVS. The
simulation results showed that the daylighting rate in the summer from the ground to the height of
the fig canopy inside the system was 20.7% to 61.5%. In the winter, the daylighting rate from the
ground to the height of the fig canopy inside the system was 17.7% to 36.4%. The effectiveness of the
OAVS in reducing the level of solar radiation intensity depended on the time of day and the angle of
the sun. At the spatial scale, due to the strong consumption of light by photovoltaic panels, there
was a strong horizontal and vertical light environment gradient inside the system. In conclusion, the
photothermal environment research of an OAVS based on Autodesk Ecotect Analysis 2011 can not
only provide a basis for agricultural production and structural design such as span, height and the
laying density of PV panels, but also expand its application to regions with different latitudes and
longitudes and specific climates.

Keywords: agrivoltaics; agricultural building; photothermal environment; ECOTECT; simulation

1. Introduction

The open-field agrivoltaic system (OAVS) is a modern integrated agricultural pro-
duction system which combines PV power generation and agricultural production [1,2].
Under the condition that agricultural land and agricultural production are not affected, it
can improve the efficiency of land use, which is of great significance to the development
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of the PV industry and the transformation of modern agriculture [3,4]. In the context of
carbon neutrality, the development and utilization of solar energy has become an important
“tuyere” [5]. The OAVS has been widely applied and promoted in China, which com-
bines PV and field planting [6]. Relying on a good agricultural resource base, the OAVS
project has developed rapidly in eastern China [7]. By the end of 2022, the cumulative
grid-connected capacity of centralized PV power stations in this area reached 72.96 million
kW, accounting for 19.8% of the national grid-connected capacity, among which the OAVS
is the main application form of centralized PV power stations in this area [8]. At the same
time, this area is the main vegetable-producing area in China, and has great potential for
agrivoltaic implementation [9]. For example, the installed PV-saturated capacity of Jiangsu
Province and Shandong Province in eastern China can reach 18.25 GW and 16.00 GW,
respectively [7]. At present, the OAVS in East China covers a large area and is relatively
concentrated in scale, making it easy to carry out large-scale, mechanized and intensive agri-
cultural production. However, affected by the occlusion of photovoltaic panels, the OAVS
is conducive to the growth and development of shad-tolerant and cold-loving crops [10].
Therefore, the OAVS is mostly planted with shad-tolerant, compact, high yield and high
efficiency crop types and varieties. For example, it is suitable to plant corn, sorghum,
potato, taro, yam and beans between the boards and under the eaves, and shady crops such
as Chinese medicinal materials can be planted under the columns [11–14].

The development of the OAVS project can improve land utilization rate [15,16], pro-
mote industrial low carbon development [17,18], enrich field biomass [19], improve soil
moisture [19,20] and increase comprehensive benefits [21,22]. However, there are some
tricky problems in the OAVS in this area, such as the unclear internal photothermal envi-
ronment and the poor coupling effect of agriculture and PV [23]. A large number of studies
have shown that due to the shading of PV panels, there are phenomena such as uneven
distribution and low intensity of light inside the system, which affect the normal growth of
crops [24,25]. In order to clarify the variation rule in the internal photothermal environment
of the OAVS, experts and scholars at home and abroad have conducted a lot of research on
the photothermal environment of the system and similar PV buildings. Marrou et al. [26]
monitored the microclimatic conditions of different PV panel laying densities in the OAVS
in different seasons. The results showed that there was no significant difference in average
daily air temperature and average daily relative humidity under different treatments, but
there was a gradient difference in soil temperature. Gao et al. [27] studied the diurnal
and annual variation characteristics of air temperature inside and outside of PV power
stations. Through monitoring and the analysis of a single point inside and outside the
power station, the results showed that the daytime air temperature inside and outside the
power station was basically the same in the winter. In the spring, summer and autumn, the
air temperature inside the power station was significantly higher than that outside, and the
difference was the largest in the summer, 0.67 ◦C. Hassanpour Adeh et al. [19] studied the
environmental effects of PV panels on unirrigated grasslands that frequently suffer from
water stress, quantifying the effects of the presence of PV panels on microclimate and soil
moisture. The results showed that the area under the PV panel maintained a higher soil
moisture, and the biomass increased by 90% in the later period. Chang et al. [28] studied
the thermal effect of PV panels on the temperature of adjacent air, and the results showed
that the temperature of PV panels (height of the erection was 2 m) increased significantly,
with an average annual increase of 9.7 ◦C and an average annual increase in adjacent air
temperature of 3.8 ◦C. Sailor et al. [29] found through research that PV urban building
systems heat the city during the day and cool it at night. Ezzaeri et al. [30] studied the
effects of checkerboard form flexible PV panels on greenhouse microclimates and tomato
yields in the summer and winter. The results showed that the PV panel reduced the air
temperature in the greenhouse, and the occupancy rate of PV panel had no significant effect
on the total yield of tomato.

In summary, the internal environment of the OAVS is relatively complex and has
an important impact on agricultural production. However, there are no reports on the
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variation rule of the photothermal environment inside the system at a spatial scale. It is an
important basis for the agricultural production of the OAVS to make clear the variation rule
of internal environment and the photothermal performance. The accurate photothermal
environment can not only provide a basis for the OAVS agricultural mode selection and
production management, but also provide reference for the structural design of the system
span, height and PV panel laying density.

As a civil building software, Autodesk Ecotect Analysis 2011 is able to conduct light
environment analysis, energy consumption analysis and sunshine and shade analysis for
buildings by setting building structural parameters, material parameters and environmental
parameters [31–33]. Various studies show that the simulation accuracy of the software
is good [34,35]. When applying the software for research and analysis, the boundary
conditions are convenient to set, the operation process is relatively simple and the result
visualization ability is strong [36,37]. Although the software is mainly used for the analysis
of civil buildings, it has a broad prospect in the analysis and application of the light
environment of agricultural buildings.

This paper will take the OAVS in eastern China as the research object and measure
the solar radiation intensity, air temperature and soil temperature in the summer and
winter. Further, the distribution of environmental parameters in different areas will be
analyzed. Combined with Autodesk Ecotect Analysis 2011, a proportional agrivoltaic
system model will be constructed to simulate and analyze the solar radiation, shading
and sunshine hours in the system, so as to clarify its optical environment performance in
space and time scales. The novelties of this study are as follows: (1) Combined with the
sensor configuration strategy and spatial structure characteristics, the change rule of the
photothermal environment in different areas inside the OAVS in the summer and winter is
quantified. (2) The OAVS light environment model is established, revealing the spatial and
temporal scales system interior light environment distribution characteristics.

2. Materials and Methods
2.1. Experimental Site Description

The experimental OAVS is located in Shenzhen Energy Nanjing Holding Co., Ltd.
(31.62◦ latitude, 119.18◦ longitude, approx. 360 m above sea level), Lishui District, Nanjing
City, Jiangsu Province, China. The power station was put into operation in 2016, covering
an area of about 46.67 ha, with a total installed capacity of 20 MW and annual clean
power generation of about 24 million kWh. It is also a base integrating photovoltaic
power generation, ecological agriculture, sightseeing tourism, popular science exhibition
and photovoltaic agricultural research and experiment (Figure 1a). Lishui district is in
the transition zone from the north subtropical zone to the middle subtropical zone. The
average annual temperature is 15.5 ◦C. The average annual sunshine duration is 2145.8 h
and the average annual rainfall is 1036.9 mm.

The PV panels of the system face south and are supported by Φ300 concrete piles
and an inclined supporting frame. The distance between concrete piles is 3 m and 6.8 m
between the panel arrays. The PV module is made of 265 W polysilicon, with a photoelectric
conversion efficiency of 16.3%. The size of a single PV module is 1640 × 992 × 35 mm,
composed of 60 minimum cells. Four PV modules are arranged in a row and continuously
laid along the east–west direction. The lowest edge of the PV modules is 3.2 m above the
ground and has a tilt angle of 24◦. One row of fig (Ficus carica) trees were planted in the
middle of each span in the OAVS with a height of about 1.0 m and a root length of about
0.3 m. The figs were equally spaced with planting spacing of about 3.0 m, and their main
growing season at this site is from April to October. The soil texture is classified as yellow
loam. In addition, since the PV panes have the function of collecting rain, two drainage
ditches in the east–west direction are formed inside the single span PV array (Figure 1b,c).
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Figure 1. (a) Aerial view of OAVS; (b) spatial structure of experimental OAVS; (c) monitoring points
in experimental OAVS.

2.2. Photothermal Environment Measurement and Daylighting Rate Calculation

According to the needs of the experimental design, the space occupied by the PV
arrays is defined as the interior of the OAVS. The height of the space is the lowest height of
the PV panel from the ground, which is about 3.2 m. The exterior of the OAVS is defined as
a place far away from the OAVS and sufficiently open. According to the spatial structure of
the OAVS, the single span PV array was divided into three areas along the north–south
direction, namely, southern area, middle area and northern area. The width of each area
is 1.8, 3.2 and 1.8 m, respectively (Figure 2). The environmental factors monitored inside
and outside of this experimental OAVS include solar radiation intensity, air temperature
and soil temperature. The arrangement of monitoring instruments in the three areas
follows the following principles: (1) Reduce the sensor configuration redundancy under the
condition of meeting the information collection requirements; (2) fully consider the shading
of photovoltaic modules, plant height, plant root length and other factors; the expected test
results can fully reflect the objective law to avoid a bad impact on the monitoring of the
light temperature sensor. Based on this, the solar radiation intensity and air temperature
measurement point was set at 1.0 m above the ground, the same as the height of the fig tree
canopy, and the soil temperature measurement point was set at 0.15 m underground, which
was in the middle position of fig root depth. The instruments were arranged 0.65 m away
from the axis of the prefabricated pipe pile to fully reflect the photothermal performance of
the OAVS.

The arrangement of measuring points is shown in Figure 2: (1) Solar radiation intensity
and air temperature in the OAVS: Sensors for solar radiation intensity and air temperature
were placed at south area, middle area and north area, respectively, which were 0.65, 3.40
and 6.15 m away from the concrete pile along the north–south direction and 1.0 m above
the ground, one sensor for each area. (2) Soil temperature in the OAVS: Soil temperature
measuring sensors were placed at depth of 0.15 m directly below the solar radiation intensity
and air temperature measuring points, one sensor for each area. (3) All the measuring points
of solar radiation intensity, air temperature and soil temperature inside the OAVS were
arranged in the same plane along the north–south direction, and were not affected by side
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light. (4) The OAVS external environment measuring point: An environmental measuring
point was set in open field far away from the PV arrays. The data of solar radiation intensity
at a height of 1.0 m above the ground, air temperature and soil temperature at a depth
of 0.15 m were collected. The monitoring scene of the experimental OAVS is shown in
Figure 1c.
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Data were collected in the summer from 11 August 2022 to 25 August 2022 and in the
winter from 15 December 2022 to 30 December 2022. The test instruments were HOBO
series sensors, as shown in Table 1. The environmental data were recorded throughout the
day at 30 min intervals. The HOBO UX100-011A air temperature sensor was equipped
with a special meteorological radiation shield to eliminate the effects of solar radiation and
complex outdoor environment on data reliability. The daytime period in the summer and
winter was calculated from 06:00 to 18:00, and the night period was from 18:00 to 06:00+1.

Table 1. Instrument parameters.

Instrument Name Manufacturer Model Range Accuracy

HOBO temperature recorder

Onset Co., Ltd., Bourne,
MA, USA

UX100-011A −20~+70 ◦C ±0.2 ◦C
HOBO four-channel recorder UX120-006M −20~+70 ◦C ±0.2 ◦C
HOBO temperature sensor TMC20-HD −20~+100 ◦C ±0.15 ◦C
HOBO total solar radiation

sensor S-LIB-M003 0~+1280 W/m2 ±10 W/m2

Daylighting rate, as a key evaluation index, was used in the analysis of the light
environment of various buildings [38,39]. Sun et al. [40] took the ratio of the average solar
radiation intensity inside the greenhouse and outdoor in a single moment as the average
daylighting rate to evaluate the lighting performance of the greenhouse. Based on this,
the ratio of the average daily internal solar radiation intensity (Em-in) to the average daily
outdoor solar radiation intensity (Em-out) is prescribed in this paper as the daily daylighting
rate (Rm-d). The average of daily daylighting rate of each measurement point during the
whole recording period is described as the average daylighting rate (Rm-avg). The Rm-d and
Rm-avg are used as the evaluation index of the internal light environment of the OAVS, and
calculated according to Equations (1) and (2).
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where Em-in is the measured value of solar radiation intensity at a single time inside the
OAVS (W/m2); Em-out is the measured value of solar radiation intensity at a single time
outside the OAVS (W/m2); Rm-d is the daylighting rate of the OAVS (%); Rm-avg is the
average daylighting rate (%); k is the number of daily records of solar radiation intensity
data; and i is the number of experimental days (d).

2.3. Simulation of Light Environment

The internal photothermal environment of the OAVS is relatively complex according
to previous research. Solar radiation intensity is the primary ecological factor in the OAVS
and has strong interaction effects with other environmental factors. Therefore, Autodesk
Ecotect Analysis 2011 was used to construct the light environment model of the OAVS to
clarify the light environment performance in both spatial and temporal scales.

2.3.1. Model Construction

The 1:1 OAVS model (Figure 3) was established through a 3D framework (SOLID-
WORKS 2020, France) and imported into Autodesk Ecotect Analysis 2011. The typical
annual weather data of Nanjing was adopted, and relevant data were put into ECOTECT
weather tools to automatically extract meteorological conditions such as direct/scattered
solar radiation, annual temperature/humidity variation and annual wind speed variation.
Then, the shading rate, sunlight hours and solar radiation inside the OAVS were elabo-
rated based on the actual orientation and inclination. Building material attributes are not
included in this paper, as solar radiation and other studied indicators are mainly related to
solar altitude angle and azimuth angle. A flowchart for the OAVS simulation procedure
was designed based on the model as shown in Figure 4.
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2.3.2. Setting of Numerical Simulation

The center area of the PV arrays was chosen as the calculation domain to eliminate
the effect of side light. During grid division, the east–west profile was selected as the
simulation plane, and the simulation plane was divided into grid units and calculated in
turn. The “display analysis grid” was selected in the “analysis Grid” panel. The values
of “2D slice position” were successively set to the required cross sections for calculation.
On the basis of considering calculation accuracy and calculation speed, the mesh density
should be increased as much as possible. The number of mesh set in this paper was 2048
(“64 × 32”). In Autodesk Ecotect Analysis 2011, we selected “Solar Access Analysis” in
Calculate for relevant simulation settings (Figure 5). The simulated period was consistent
with the actual test period.
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2.4. Data Analysis

Excel 2016 was used for statistical processing and analysis of the experimental data,
and Origin 2021 was used to make relevant charts.

3. Results
3.1. Analysis of Photothermal Environment in OAVS
3.1.1. Solar Radiation Intensity

As shown in Figure 6, the solar radiation intensity in the summer and winter differed
greatly inside and outside of the OAVS. The solar radiation intensity outside of the OAVS
was higher than that of the three measuring points inside the PV arrays. The maximum
solar radiation intensity of all the points in the open field, southern area, middle area and
northern area in the summer was 391.4, 69.4, 326.3 and 79.0 W/m2 (Figure 6a), and the
maximum solar radiation intensity of all the points in the open field, southern area, middle
area and northern area in the winter was 250.3, 170.7, 56.3 and 63.4 W/m2, respectively
(Figure 6b). In the summer, the middle area had the highest solar radiation intensity inside
the OAVS, followed by the northern area. The southern area was the lowest. The solar
radiation intensity in the OAVS in the winter showed a different change pattern. In the
winter, the solar radiation intensity on sunny days in the southern area was higher than
that in the other two areas, while on cloudy days, the middle area had the highest solar
radiation intensity.
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Figure 6. Variation in solar radiation intensity inside and outside OAVS; (a) summer; (b) winter.

In the summer, on both sunny and cloudy or rainy days, the solar radiation intensity
curves of each measuring point had good consistency. On sunny days, the curves first rose
from 6 am and reached the highest value at around 12 pm, and then they fell and went
back to 0 after 6 pm. The curves of different measuring points reached the peak basically
at the same time. On cloudy days, the curves presented more frequent fluctuation, which
may be caused by the constant change in cloud thickness, leading to the constant change in
direct solar radiation intensity. The change pattern of solar radiation intensity on cloudy
days in the winter was similar to that in the summer. However, on sunny winter days, due
to the change in solar altitude angle, solar radiation intensity in the southern area increased
greatly around 12:00 am, while the other two areas stayed at a lower level.

As shown in Figure 7, the range of Ed-avg in the southern area, middle area and
northern area was 53.2~230.7, 18.6~37.3, 31.5~169.8 and 21.6~41.5 W/m2, respectively. The
range of Ed-avg in the winter was 22.3~150.3, 8.7~34.2, 13.0~29.7 and 8.1~23.8 W/m2, for
the southern, middle and northern area, respectively. The Rm-avg in the southern, middle
and northern area was 20.5%, 66.6% and 22.7% (summer), and 26.4%, 24.7% and 19.7%
(winter), respectively. It can be seen that the Ed-avg and Rm-avg of the OAVS in the summer
were the highest in the middle area, and there is no significant difference between the other



Agronomy 2023, 13, 1820 9 of 19

two areas. In the winter, the Ed-avg and Rm-avg of the OAVS were larger in the southern
area, but the differences among the three areas were relatively small.
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Figure 7. Box plots of average daily solar radiation intensity and daylighting rate in OAVS;
(a) summer; (b) winter.

3.1.2. Air Temperature

Figure 8 shows the changes in air temperature inside and outside of the OAVS in the
summer and winter. The statistical data show that the general trend in the air temperature
curve inside and outside of the OAVS was basically the same, and the air temperature
in the open field was significantly higher than the three measuring points inside the PV
array. As shown in Figure 8a, the air temperature of all the measuring points in the open
field, southern area, middle area and northern area in the summer ranged from 24.1 ◦C to
48.7 ◦C, 24.0 ◦C to 43.0 ◦C, 23.9 ◦C to 48.2 ◦C and 24.0~47.1 ◦C. As shown in Figure 8b, the
air temperature varied from −8.7 to 16.7 ◦C, −8.5 to 16.9 ◦C, −9.0 to 13.7 ◦C and −8.7 to
14.7 ◦C at all measuring points in the open field, southern area, middle area and northern
area in the winter. In addition, the air temperature distribution curve fluctuated greatly
in the two seasons, and the difference between the daily peak value and the daily trough
value was obvious, but the regularity was also obvious. In the summer, the air temperature
in the three areas of the OAVS was as follows: middle area > northern area > southern area,
and the air temperature in the middle area was much higher than that in the other two
areas. The variation in air temperature in the three areas of the OAVS in the winter was
somewhat different from that in the summer. The overall air temperature in the winter
shows that the southern area is higher than the other two areas, and the other two areas are
roughly equal.
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Combined with the weather types during the two seasons, whether it was sunny or
cloudy or rainy, the curves of each measuring point had good consistency, showing a trend
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of first rising and then falling, and the corresponding time of peaks of each curve was
basically the same. At all measuring points, the temperature basically maintained a gradual
rising trend from 06:00 to 12:00, and reached the maximum temperature from 12:00 to 12:00,
and gradually dropped from 14:30 to 6:00 the next day.

In order to better display the air temperature differences in different areas of the
OAVS, this paper analyzed the distribution of four air temperature parameters. Figure 9
shows the changes in average daily air temperature, average daytime air temperature,
average nighttime air temperature and daily extreme air temperature of the OAVS in
the summer and winter. In the winter, the above four air temperature indices showed
that there was no significant difference among the measuring points inside of the OAVS,
and the daytime air temperature of the open field measuring points was slightly higher
than that of other measuring points. Taking the average daytime air temperature as an
example, the air temperatures in the open field, southern area, middle area and northern
area were 5.2 ◦C, 4.5 ◦C, 4.2 ◦C and 4.3 ◦C, respectively. In the summer, the above three
air temperature indices (excluding average nighttime air temperature) all showed the
temperature relationship of four measuring points: open field > middle area > northern
area > southern area. Taking the average daytime air temperature as an example, the
temperature in the above four areas was 38.5 ◦C, 35.5 ◦C, 37.6 ◦C and 36.5 ◦C, respectively.
In addition, there was no significant difference in the average nighttime air temperature
at each measuring point in the summer. The air temperature in the above four areas was
29.1 ◦C, 28.5 ◦C, 28.4 ◦C and 28.5 °C, respectively.
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3.1.3. Soil Temperature

Figure 10 shows the changes in soil temperature inside and outside of the OAVS in the
summer and winter. The statistical data show that the soil temperature curves inside and
outside of the OAVS had the same general trend, and the soil temperature in the open field
was significantly higher than that in the three measuring points inside the PV array. As
shown in Figure 10a, the soil temperature of all measuring points in the open field, southern
area, middle area and northern area in the summer ranged from 29.4 to 39.6 ◦C, 26.2 to
36.0 ◦C, 28.2 to 39.6 ◦C and 26.7 to 36.2 ◦C. As shown in Figure 10b, the soil temperature
varied from 3.6 to 9.6 ◦C, 1.9 to 6.8 ◦C, 1.4 to 6.6 ◦C and 1.6 to 6.5 ◦C at all measuring points
in the open field, southern area, middle area and northern area in the winter. In addition, the
soil temperature distribution curve fluctuated greatly in the two seasons, and the difference
between the daily peak value and the daily trough value in the four areas was obvious, but
the regularity was also obvious. The relationship of soil temperature in the three areas of
the OAVS in the summer was as follows: middle area > northern area > southern area, and
the soil temperature in the middle area was much greater than that in the other two areas.
In the winter, the soil temperature in the three areas of the OAVS was different from that in
the summer. The soil temperature in middle area was greater than that in the southern area
and the northern area, and the soil temperature in the southern and northern areas was
roughly equal.
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Combined with the weather types during the two seasons, whether it was sunny
or cloudy or rainy, the curves of each measuring point had good consistency, showing a
trend of first rising and then falling, and the corresponding time of peaks of each curve
was basically the same. All soil temperature measurement points basically maintained a
gradually rising trend during the day, reached the maximum value at sunset and gradually
decreased at night.

In order to better display the soil temperature differences in different areas of the
OAVS, this paper analyzed the distribution of four soil temperature parameters. Figure 11
shows the variation in average daily soil temperature, average daytime soil temperature,
average nighttime soil temperature and daily extreme soil temperature of the OAVS in
the summer and winter, and the variation in each index was obvious. In the summer, the
above four soil temperature indices all show the relationship between soil temperature in
four areas: open field > middle area > northern area > southern area. Taking the average
daytime soil temperature as an example, the average daytime soil temperature in the open
field, southern area, middle area and northern area was 34.1 ◦C, 28.8 ◦C, 31.8 ◦C and
30.4 ◦C, respectively. In the winter, the above four soil temperature indices showed that
there was no significant difference in soil temperature between the middle and northern
areas of the OAVS, and the relationship of soil temperature between the four areas was
as follows: open field > southern area > middle area ≈ northern area. Taking the average
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daytime soil temperature as an example, the soil temperature in the above four areas was
6.3 ◦C, 3.7 ◦C, 3.3 ◦C and 3.3 ◦C, respectively.
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3.2. Validation of ECOTECT Simulation

In order to verify the correctness and reliability of the calculated results of the estab-
lished OAVS simulation model, combined with the previous test results, the measured
values of each measurement point in the OAVS were compared with the simulated values.
As Autodesk Ecotect Analysis 2011 is a simulation software based on the mean value
of meteorological data for many years in the past, in order to avoid differences between
the measured solar radiation intensity (Em) and the average solar radiation intensity for
many years, the average daylighting rate (R) was adopted for verification in this paper.
The average daylighting rate (Rs-avg) and relative error (RE) obtained by simulation were
calculated according to Equations (3) and (4).

Rs-avg= Es-in/Es-out (3)

E = (R s-avg − Rm-avg

)
/Rm-avg (4)

where Es-in is the simulated value of the solar radiation intensity at the measuring point
inside of the OAVS [MJ⁄(m2·d)], Es-out is the simulated value of the solar radiation intensity
at the measuring point outside of the OAVS [MJ⁄(m2·d)] and Rs-avg is the simulated value
of the average daylighting rate (%).

Table 2 shows the comparison results between the measured values and simulated
values. The measured values of each measurement point are in good agreement with the
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simulated values, and the RE between them are all less than 10%. The simulation results
are relatively reliable, indicating that the established OAVS model meets the simulation
requirements and can be used for subsequent simulation studies.

Table 2. Comparison between simulated and measured R at each measuring point.

Season(s) Area(s) Measured
Value/%

Simulated
Value/%

Relative
Error/%

Summer
Southern area 20.5 22.1 7.8
Middle area 66.6 60.8 −8.7

Northern area 22.7 21.0 −7.5

Winter
Southern area 26.4 28.6 8.3
Middle area 24.7 25.5 3.2

Northern area 19.7 18.2 −2.5

3.3. Results of OAVS Light Environment Simulation Analysis
3.3.1. Average Daily Solar Radiation

Figure 12 shows the distribution of ™average daily solar radiation intensity in the
north–south direction right below the OAVS PV panel and between the two adjacent PV
panels. It can be seen from the figure that the average daily radiation intensity inside the
OAVS has an obvious gradient change. In the summer, the intensity in the north and south
areas was low and the intensity in middle area was high. In winter, the intensity in the
southern area was high, while the intensity in the other two areas was low.
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Figure 12. Cloud images of average daily solar intensity; (a) simulated cloud image in summer;
(b) simulated cloud image in winter.

Figure 12a shows that the average daily radiation intensity in the canopy and below
areas of the OAVS was between 1.88 and 5.58 MJ/(m2·d) in the summer. The average daily
radiation intensity in the southern, middle and northern areas was 1.94~2.72, 2.72~5.58 and
1.88~4.76 MJ/(m2·d), respectively. On the whole, the average daily radiation intensity of
the three internal areas was the highest in the middle area, and the average daily radiation
intensity of the northern area of the middle area was greater, but there was no significant
difference between the other two areas. Figure 12b shows that the average daily radiation
intensity in the canopy and below areas of the OAVS that were not affected by side light
was between 0.68 and 1.40 MJ/(m2·d), and the overall average daily radiation intensity
was small in the winter. The average daily radiation intensity in the southern, middle
and northern areas was 0.73~1.40, 0.80~1.78 and 0.68~0.81 MJ/m2·d), respectively. On
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the whole, the southern area had the highest daily average radiation intensity of the three
internal areas, while the other two areas had no significant difference.

3.3.2. Average Daily Sunshine Hours

Figure 13 shows the distribution of the average daily sunshine hours in the north–
south direction right below the PV panel of the OAVS and between the two adjacent PV
panels. On the whole, the variation rule is similar to the average daily solar radiation. It
can be seen from the figure that the average daily sunshine duration inside of the OAVS
had an obvious gradient change. On the whole, the OAVS in the summer showed a rule of
short duration in the northern and southern areas and long duration in the middle area. In
the winter, the OAVS showed a pattern of slightly longer duration in the southern area and
shorter duration in the other two areas.
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Figure 13a shows that the average daily sunshine duration in the OAVS was between
0.10 and 11.12 h in the areas below the crop canopy and unaffected by side light in the
summer. The average daily sunshine duration in the southern, middle and northern areas
was 0.78~2.57 h, 2.57~11.12 h and 0.10~9.27 h, respectively. In general, the average daily
sunshine hours of the three internal areas were the largest in middle area, and the average
daily sunshine hours in the northern part of the middle area were greater, while there was
no significant difference between the other two areas. Figure 13b shows that the average
daily sunshine hours of the crop canopy and the areas below the OAVS that were not
affected by side light ranged from 0.00 to 2.72 h, and the overall average daily sunshine
hours were small in the winter. Among them, the average daily sunshine hours in the
southern, middle and northern areas are 0.00~2.72, 0.00~2.64 and 0.00~0.55 h, respectively.
On the whole, the southern area had the largest average daily sunshine hours, while the
other two areas had no significant difference.

3.3.3. Average Daily Shading Rate

The variation in solar radiation intensity in the OAVS caused by the shading of
the PV panel obviously affects the microecological environment of the system, and the
shading rate (S) can be used to characterize the shading rate of the PV panel on the solar
radiation intensity of the crop canopy or ground. The internal shading rate of the OAVS
was calculated according to Equation (5), where the sum of the shading and lighting rate
is 1.

S = (E s-out−Es-in)/Es-out (5)
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Figure 14 shows the distribution of the average daily shading rate in the summer and
winter in the north–south direction directly below the OAVS PV panel and between the two
adjacent PV panels. It can be seen that there was an obvious gradient change in the internal
shading rate of the OAVS. In the summer, the shading rate in the northern and southern
areas was large, while the shading rate in the middle was small. In the winter, the shading
rate in the southern area was small, while the shading rate in the other two areas was large.
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Figure 14a shows that the shading rate of the canopy and the area below the crop in
the OAVS which was not affected by side light ranged from 3.3% to 100% in the summer.
Among them, the shading rate of the southern area was 77.6%~92.4%; the shading rate of
the middle area was between 3.1% and 77.6% and the shading in the northern area was
between 20.6% and 100%. On the whole, the southern area had the largest shading rate
among the three interior areas, while the other two areas had no significant difference.
Combined with agricultural production, the northern part of the middle area is more
suitable for the growth of non-shade tolerant crops. Figure 14b shows that the shading
rate of the OAVS which was not affected by side light ranged from 63.9% to 100%, and the
overall shading rate was large in the winter. Among them, the shading rate of are area
was 69.4%~100%; the shading rate in the middle area was 69.4%~100% and the shading in
the northern area was 93.0%~100%. On the whole, the southern area was the least shaded
among the three internal areas, while the other two areas had no significant difference.

4. Discussion
4.1. Temporal Variation in Light Environment in OAVS

For the OAVS, PV panels are an important factor affecting the light factor and have
a significant impact on the agrivoltaic environment. The intensity of solar radiation is
strongest at noon, weakest in the morning and evening and reaches its maximum around
12:00 noon. In addition, the solar radiation intensity is also affected by the weather and
clouds. The variation in the solar radiation intensity fluctuates obviously on cloudy days,
and the solar radiation intensity is significantly higher on sunny days than on cloudy days
due to the influence of cloud thickness.

In the temperate regions of the northern hemisphere, the sunlight is strongest in the
summer and weakest in the winter. The length of day and night is also different due to
the change in the sun’s height, and the solar radiation intensity changes periodically with
the seasonal changes. Overall, OAVS PV panels have a significant impact on the interior
light environment. In the summer, the lighting rate in the northern and southern areas
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is only about 20% of that in the open field, while in the middle area, it can reach about
65%. Winter is relatively small, only about 20% in three areas. The solar altitude angle in
eastern China is low in the winter, and the solar radiation intensity inside the system is
relatively weak, while the opposite is true in the summer. Our results support previous
findings that the AVS has a cooling function [41] but has a large impact on daylighting
capacity and thus agricultural production effectiveness (PV + kiwifruit [42], PV + coffee [43],
PV + potato [14]). In conclusion, the effectiveness of the OAVS in reducing solar radiation
intensity level depends on the time of day and solar angle under the condition of a certain
spatial structure and shape.

4.2. Spatial Variation in Light Environment in OAVS

According to experiment and simulation results, the spatial light environment of the
OAVS is similar to that of the forest light environment [44]. Because PV panels strongly
consume light availability and produce a strong vertical light environment gradient, this
vertical light environment gradient has an important impact on the light competition of
crops under PV panels, and thus affects the growth of crops. Taking the middle area as an
example, the higher the height, the higher the photosynthetic activity of crops, the better
the ability to use bright light; the photosynthetic activity of crops in the middle and bottom
of the canopy is low, but the ability to adapt to low light is strong. The vertical gradient
light environment in the southern and northern areas is opposite to that in the middle area.
The higher the height, the less suitable for crop growth.

On the horizontal gradient, due to the influence of the PV panel spatial structure,
solar altitude angle and other factors, as well as the difference in surface roughness and
terrain height caused by precipitation, the acceptance of solar radiation on the surface
varies greatly. Our research results show that the OAVS can reduce air temperature and
soil temperature to a certain extent, mainly because the PV panel shading reduces the
solar radiation received by the ground and the solar radiation temperature, so that the
air temperature and soil temperature are reduced to a certain extent. Our findings are
consistent with many previous studies on the effect of shading structure on temperature.
For example, Middel et al. found that different building shadows could reduce the daytime
solar radiation temperature by more than 17 ◦C [45].

4.3. Limitations and Future Research Directions of This Study

The study has several limitations. Firstly, the authors only studied the influence of
continuously laid PV panels on the internal photothermal environment of the OAVS under a
certain span and height. Expanding the test scope to OAVS with different photovoltaic panel
laying densities, photovoltaic array spans and heights will produce different photothermal
environments, which will have a different guiding significance for agricultural production,
and also contribute to the standardization of the photovoltaic agricultural industry. At
present, there are few OAVS with different spatial structure forms, which will be realized
by transforming existing OAVS in the later stage.

This paper only analyzed the photothermal environment and did not establish the
response mechanism of agricultural production to the environment based on the environ-
ment. In the follow-up study, environmental analysis and agricultural production can be
combined to explore further.

The meteorological data imported in Autodesk Ecotect Analysis 2011 are the average
data of nearly 30 years, so there are some differences between the simulated data and the
data of the year of the environmental test. Another limitation is that the software takes a
long time to compute.

5. Conclusions

The Rm-avg in the middle area was 66.6% in the summer, while the Rm-avg in the other
two areas was about 20%. In the winter, the light environment in the southern area was
slightly better, and the Rm-avg can reach 26.4%, while the Rm-avg in the three areas was



Agronomy 2023, 13, 1820 17 of 19

maintained at about 20%. The variation in the thermal environment in three areas was
consistent with that in the light environment. The thermal environment of the OAVS middle
area in the summer was better than that of the other two areas. The thermal environment
of the southern area was better than that of the other two areas in the winter.

The OAVS optical environment model in eastern China was established, and the
Simulated values were basically consistent with the experimental values at each test point,
with the relative error within 10%. The constructed OAVS optical environment model can
reflect the distribution of the optical environment factors in the OAVS. The simulation
results show that the effectiveness of the OAVS in reducing the solar radiation intensity
depends on the time of day and the solar angle. On the spatial scale, because the PV panels
strongly consume the availability of light, the system produces a strong horizontal and
vertical gradient of light environment.

The experimental method and simulation model can be applied to other regions of
different latitudes and longitudes and specific climate conditions, so as to use the measured
and simulated data to guide existing agricultural production. At the same time, using
the simulation model, the optical performance of the photovoltaic agricultural system
with a new structure can be obtained, so as to further guide the architectural design and
agricultural production of the photovoltaic agricultural system.

Considering the effect of the OAVS agricultural production, the system’s reasonable
daylighting capacity is of great significance in engineering design. Because the power
generation benefit is far greater than the agricultural production benefit, problems such as
the optimal laying density of PV panels have not been solved. Therefore, this study can be
used as a reference for further research on optimal PV panels laying density.
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