Genome-Wide Identification, Expansion, Evolution, and Expression Analysis Reveals ABCB Genes Important for Secondary Cell Wall Development in Moso Bamboo (Phyllostachys edulis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Characterization of ABCB Gene Family in Moso Bamboo
2.2. Phylogenetic Analysis and Classification of PhABCBs
2.3. Synteny Analysis and the Identification of Duplication Models of the ABCB Genes
2.4. Transcriptomics Data Acquisition and Construction of WGCNA
2.5. qRT-PCR Analysis of the Selected Genes
3. Results
3.1. Identification and Characterization of the ABCB Gene Family in Moso Bamboo
3.2. Phylogenetic Analysis and Classification of PhABCBs
3.3. Synteny Analysis of the ABCB Genes
3.4. Expansion Analysis of the ABCB Gene Family through Different Duplication Models
3.5. PhABCB Candidates’ Responses to Endogenous IAA in Moso Bamboo Shoot
3.6. Expression Profiles of PhABCBs during the Internode Developments of Moso Bamboo
3.7. WGCNA Analysis of the ABCB Genes in Moso Bamboo
3.8. PhABCB Expression Profiles in Different Parts of Moso Bamboo Internode
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Geisler, M.; Murphy, A.S. The ABC of auxin transport: The role of p-glycoproteins in plant development. FEBS Lett. 2006, 580, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, M.; Schuetz, M.; Lin, B.S.; Chanis, C.; Hamberger, B.; Western, T.; Ehlting, J.; Samuels, A. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J. Exp. Bot. 2011, 62, 2063–2077. [Google Scholar] [CrossRef]
- Verrier, P.J.; Bird, D.; Burla, B.; Dassa, E.; Forestier, C.; Geisler, M.; Klein, M.; Kolukisaoglu, Ü.; Lee, Y.; Martinoia, E. Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 2008, 13, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Theodoulou, F.L. Plant ABC transporters. Biochim. Biophys. Acta (BBA)-Biomembr. 2000, 1465, 79–103. [Google Scholar] [CrossRef]
- Geisler, M.; Blakeslee, J.J.; Bouchard, R.; Lee, O.R.; Vincenzetti, V.; Bandyopadhyay, A.; Titapiwatanakun, B.; Peer, W.A.; Bailly, A.; Richards, E.L. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005, 44, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Lee, S.H.; Cho, H.T. P-Glycoprotein4 displays auxin efflux transporter–like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 2007, 19, 3930–3943. [Google Scholar] [CrossRef]
- Zhang, Y.; Nasser, V.; Pisanty, O.; Omary, M.; Wulff, N.; Di Donato, M.; Tal, I.; Hauser, F.; Hao, P.; Roth, O. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat. Commun. 2018, 9, 4204. [Google Scholar] [CrossRef]
- Jenness, M.K.; Carraro, N.; Pritchard, C.A.; Murphy, A.S. The Arabidopsis ATP-BINDING CASSETTE transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Front. Plant Sci. 2019, 10, 806. [Google Scholar] [CrossRef]
- Knöller, A.S.; Blakeslee, J.J.; Richards, E.L.; Peer, W.A.; Murphy, A.S. Brachytic2/Zm ABCB1 functions in IAA export from intercalary meristems. J. Exp. Bot. 2010, 61, 3689–3696. [Google Scholar] [CrossRef]
- Multani, D.S.; Briggs, S.P.; Chamberlin, M.A.; Blakeslee, J.J.; Murphy, A.S.; Johal, G.S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef]
- Wei, Q.; Jiao, C.; Guo, L.; Ding, Y.; Cao, J.; Feng, J.; Dong, X.; Mao, L.; Sun, H.; Yu, F. Exploring key cellular processes and candidate genes regulating the primary thickening growth of M oso underground shoots. New Phytol. 2017, 214, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Sohel, M.S.I.; Alamgir, M.; Akhter, S.; Rahman, M. Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy 2015, 49, 142–151. [Google Scholar] [CrossRef]
- Chen, M.; Guo, L.; Ramakrishnan, M.; Fei, Z.; Vinod, K.K.; Ding, Y.; Jiao, C.; Gao, Z.; Zha, R.; Wang, C. Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell 2022, 34, 3577–3610. [Google Scholar] [CrossRef] [PubMed]
- Benjamins, R.; Scheres, B. Auxin: The looping star in plant development. Annu. Rev. Plant Biol. 2008, 59, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K.; Hull, A.K.; Celenza, J.; Yamada, M.; Estelle, M.; Normanly, J.; Sandberg, G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 2005, 17, 1090–1104. [Google Scholar] [CrossRef]
- Wang, W.; Gu, L.; Ye, S.; Zhang, H.; Cai, C.; Xiang, M.; Gao, Y.; Wang, Q.; Lin, C.; Zhu, Q. Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). Bmc Genom. 2017, 18, 870. [Google Scholar] [CrossRef]
- Gamuyao, R.; Nagai, K.; Ayano, M.; Mori, Y.; Minami, A.; Kojima, M.; Suzuki, T.; Sakakibara, H.; Higashiyama, T.; Ashikari, M. Hormone distribution and transcriptome profiles in bamboo shoots provide insights on bamboo stem emergence and growth. Plant Cell Physiol. 2017, 58, 702–716. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019, 20, 1–23. [Google Scholar] [CrossRef]
- Tang, H.; Bowers, J.E.; Wang, X.; Ming, R.; Alam, M.; Paterson, A.H. Synteny and collinearity in plant genomes. Science 2008, 320, 486–488. [Google Scholar]
- Que, F.; Liu, Q.; Zha, R.; Xiong, A.; Wei, Q. Genome-wide identification, expansion, and evolution analysis of homeobox gene family reveals TALE genes important for secondary cell wall biosynthesis in Moso bamboo (Phyllostachys edulis). Int. J. Mol. Sci. 2022, 23, 4112. [Google Scholar] [CrossRef]
- Qiao, X.; Yin, H.; Li, L.; Wang, R.; Wu, J.; Wu, J.; Zhang, S. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in Pear (Pyrus bretschneideri). Front. Plant Sci. 2018, 9, 161. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fernández, R.; Davies, T.E.; Coleman, J.O.; Rea, P.A. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 2001, 276, 30231–30244. [Google Scholar] [CrossRef] [PubMed]
- Rea, P.A.; Sanchez-Fernandez, R.; Chen, S.; Peng, M.; Klein, M.; Geisler, M.; Martinoia, E. The plant ABC transporter superfamily: The functions of a few and identities of many. In ABC Proteins—From Bacteria to Man; Academic Press: London, UK, 2003; pp. 335–355. [Google Scholar]
- Jasinski, M.; Ducos, E.; Martinoia, E.; Boutry, M. The ATP-binding cassette transporters: Structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol. 2003, 131, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Que, F.; Wang, G.L.; Li, T.; Wang, Y.H.; Xu, Z.S.; Xiong, A.S. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Funct. Integr. Genom. 2018, 18, 685–700. [Google Scholar] [CrossRef]
- Soltis, P.S.; Marchant, D.B.; Van de Peer, Y.; Soltis, D.E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015, 35, 119–125. [Google Scholar] [CrossRef]
- Rensing, S.A.; Lang, D.; Zimmer, A.D.; Terry, A.; Salamov, A.; Shapiro, H.; Nishiyama, T.; Perroud, P.F.; Lindquist, E.A.; Kamisugi, Y. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008, 319, 64–69. [Google Scholar] [CrossRef]
- Guo, Z.H.; Ma, P.F.; Yang, G.Q.; Hu, J.Y.; Liu, Y.L.; Xia, E.H.; Zhong, M.C.; Zhao, L.; Sun, G.L.; Xu, Y.X. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 2019, 12, 1353–1365. [Google Scholar] [CrossRef]
- Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 2013, 45, 456–461. [Google Scholar] [CrossRef]
- Paterson, A.H.; Freeling, M.; Tang, H.; Wang, X. Insights from the comparison of plant genome sequences. Annu. Rev. Plant Biol. 2010, 61, 349–372. [Google Scholar] [CrossRef]
- Maere, S.; De Bodt, S.; Raes, J.; Casneuf, T.; Van, M.M.; Kuiper, M.; Van de Peer., Y. Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 5454–5459. [Google Scholar] [CrossRef]
- Freeling, M. Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 2009, 60, 433–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Tang, H.; Tan, X.; Ficklin, S.P.; Feltus, F.A.; Paterson, A.H. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS ONE 2011, 6, e28150. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Demura, T.; Fukuda, H. Transcriptional regulation in wood formation. Trends Plant Sci. 2007, 12, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lipton, A.S.; Wittmer, Y.; Murray, D.T.; Mortimer, J.C. A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls. Nat. Commun. 2020, 11, 6081. [Google Scholar] [CrossRef]
Gene Name | Locus ID | Exon Number | ORF (bp) | Length (aa) | pI | Mol wt (Da) | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|
PhABCB1 | PH02Gene00141.t1 | 11 | 4236 | 1411 | 5.99 | 155,634.53 | Cell membrane; Cytoplasm |
PhABCB2 | PH02Gene02211.t1 | 10 | 3645 | 1214 | 8.87 | 132,085.88 | Cell membrane |
PhABCB3 | PH02Gene03263.t1 | 7 | 3519 | 1172 | 8.75 | 127,481.14 | Cell membrane |
PhABCB4 | PH02Gene04764.t1 | 6 | 3744 | 1247 | 8.17 | 134,940.80 | Cell membrane |
PhABCB5 | PH02Gene06566.t1 | 12 | 3759 | 1252 | 8.73 | 136,018.67 | Cell membrane |
PhABCB6 | PH02Gene06567.t1 | 12 | 3756 | 1251 | 8.73 | 135,882.48 | Cell membrane |
PhABCB7 | PH02Gene06568.t4 | 12 | 3780 | 1259 | 8.37 | 136,947.38 | Cell membrane |
PhABCB8 | PH02Gene09415.t1 | 18 | 2034 | 677 | 9.25 | 74,684.40 | Cell membrane |
PhABCB9 | PH02Gene12567.t1 | 10 | 3693 | 1230 | 6.12 | 134,638.99 | Cell membrane |
PhABCB10 | PH02Gene12568.t1 | 12 | 4461 | 1486 | 7.35 | 164,030.94 | Cell membrane |
PhABCB11 | PH02Gene15335.t1 | 9 | 3684 | 1227 | 8.82 | 134,204.70 | Cell membrane; Cytoplasm |
PhABCB12 | PH02Gene16857.t3 | 10 | 1917 | 638 | 9.50 | 68,918.32 | Cell membrane |
PhABCB13 | PH02Gene18579.t1 | 11 | 4236 | 1411 | 5.97 | 155,590.64 | Cell membrane; Cytoplasm |
PhABCB14 | PH02Gene18770.t1 | 9 | 3681 | 1226 | 8.73 | 133,993.53 | Cell membrane; Cytoplasm |
PhABCB15 | PH02Gene19306.t1 | 20 | 2211 | 736 | 9.07 | 80,582.50 | Cell membrane |
PhABCB16 | PH02Gene21697.t3 | 18 | 1986 | 661 | 7.21 | 71,199.73 | Cell membrane |
PhABCB17 | PH02Gene24334.t1 | 12 | 3699 | 1232 | 6.47 | 133,393.92 | Cell membrane |
PhABCB18 | PH02Gene24658.t1 | 10 | 2961 | 986 | 8.76 | 105,842.05 | Cell membrane |
PhABCB19 | PH02Gene28443.t1 | 11 | 4197 | 1398 | 6.39 | 154,671.91 | Cell membrane; Cytoplasm |
PhABCB20 | PH02Gene30805.t1 | 17 | 1944 | 647 | 9.08 | 69,851.56 | Cell membrane |
PhABCB21 | PH02Gene32020.t1 | 16 | 2094 | 697 | 9.02 | 75,009.41 | Cell membrane |
PhABCB22 | PH02Gene32243.t1 | 13 | 3789 | 1262 | 6.15 | 136,558.88 | Cell membrane |
PhABCB23 | PH02Gene33736.t1 | 9 | 3810 | 1269 | 8.32 | 137,703.36 | Cell membrane |
PhABCB24 | PH02Gene34468.t1 | 11 | 4194 | 1397 | 6.24 | 154,407.53 | Cell membrane |
PhABCB25 | PH02Gene34686.t1 | 12 | 3669 | 1222 | 8.04 | 132,289.92 | Cell membrane |
PhABCB26 | PH02Gene35123.t1 | 12 | 3699 | 1232 | 8.36 | 133,356.57 | Cell membrane; Cytoplasm |
PhABCB27 | PH02Gene35826.t1 | 11 | 3852 | 1283 | 8.20 | 138,102.46 | Cell membrane |
PhABCB28 | PH02Gene36577.t1 | 9 | 3798 | 1265 | 8.16 | 137,402.93 | Cell membrane |
PhABCB29 | PH02Gene37588.t2 | 12 | 3822 | 1273 | 8.45 | 137,001.49 | Cell membrane |
PhABCB30 | PH02Gene37590.t1 | 12 | 3921 | 1306 | 8.80 | 140,773.87 | Cell membrane |
PhABCB31 | PH02Gene37936.t1 | 5 | 4080 | 1359 | 7.90 | 147,207.40 | Cell membrane |
PhABCB32 | PH02Gene38406.t1 | 12 | 3798 | 1265 | 8.26 | 137,425.05 | Cell membrane |
PhABCB33 | PH02Gene40893.t1 | 10 | 4512 | 1503 | 9.48 | 162,318.06 | Cell membrane; Cytoplasm |
PhABCB34 | PH02Gene43132.t1 | 6 | 3996 | 1331 | 8.09 | 144,115.40 | Cell membrane |
PhABCB35 | PH02Gene43364.t1 | 13 | 3810 | 1269 | 8.24 | 137,789.54 | Cell membrane |
PhABCB36 | PH02Gene48283.t2 | 11 | 3879 | 1292 | 6.27 | 139,920.60 | Cell membrane |
PhABCB37 | PH02Gene48611.t1 | 9 | 3798 | 1265 | 9.24 | 138,708.54 | Cell membrane |
Cluster Name | Moso | O. sativa | Z. mays | Arabidopsis |
---|---|---|---|---|
Subgroup-I | 6 | 5 | 5 | 7 |
Subgroup-II | 2 | 2 | 2 | 0 |
Subgroup-III | 10 | 6 | 10 | 8 |
Subgroup-IV | 4 | 3 | 4 | 5 |
Subgroup-V | 15 | 11 | 10 | 8 |
Total | 37 | 27 | 31 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Que, F.; Zhu, Y.; Liu, Q.; Wei, Q.; Ramakrishnan, M. Genome-Wide Identification, Expansion, Evolution, and Expression Analysis Reveals ABCB Genes Important for Secondary Cell Wall Development in Moso Bamboo (Phyllostachys edulis). Agronomy 2023, 13, 1828. https://doi.org/10.3390/agronomy13071828
Que F, Zhu Y, Liu Q, Wei Q, Ramakrishnan M. Genome-Wide Identification, Expansion, Evolution, and Expression Analysis Reveals ABCB Genes Important for Secondary Cell Wall Development in Moso Bamboo (Phyllostachys edulis). Agronomy. 2023; 13(7):1828. https://doi.org/10.3390/agronomy13071828
Chicago/Turabian StyleQue, Feng, Yaqi Zhu, Qingnan Liu, Qiang Wei, and Muthusamy Ramakrishnan. 2023. "Genome-Wide Identification, Expansion, Evolution, and Expression Analysis Reveals ABCB Genes Important for Secondary Cell Wall Development in Moso Bamboo (Phyllostachys edulis)" Agronomy 13, no. 7: 1828. https://doi.org/10.3390/agronomy13071828
APA StyleQue, F., Zhu, Y., Liu, Q., Wei, Q., & Ramakrishnan, M. (2023). Genome-Wide Identification, Expansion, Evolution, and Expression Analysis Reveals ABCB Genes Important for Secondary Cell Wall Development in Moso Bamboo (Phyllostachys edulis). Agronomy, 13(7), 1828. https://doi.org/10.3390/agronomy13071828