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Abstract: The olecranon honey peach is China’s national geographic identification product because
of its crisp texture and high sweetness. In recent years, new field management practices have
been developed. In this study, fruits (‘SJH’) grown through new planting methods, i.e., black bags
combined with bio-organic fermentation fertilizer, were compared with those (‘SBY’) grown by
conventional planting methods, i.e., using a chemical fertilizer without bagging, to determine their
effects on improving fruit quality. At maturity, the ‘SJH’ was significantly higher than ‘SBY’ in
terms of weight, hardness, and sugar content by 14.43%, 19.55% and 9.66%, respectively. RNA
sequencing (RNA-seq) technology analysis was performed on ‘SJH’ and ‘SBY’ to identify the main
regulatory pathways involved in fruit development, especially focusing on cell-wall biogenesis and
sugar metabolism. We identified a total of 1660 differentially expressed genes (DEGs) in ‘SJH’ and
5673 genes in ‘SBY’ throughout the development. A clustering analysis of DEGs revealed that the
expression patterns of key genes involved in cell-wall biogenesis and sugar metabolism pathways
in ‘SJH’ differed from those in ‘SBY’, such as cellulose synthase-like protein D (CS-LPD), sucrose-
phosphate synthase (SPS) and sucrose synthase (SUS). The new cultivation technology promoted
soluble sugar accumulation and cell-wall synthesis through molecular regulation, which improved
the sweetness and sensory quality of the fruit. These findings contribute towards to the development
of novel ideas for the better cultivation of peaches and provide a deeper investigation into the
molecular mechanism of their development.

Keywords: olecranon honey peach; RNA-seq; regulatory pathways; expression patterns; fruit
development

1. Introduction

The olecranon honey peach is famous for its eagle’s beak shape and is widely cultivated
in the southern part of China, particularly in Lianping, Guangdong Province. It is a very
popular peach variety because of its excellent economic value and unique taste; it is
crisp and sweet [1,2]. However, the peaches have encountered some challenges during
cultivation in recent years, such as the overuse of chemical fertilizers and pest infestation.
The overuse of chemical fertilizers hardens the soil and damages soil microbial communities;
meanwhile, insect pests reduce the quality of fruits, thus cutting down yields and thereby
leading to severe economic losses [3,4]. To address these problems, ‘SJH’, a high-quality
peach fruit, was cultivated with black bags as a covering and the application of a bio-organic
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fermentation fertilizer. ‘SJH’ differs from fruits grown with chemical fertilizers without
bagging (‘SBY’) in size, color, sugar content, flesh texture and nutrient composition, which
are important factors for evaluating fruit quality and are the focus of studies to identify the
associated regulatory transcription factors. Many studies have shown that the application
of organic fertilizers and bagging can improve the quality of the fruit. The bagging of
guava fruit significantly improved fruit weight and texture, and effectively controlled the
occurrence of pests [5]. Wang et al. found that the application of organic fertilizer when
growing apples improved soil physicochemical properties and the diversity of microbial
communities, which facilitated the growth of apples and thus enhanced the commercial
properties of the fruit [6]. In addition, the application of bio-organic fertilizer to pear
trees was shown to enhance the expression levels of sorbitol dehydrogenase (SDH) and
sugar transporter genes while decreasing the expression levels of organic acid metabolism
genes, thereby promoting the accumulation of sucrose and the degradation of citric acid,
improving the sugar–acid ratio, and enhancing the quality of pear fruits [7]. Organic
fertilization and bagging techniques are widely used in fruit cultivation; however, their
application in peach cultivation is rarely reported and thus there is a lack of clarity with
regard to the regulation of peach fruit metabolism, particularly the factors involving cell-
wall biogenesis and sugar metabolism. Differences in their regulatory pathways and gene
expression patterns remain poorly understood.

Improvements in the way peaches are grown focus on magnifying the overall quality
of the fruit, particularly in terms of sugar content and texture [8]. Changes in texture that
occur in peach fruit during growth and development are believed to be closely related
to cell-wall biosynthesis [9]. The ripening-related cell-wall modifications include enzy-
matic cell-wall degradation and cell-wall secondary lignification [10]. De-esterification and
depolymerization of cell walls are triggered by a series of cell-wall modifying enzymes,
such as pectin methylesterase (PME, EC 3.1.1.11), polygalacturonase (PG, EC 3.2.1.15),
β-galactosidase (β-gal, EC 3.2.1.23), endo-1,4-β-d-glucanase (EGase, EC 3.2.1.4) and xy-
loglucan endotransglycosylase (XET, EC 2.4.1.207). Peach cell-wall polysaccharides are
primarily composed of homogalacturonan (HG), rhamnogalacturonan I (RGI) rich pectin
and xyloglucan among the hemicellulose [11]. Specific HG biosynthesis and pectin methyl-
and/or acetyl-esterase remodeling and the genetic regulation of biosynthesis and/or re-
modeling of xyloglucan during peach developmentare linked with shape and texture [12].
Lignification in fruit occurs in response to different conditions and results in increased flesh
firmness, toughness of texture and subsequent fruit deterioration [13]. Thus, moderate
application of bio-organic fermentation fertilizer can enhance the texture and sugar content
of fruits [3,6]. Bio-organic fermentation fertilizer is a rich source of calcium, which plays an
important role in cell-wall pectin cross-linking and inhibits pectin degradation and cell-wall
relaxation by downregulating the expression levels of PG1, PG2, CER9 and EPX6, thereby
maintaining positive fruit texture [14].

Sugar is necessary for energy supply in fruit development, it also generates turgor
for fruit cell enlargement and accumulates in the late stages of fruit development thus
contributing to fruit taste [15]. Sucrose is the main sugar accumulated in mature peach
fruits, and its metabolism and accumulation determine the sugar content in fruit [16].
Sucrose enters the cell as sucrose or as hexoses after hydrolysis by cell-wall invertase. When
sucrose is transported into the vacuole, it can also be converted to fructose and glucose.
As the fruit develops, glucose and fructose accumulate, which is closely related to α-Gal
activity [17]. A transcriptome analysis of sugar metabolism in watermelon showed that
76 sugar transporter protein genes and 62 sugar synthases were related to sugar accu-
mulation [18,19]. Vimolmangkang et al. investigated the mechanisms regulating sucrose
accumulation in peach fruit and found that there were two sucrose-cleaving enzyme genes
(SUS4 and NINV8), one sucrose resynthesis gene (SPS3) and three sugar transporter genes
(SUT2, SUT4 and TMT2) involved in sucrose metabolism and transport [16]. Moreover,
sugar content in peach fruit is increased by the transient overexpression of the vacuolar
invertase inhibitor gene PpINH3 associated with sugar accumulation, whereas PpINHa
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causes the opposite trend [20]. These results indicate that differences in the expression
of genes and pathways related to sugar metabolism may lead to differences in the sugar
content of fruit.

RNA sequencing (RNA-Seq) is a newly developed technology that enables transcript
profiling by analyzing and assembling short-read sequence data [21,22]. In transcript
studies, it is possible to analyze gene expression, composition and function in particular
species, thereby leading to a comprehensive understanding of the molecular mechanisms
of particular physiological traits [23]. Therefore, RNA-Seq technology can provide new
insights and pathways to explore gene expression patterns and gene functions in peach
fruit. In this study, RNA-seq technology was applied to identify related differentially
expressed genes during ‘SJH’ and ‘SBY’ development, and the results were then analyzed
for functional enrichment and gene expression patterns. These results provide the basis for
in-depth research on the key regulators and pathways of the physicochemical properties of
olecranon honey peach under different cultivation conditions and are conducive to changes
and improvements in cultivation techniques.

2. Materials and Methods
2.1. Plant Materials

Olecranon honey peach, ‘SJH’ and ‘SBY’, was obtained from orchards at Sanjiaohu
Planting Base, Lianping, China (114◦68′ E; 24◦50′ N; 520 m above sea level). Fifty peach trees
were selected for cultivation experiments for each of these two fruit types, and the fruits
manually and grown under normal field conditions. ‘SJH’ was covered with black bags and
applied once each half month self-developed bioorganic fermentation fertilizer made from
a mixture of fish, peanut bran and soybean residue fermented by effective microorganisms.
‘SBY’ was fertilized once with chemical fertilizers (N-P2O5-K2O ≥ 45%) every half month
without bagging. During the growth stages, fruits were collected and divided into three
groups—15, 17 and 19 weeks after pollination (WAP), with 40 fruits collected in each group
in ‘SJH’ and ‘SBY’, respectively, for subsequent analysis and determination. Groups 15, 17
and 19 WAP were collected at 15 weeks (immature stage), 17 weeks (near mature stage)
and 19 weeks (full mature stage) post-pollination, respectively (Figure 1). Three biological
replicates were performed for each sampling stage, with each replicate collecting pulp from
six fruits, freezing immediately in liquid nitrogen, and storing at −80 ◦C until analysis.

2.2. Measurement of Physicochemical Characteristics

The fruit size at each stage was measured and weighed with vernier calipers and an
electronic scale, respectively. The diameter was measured by taking the average of the
value at the widest diameter of the peach suture and the value at the widest diameter of
the smooth surface. Fruit hardness was measured according to the method of Qiu et al.
(2022) [3] with minor modifications. Briefly, using a TA.GEL texture meter, a TA/36R
probe was selected, parameters were set to 98% of deformation, the trigger force was set
to 5 N, and pre-test, test and post-test speeds were set to 2 mm/s, 1 mm/s and 2 mm/s,
respectively. Subsequently, three fixed points were taken on the olecranon honey peach,
cubic slices with 1 cm long sides were cut, and the average value of the three points was
used as the texture data of the peach. The remaining pulp was used for the subsequent
determination of the brix value. After grinding and filtering 10 g of pulp, 2–3 drops of
juice were aspirated and placed on the prism surface of an ATAGO PAL-1 refractometer to
determine the brix value [24]. The measurement was repeated for five fruits each time.

2.3. RNA Extraction, Library Construction and Sequencing

Total RNA was collected from the 2 g of peach pulp at each period using Trizol reagent
(Thermofisher, 15596018, Carlsbad, CA, USA) based on the manufacturer’s protocol. The
quality and purity of the extracted RNA were assessed using the RNA 6000 Nano LabChip
Kit (Agilent, CA, USA, 5067-1511) and Agilent 2100 Bioanalyzer, and RNA samples with
RIN number >7.0 were selected for sequencing library construction. Dynabeads Oligo
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(dT), Magnesium RNA Fragmentation Module and SuperScript™ II Reverse Transcriptase
were used to purify, fragment and reverse-transcribe mRNA into the first-strand cDNA,
respectively. Then, the second-strand cDNA was synthesized with Escherichia coli DNA
polymerase I, RNase H and dUTP solution. Eventually, 18 cDNA libraries were constructed,
including three replicate experiments, which were executed 2× 150 bp paired-end sequenc-
ing using Illumina Novaseq™ 6000 platform [25,26].
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2.4. Differentially Expressed Genes (DEGs) Analysis

Differential gene expression analysis was performed on sequencing data between
two different groups using DESeq2 software. The genes with absolute values of log2 fold
change ≥ 1 and Q-values ≤ 0.05 were defined as DEGs.

2.5. Clustering Analysis and DEGs Annotation

We used Short Time-series Expression Miner (STEM) software for trend analysis to
determine the pattern of changes in DEGs during peach development. Transcriptional
patterns based on FPKM levels were performed using the STEM clustering method. DEGs
in profiles with p-values < 0.05 were considered significantly expressed. These genes were
enriched by KEGG pathways and GO terms for annotation.
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2.6. Quantificational Real-Time Polymerase Chain Reaction (qRT-PCR) Validation Analysis

The extracted total RNA was used for cDNA synthesis with MonScript™ RTIII All-in-
One Mix with dsDNase (Monad). Actin gene was used as the internal control according to
You et al. (2021) [27]. The primer sequences (Table S3) for the selected genes were designed
with the Primer Express 3.0 software (Applied Biosystems, Foster City, CA, USA) [2]. Then,
the qPCR assay was performed using QuantiNova SYBR Green PCR Kit (QIAGEN). The
PCR program was as follows: cycled at 95 ◦C for 120 s, 95 ◦C for 5 s for 40 cycles and 60 ◦C
for 30 s for 40 cycles; a melting curve analysis was performed at 65–95 ◦C. Each assay was
performed in triplicates. The relative expression levels of different genes were determined
by the 2−∆∆CT method [28].

3. Results
3.1. Variations in Characterization and Physical Properties during the Development of Peach

We observed and recorded the characterization of each developmental stage (Figure 1)
and measured the weight, size, hardness, and total soluble solids (TSS) content (Figure 2)
to compare the properties of the two types of peach fruit. The peel of ‘SJH’ was golden
yellow throughout the developmental stage, meanwhile, the peel of ‘SBY’ was dark green
and some areas were red in later stages of development.
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during the fruit growth stage. (a) Measurement of weight; (b) Measurement of size (length, diameter);
(c) Measurement of hardness and total soluble solids (TSS). Different letters (a, b, c, d, e and f) indicate
statistically significant differences at the level of p < 0.05.

During the development, the weight, size, and sugar content of both fruits gradually
increased, whereas the hardness gradually decreased. Notably, fruit weight, length, diame-
ter, hardness and TSS of ‘SJH’ were higher than those of ‘SBY’, and were 14.43%, 3.40%,
2.71%, 19.55% and 9.66% higher at maturity (19 WAP), respectively. In addition, a signif-
icant difference (p < 0.05) was observed in fruit weight, hardness and TSS between ‘SJH’
and ‘SBY’ at fruit maturity, with ‘SJH’ reaching the highest TSS value of 14.76 (Figure 2).

3.2. Analysis of RNA-Seq Results

Herein, RNA-seq analysis was performed with a reference genome of peach to de-
termine the gene expression results. A total of 119.72 GB of clean data was analyzed
on 18 cDNA libraries after filtering out those containing more than 5% unknown nu-
cleotide counts and low-quality reads. On average, each library yielded approximately
6.65 GB of clean data (Q30 > 97.78%). Moreover, each library generated from 42,541,336 to
48,229,486 reads, of which 89.79–93.46% were uniquely mapped to the reference genome
(Table S1). Ultimately, we detected a total of 22,429 expressed genes in the ‘SJH’ and
‘SBY’ samples.
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We used log2 fold change ≥ 1 and Q-values ≤ 0.05 as threshold criteria for screening
differential genes in peach fruit. When comparing ‘SJH’ to ‘SBY’ at the same developmental
stage, 1765 (743 and 1022 upregulated and downregulated genes, respectively), 4322
(1837 and 2485 upregulated and downregulated genes, respectively), and 2134 (504 and
1630 upregulated and downregulated genes, respectively) DEGs were detected at 15, 17
and 19 WAP, (Figure 3a and Table S2). The largest number of DEGs between ‘SJH’ and ‘SBY’
was observed at 17 WAP.
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(a) comparison of DEGs between ‘SJH’ and ‘SBY’ at the same developmental period; and (b) the
number of DEGs per developmental period is shown for both peach fruits.

In order to determine the variation between differential genes during peach fruit
development, we compared samples from two different cultivation methods and found
that the number of DEGs in ‘SJH’ were markedly lower than that in ‘SBY’. Fewer DEGs
were identified in ‘SJH’ than ‘SBY’ (819 vs. 2261) during 15–17 WAP and (1094 vs. 4817)
during 17–19 WAP (Figure 3b and Table S2).

3.3. Functional Analysis of Differentially Expressed Genes

Based on gene ontology (GO) terms and KEGG-functional annotations, DEGs identi-
fied in ‘SJH’ and ‘SBY’ were enriched. For ‘SJH’ enrichment in GO terms, the top two groups
within the GO terms were “Response to auxin” (GO:0009733) and “Cell wall organization”
(GO:0071555) at 15–17 WAP. In addition, during the 17–19 WAP, “Cell wall” (GO:0005618),
“Cell wall organization” (GO:0071555), “Xyloglucan metabolic process” (GO:0010411) and
“Cell wall biosynthesis” (GO:0042546) were significantly enriched and the top two groups
within a molecular function (MF) were “Pigment binding” (GO:0031409) and “Chlorophyll
binding” (GO:0016168) (Figure 4a,b), respectively. In contrast, GO terms involved cell-wall
changes in ‘SBY’ were also significantly enriched, including “Cell wall” (GO:0005618)
and “Cell wall organization” (GO:0071555) between 15 and 17 WAP. However, between
17 and 19 WAP, the most significantly enriched biological process (BP) categories were
“Flavonoid biosynthetic process” (GO:0009813), “Flavonoid glucuronidation” (GO:0052696)
and “Cell wall organization” (GO:0071555) (Figure 4c,d). Notably, we found that GO
terms involving cell-wall changes such as “Cell wall” and “Cell wall biogenesis” were
significantly enriched at each stage of peach development, and that the later stages of ‘SJH’
and ‘SBY’ development were closely related to chlorophyll binding and flavonoid biosyn-
thesis, respectively (Figure 4). These results suggest that changes in biological functions
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during peach fruit development appear to be highly correlated with cell-wall alterations
and pigment accumulation.
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15 WAP; and (d) ‘SBY’-19 WAP and ‘SBY’-17 WAP. The x-axis represents standardized values, while
the y-axis indicates Q-values and significance. The color of each circle indicates the GO classification,
while the size indicates the number of genes mapped to the GO terms.
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Based on KEGG analysis, at the early (15–17 WAP) and late development (17–19 WAP)
stages, we observed that DEGs in ‘SBY’ were annotated into 120 and 127 pathways, and
the highest enrichment was “DNA replication” and “Photosynthesis—antenna proteins”,
respectively (Figure 5c,d). For ‘SJH’, a total of 14 pathways including “Plant hormone
signal transduction”, “Galactose metabolism” and “Amino sugar and nucleotide sugar
metabolism” were significantly enriched between 15 and 17 WAP. Meanwhile, nine path-
ways were notably enriched during the 17 and 19 WAP, namely “Photosynthesis—antenna
proteins”, “DNA replication”, “Amino sugar and nucleotide sugar metabolism”, “Plant
hormone signal transduction”, “Circadian rhythm—plant”, “Plant-pathogen interaction”,
“Sesquiterpenoid and triterpenoid biosynthesis”, “Cysteine and methionine metabolism”
and “RNA degradation” (Figure 5a,b). Consequently, we identified that pathways related
to sugar metabolism and plant hormone signal transduction are closely associated with
peach development.
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‘SBY’-15 WAP; and (d) ‘SBY’-19 WAP and ‘SBY’-17 WAP. The color of each circle indicates the p-value,
while the size indicates the number of genes mapped to the pathway.

3.4. Clustering Analysis of Expression Patterns of DEGs during Peach Fruit Development

The differentially expressed genes of 1660 and 5673 identified, respectively, in ‘SJH’
and ‘SBY’, were determined using the K-means clustering method throughout the fruit
development period (Figure 6). Three different profiles of expression patterns based on
p-values ≤ 0.05 were recognized in ‘SJH’, consisting of one upregulated profile (105 DEGs,
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profile 7) and two downregulated profiles (431 DEGs, profiles 0 and 3). Moreover, the
‘SBY’ were markedly clustered into the following two profiles: one upregulated profile
(1444 DEGs, profile 4) and one downregulated profile (586 DEGs, profile 3).
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For a deeper understanding of the functions of the candidate genes during fruit devel-
opment, we performed GO terms and KEGG pathways analyses on DEGs enriched in up-
and downregulated profiles. Regarding the upregulated DEGs, the GO analysis showed
that a strong classification of the ‘SJH’ DEGs in profile 7 can be made in two biological
functions, and the “response to auxin” (GO:0009733) was highly enriched (Figure S1a). By
contrast, biological process (BP) accounts for half of the enrichment term in the ‘SBY’ DEGs
in profile 4, and the most significant GO term was “endonuclease activity” (GO:0004519)
(Figure S1b). As for the downregulated DEGs, “mitotic spindle assembly checkpoint signal-
ing” (GO:0007094), “plasma membrane” (GO:0005886) and “ubiquitin-protein transferase
activator activity” (GO:0097027) were the most significantly enriched functions in the bio-
logical process (BP), cellular component (CC) and molecular function (MF) classifications
in ‘SBY’ profile 3, respectively (Figure S1b). For ‘SJH’ DEGs, the three most significant
enrichment functions in the downregulation profiles, including profiles 0 and 3, were
“cell-wall organization” (GO: 0071555), “plant-type cell-wall” (GO: 0009505) and “anchored
component of plasma membrane” (GO: 0046658) (Figure S1a).

Based on KEGG analysis, we detected that the three most significant pathways includ-
ing “Plant hormone signal transduction”, “Valine, leucine, and isoleucine degradation”
and “Propanoate metabolism” were enriched with ‘SJH’ profile 7 (Figure S2a), whereas the
‘SBY’ DEGs in profile 4 were enriched for “Photosynthesis—antenna proteins”, “Carotenoid
biosynthesis” and “Phenazine biosynthesis” (Figure S2b). The ‘SBY’ DEGs in downregu-
lated profile 3 were significantly enriched in pathways such as “Amino sugar and nucleotide
sugar metabolism” and “Fructose and mannose metabolism”. In addition, we observed
that ‘SJH’ DEGs in profile 0 were enriched in the pathways of “Amino sugar and nucleotide
sugar metabolism”, “Starch and sucrose metabolism” and “DNA replication”, in contrast,
the pathway most enriched by profile 3 was “Nicotinate and nicotinamide metabolism”
(Figure S2).

3.5. Analysis of Cell Wall Biogenesis during Peach Fruit Development

We identified seven GO terms including “Cell wall biogenesis”, “Plant-type cell-wall
biogenesis”, “Plant-type primary cell-wall biogenesis”, “Plant-type secondary cell-wall
biogenesis”, “Plant-type cell-wall organization or biogenesis”, “Cell wall organization or
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biogenesis” and “Regulation of secondary cell-wall biogenesis” to investigate the expression
patterns of DEGs about cell-wall biogenesis during peach fruit development. ‘SJH’ contains
14 DEGs associated with cell-wall biogenesis, clustered in profiles 0 (n = 12) and 7 (n = 2). In
contrast, there were 20 DEGs clustered in profiles 3 (n = 12) and 4 (n = 8) of ‘SBY’, and “Cell
wall organization or biogenesis” and “Regulation of secondary cell-wall biogenesis” were
‘SBY’-specific terms. Figure 7a shows five common DEGs in the cell-wall biogenesis-related
profiles of ‘SJH’ and ‘SBY’, and some of these had different expression patterns during
peach fruit development. For example, gradual reductions in MAP70-5 expression levels
were observed during fruit development in ‘SJH’ (Figure 7b). In contrast, the MAP70-5
expressed at a constant level before the fully mature stage (19 WAP) in ‘SBY’ and decreased
obviously at the mature stage (Figure 7c). Similarly, the highest level of At1g68400 and
α-GPS2 expression in ‘SJH’ were observed at an immature stage (15 WAP) and were found
in the near mature stage (17 WAP) of ‘SBY’ (Table 1 and Figure 7). Moreover, significant
expression of some genes was detected such as XTHB, CS-LPD, CESAS2 and so on involved
in cell-wall biogenesis during development in ‘SJH’, whereas the changes in expression
in ‘SBY’ were not significant. Conversely, genes GGTIRX7, XTHP23 and PTBR were
significantly expressed in ‘SBY’, but not in ‘SJH’ (Figure 7b,c). These findings suggest
that even the same gene in cell-wall biogenesis during fruit development can differ in
expression patterns in peaches grown under different cultivation conditions, and the types
of genes that show significant expression in these peaches may also be different.

Table 1. Expression level of genes associated with cell-wall biogenesis and sugar metabolism.

Gene ID
FPKM Value

Short Name Annotation
SBY15 SBY17 SBY19 SJH15 SJH17 SJH19

ncbi_18789554 1.11 1.47 15.39 2.38 6.22 8.42 SPS1 probable sucrose-phosphate
synthase 1

ncbi_18777071 462.34 648.51 154.36 416.35 160.88 50.69 α-GPS2 alpha-1,4-glucan-protein
synthase [UDP-forming] 2

ncbi_18770520 3.84 1.25 18.33 8.06 21.18 36.21 RAFS raffinose synthase

ncbi_18791135 3.83 5.97 0.59 8.46 4.71 0.94 At1g68400
probable leucine-rich repeat
receptor-like protein kinase

At1g68400

ncbi_18774451 0.56 1.72 23.60 2.47 5.84 9.83 CS-LPE6X2 cellulose synthase-like
protein E6 isoform X2

ncbi_18767223 386.15 580.12 184.28 346.05 388.26 296.86 SUS3 sucrose synthase 3

ncbi_18788353 76.98 121.01 24.90 46.49 29.32 14.48 ATP-PFK6 TP-dependent
6-phosphofructokinase 6

ncbi_18769018 37.83 7.67 154.19 77.31 177.49 424.07 β-GAL beta-galactosidase
ncbi_18768307 99.62 166.31 43.49 92.93 55.59 21.26 GALT8 galacturonosyltransferase 8

ncbi_18772722 18.75 16.48 33.20 55.52 67.07 66.73 GGTIRX7
probable glucuronoxylan
glucuronosyltransferase

IRX7

ncbi_18778944 71.17 159.73 24.32 87.52 51.31 16.99 CESAS2
cellulose synthase A
catalytic subunit 2

[UDP-forming]

ncbi_18792321 861.83 1206.55 79.14 1237.08 438.88 170.33 XTHP23
probable xyloglucan endo-

transglucosylase/hydrolase
protein 23

FPKM value is the average of the three sample expressions for each stage.

3.6. Analysis of Sugar Metabolism during Peach Fruit Ripening

Sugar metabolism includes the following four pathways: “Amino sugar and nu-
cleotide sugar metabolism”, “Starch and sucrose metabolism”, “Galactose metabolism”
and “Fructose and mannose metabolism”. We found that 28 DEGs in ‘SJH’ associated with
sugar metabolism pathways were clustered into profiles 0, 3 and 7. Similarly, there were
61 DEGs clustered into profiles 3 and 4 of ‘SBY’, and 9 common DEGs were present in
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both peaches (Figure 8a). In ‘SJH’, “Amino sugar and nucleotide sugar metabolism” and
“Fructose and mannose metabolism” pathways were enriched only in the downregulated
profiles—including profiles 0 and 3. Type-specific DEGs involved in sugar metabolism
were detected to exhibit different expression patterns during fruit development.
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Comparing the two types of peaches, we found that the highest expression genes
related to four main sugar metabolism pathways were enriched at the immature stage
(15 WAP) in ‘SJH’; meanwhile, the expression genes in ‘SBY’ peaches were enriched at
the late mature stage (19 WAP) (Table 2). In ‘SJH’, DEGs were more highly expressed
in “Starch and sucrose metabolism” (11 DEGs) and “Amino sugar and nucleotide sugar
metabolism” (8 DEGs). Similarly, most of the DEGs were accumulated in “Galactose
metabolism” (12 DEGs), “Starch and sucrose metabolism” (21 DEGs) and “Amino sugar
and nucleotide sugar metabolism” (9 DEGs).

Table 2. DEGs statistic involved in the KEGG pathway of sugar metabolism.

KEGG Pathway Gene Count
Count Genes with the Highest Expression

15 WAP 17 WAP 19 WAP

SJH

1. Galactose metabolism 6 4 / 2
2. Starch and sucrose metabolism 14 11 / 3
3. Fructose and mannose metabolism 1 1 / /
4. Amino sugar and nucleotide sugar metabolism 10 8 2 /

SBY

1. Galactose metabolism 17 1 4 12
2. Starch and sucrose metabolism 29 1 7 21
3. Fructose and mannose metabolism 10 / 5 5
4. Amino sugar and nucleotide sugar metabolism 17 / 8 9
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3.7. qRT-PCR Verification of RNA-Seq

The results of the RNA-seq analysis were verified using the quantificational RT-PCR
technique for 12 differential genes in ‘SJH’ and ‘SBY’ developmental stages (Figure 9).
The results showed that the quantificational RT-PCR assays were consistent with the
gene expression trends of RNA-seq, whereas the fold change ploidy was not completely
consistent. This indicates that the data from the RNA-seq are reliable.
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4. Discussion

The different cultivation methods led to differences in the physicochemical character-
istics of ‘SJH’ and ‘SBY’, which were related to size, weight, hardness, and sugar content.
The hardness and TSS of ‘SJH’ were significantly higher than those of ‘SBY’ during fruit
development. This may be due to the application of a bioorganic fermentation fertilizer to
‘SJH’, which enhanced the accumulation of sugar content and fiber-bundle diameter while
inhibiting pectin degradation and cell-wall relaxation [3,14]. Notably, a significant differ-
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ence was also observed in color, reflected by the golden yellow of ‘SJH’ and dark green and
red of ‘SBY’ at a late stage of development. This was caused by continuous black bagging
at the planting stage of ‘SJH’ because the black bagging influenced the accumulation of
anthocyanin, chlorophyll, and carotenoid contents in the fruit [29,30]. Nevertheless, fruit
development and ripening of the olecranon honey peach is a complex genetic process, and
the deep molecular mechanisms are not fully understood. Thus, we used ‘SJH’ and ‘SBY’
as experimental materials in our study to identify the main biological function pathways
involved in the development of the two peaches and to better understand the regulatory
patterns of the associated genes.

RNA-seq technique was used to analyze the transcriptomic differences between ‘SJH’
and ‘SBY’ during development, and a total of 22,429 expressed genes were identified. In
these genes, the number of DEGs in ‘SJH’ was always lower than that of ‘SBY’ and they
showed an earlier increase and later decrease trend (Figure 3 and Table S2).

Pigments in peaches are regulated by cultivation methods, for example bagging, espe-
cially at the late peach fruit development stage. Bagging inhibited the sunlight absorption
of fruits, thereby blocking the synthesis of chlorophyll [29]. This is consistent with RNA-
seq results that DEGs were mostly accumulated in “pigment binding” and “chlorophyll
binding” pathways. On the contrary, red-colored anthocyanins in the pericarp accumu-
lated in localized red areas of ‘SBY’ peaches, and a positive correlation with chlorophyll
breakdown [30]. These are the intrinsic reasons for the different color appearances of the
fruits under the two cultivation methods.

Moreover, the biological functional changes during ‘SJH’ and ‘SBY’ development
seem to be associated with cell-wall alterations. Cell-wall changes affect the structure and
composition of the cell wall, thereby leading to a change in flesh texture, which is a crucial
quality characteristic of mature fruits [31,32]. Excellent fruit texture can positively influence
fruit quality, disease resistance, and storage characteristics [25]. We found differences in
the types of DEGs and the expression patterns of the same DEGs associated with cell-wall
biogenesis in two peaches, including xyloglucan endotransglucosylase/hydrolase protein
B (XTHB), cellulose synthase-like protein D (CS-LPD), leucine-rich repeat receptor-like
protein kinase (At1g68400) et al., which may be inherent causes of peach fruit texture
differences (Figure 7). Xyloglucan is the most abundant hemicellulose in the primary
cell wall of plants, thereby forming the β-1,4-linked glucan backbone and providing the
substrate for cell-wall synthesis [33–35]. Xyloglucan endotransglucosylase/hydrolase
protein B (XTHB) can act on the pulp cell wall to cut and rejoin xyloglucan in adjacent
neighboring cellulose microfibrils, thereby causing swelling and loosening of the plant cell
wall [36]. Thus, studies suggest that XTHB accelerates the softening rate of tomato fruit
during postharvest storage [37]. Cellulose synthase-like protein D (CS-LPD) is implicated
in cell-wall remodeling. It provides a substrate for cell-wall growth by synthesizing β-1,4-
glucan polymers and assembling them into cellulose [35,38]. Herein, the activity of CS-LPD
showed a decreasing trend as the fruit ripened and softened (Figure 7). Leucine-rich repeat
receptor-like protein kinase (At1g68400) is the largest group of receptor-like kinases in
plants and plays a key role in plant developmental stages [39]. In addition, At1g68400
is a tight link between cell-wall integrity sensing and growth and environmental cues,
promoting the complete development of the cell wall [40]. In general, we found that DEGs
associated with cell-wall biogenesis in the ‘SJH’ peach were upregulated at the early stage
of fruit development but downregulated at the late mature stage. This corresponds to a
higher hardness and larger fruit size, as the relatively loose cell walls facilitate early cell
expansion and fruit development, and conversely, the compact cell walls maintain the
firmness and texture characteristics.

Through KEGG analysis, we observed that sugar metabolism and plant hormone
signal transduction are closely associated with peach development (Figure 5). Sweetness is
one of the most critical qualities of peach fruit, and the metabolism and accumulation of su-
crose are key determinants of sweetness [16,41]. In ripe peaches, sucrose is the major sugar,
followed by fructose and glucose [42]. Meanwhile, sugars can act as signaling molecules
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that crosstalk with plant hormone signals to mediate fruit growth and development [43].
We identified DEGs in ‘SJH’ and ‘SBY’ during development and found differences in the
expression patterns of key genes involved in fruit sugar metabolism, such as sucrose syn-
thase (SUS), raffinose synthase (RAFS), sucrose-phosphate synthase (SPS) et al., in ‘SJH’
and ‘SBY’.

Sucrose synthase (SUS) is the main enzyme in sucrose metabolism and plays a role
in breaking down and synthesizing sucrose that can reversibly convert sucrose to UDP
glucose and fructose [44,45]. SUS3 is involved in the breakdown of sucrose and provides
the prerequisite for starch synthesis [46], meanwhile, SUS6 regulates the synthesis and
accumulation of sucrose [47]. In addition, SUS provides substrates for cell-wall biosynthesis,
thereby increasing cell-wall strength [48]. Herein, we found that SUS6 was the dominant
gene related to sucrose synthase in ‘SJH’ development, whereas SUS3 was dominant in
‘SBY’ (Figure 8). Raffinose synthase (RAFS) catalyzes the synthesis of Raffinose family
oligosaccharides, which is hydrolyzed by α-galactosidase to galactose and sucrose in fruit
tissues, followed by the metabolic process of sucrose [49]. We observed a gradual increase
in RAFS expression levels during development in ‘SJH’. However, its expression level
in ‘SBY’ showed a first declining and then rising trend (Figure 8), thereby indicating a
late accumulation of sugars in ‘SBY’. Moreover, the expression level of RAFS in ‘SJH’ was
consistently higher than that in ‘SBY’ during fruit development (Table 1 and Figure 9),
which is consistent with the sensory quality that ‘SJH’ is sweeter. Moreover, sucrose-
phosphate synthase (SPS) is a crucial gene in sucrose accumulation, which can transfer
glycosyl group to D-fructose 6-phosphate, and in turn forms D-sucrose-6′-phosphate and
UDP to provide substrates for sucrose synthesis [44,50]. In our study, the SPS1 increased
slowly from 15 WAP to 19 WAP in ‘SJH’, whereas the expression level of SPS1 remained
stable and sharply increased at maturity in ‘SBY’ (Table 1 and Figure 8), which led to a
difference in sucrose accumulation between the two types of peach fruits. Thus, improving
crop cultivation methods results in larger increases in fruit sweetness; for instance, covering
the trees of tangerine with plastic film promotes the accumulation of soluble sugars in
citrus fruit [51], and applying organic fertilizers on tomatoes will increase the concentration
of total soluble solids [52]. Consistent with previous studies, we found that improvements
in the cultivation methods resulted in an increase in the sweetness of peaches and in fruit
quality by altering the genetic regulation related to sugar metabolism in the two peach
fruits, which may be related to intrinsic factors with regard to the differences in fruit
sugar content.

5. Conclusions

Two olecranon honey peaches, ‘SJH’ and ‘SBY’ were evaluated for various factors
to compare the differences between the new and traditional cultivation methods in the
fruit. Herein, we used RNA-seq technology to clarify the genes and associated pathways
regulating fruit physicochemical characteristics. In addition, we obtained candidate genes
related to cell-wall biogenesis and sugar metabolism by performing GO annotation and
KEGG enrichment of differential genes and clustering analysis of expression patterns of
DEGs. When comparing DEGs of ‘SJH’ and ‘SBY’ at three fruit development stages, we
found that contributions to cell expansion occurred at the early development stage in
‘SJH’, thereby resulting in a larger fruit size. Moreover, cell-wall biogenesis was more
active in maintaining the firmness of the ‘SJH’. The pattern of sugar accumulation was also
significantly different. Sugars tended to gradually increase during the whole development
stage in ‘SJH’ through the high expression levels of sucrose synthesis, which were SUS3,
RAFS and SPS. The results showed that the new planting methods, i.e., black bags combined
with a bio-organic fermentation fertilizer, were effective in improving the overall quality
of the peach fruit compared to conventional planting methods. These results provide the
basis for in-depth research on the regulation mechanism of physicochemical properties and
are conducive to changes and improvements in cultivation techniques.
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