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Abstract: In today’s world, agricultural products are becoming increasingly scarce globally due to
a variety of factors, and the early and accurate automatic identification of plant diseases can help
ensure the stability and sustainability of agricultural production, improve the quality and safety of
agricultural products, and help promote agricultural modernization and sustainable development.
For this purpose, a lightweight deep isotropic convolutional neural network model, FoldNet, is
designed for plant disease identification in this study. The model improves the architecture of
residual neural networks by first folding the chain of the same blocks and then connecting these
blocks with jump connections of different distances. Such a design allows the neural network to
explore a larger receptive domain, enhancing its multiscale representation capability, increasing the
direct propagation of information throughout the network, and improving the performance of the
neural network. The FoldNet model achieved a recognition accuracy of 99.84% on the laboratory
dataset PlantVillage using only 685k parameters and a recognition accuracy of 90.49% on the realistic
scene dataset FGVC8 using only 516k parameters, which is competitive with other state-of-the-art
models. In addition, as far as we know, our model is the first model that has fewer than 1M parameters
while achieving state-of-the-art accuracy in plant disease identification. This proposal facilitates
precision agriculture applications on mobile, low-end terminals.

Keywords: precision agriculture; plant disease identification; deep learning; lightweight isotropic
neural network

1. Introduction

Plant diseases are one of the major causes of crop yield reduction and quality deteri-
oration. With today’s dramatic population growth, the global population is expected to
reach 9.7 billion by 2050, and there is an urgent need to find new ways to improve the yield
and quality of agricultural products to meet the massive demand of a growing popula-
tion [1]. As a new technology, precision agriculture, or smart farming, aims to improve
agriculture’s efficiency and sustainability by using data and advanced technologies to make
more informed, data-driven decisions about crop production and resource management [2].
By quickly and accurately identifying plant diseases, it can not only prevent the spread
of plant diseases and protect the quality of plants, but also increase farmers’ income and
reduce the cost of plant disease treatment. Early, rapid, and accurate disease identification
and control can reduce the negative environmental impact, and using fewer chemicals and
pesticides can reduce water and soil contamination. Consequently, it is necessary to study
an efficient, accurate, and strongly robust automatic plant disease identification method,
which is important to help farmers identify plant diseases and improve plant yield and
quality.

In plant disease identification, image processing algorithms and traditional machine
learning algorithms were commonly used in the early stages to identify plant diseases.
After that, with the development of artificial intelligence, the application of deep learning
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algorithms in plant disease identification has achieved remarkable results, especially con-
volutional neural networks (CNN), which do not require pre-required processes such as
segmentation and feature extraction and can automatically learn features in images as well
as having excellent robustness and generalization ability [3]. More recently, inspired by
the Transformer in Natural Language Processing (NLP) [4,5], Vision Transformer (ViT) [6]
was the first attempt to use a transformer in the field of image recognition, and it achieved
impressive results on the ImageNet dataset, demonstrating transformers’ potential in the
image domain. Subsequently transformer deep learning models have made a series of
advances in the field of plant disease identification. Please see the related works in the
following section.

Nevertheless, a lightweight neural network architecture with state-of-the-art accuracy
in realistic scenarios is still missing. Aiming at the problem of automatic recognition of
plant disease images collected in laboratory settings and realistic scenarios, we designed a
lightweight deep isotropic convolutional neural network model, FoldNet [7], which utilizes
a technique in the field of complex networks to increase the performance of neural networks.

The model improves the architecture of residual neural networks by folding the chain
of the same blocks and then connecting these blocks with jump connections of different
distances. It has two significant features compared to traditional residual neural networks.
First, the distance between pairs of blocks connected by jump connections increases from
always equal to 1 to different values chosen specifically, which causes more incoherent
graphs and allows the neural network to explore a larger receptive domain, thus enhancing
its multiscale representation capability. Second, the number of direct paths increases from 1
to multiple, leading to a higher proportion of shorter paths, thereby increasing the direct
propagation of information throughout the network and improving the performance of the
network architecture. Experimental results based on the PlantVillage and FGVC8 datasets
showed that the recognition accuracy of the model is superior to all other methods, and the
number of parameters is fewer than 1M.

The contributions of this study include the following:
(1) We designed a lightweight deep isotropic neural network model, FoldNet, which

introduces a new dimension of “fold length” in addition to width and depth, and used it
for automatic recognition of plant disease images to minimize the time required for model
training and validation;

(2) The image is segmented into a series of patches and then operated directly on the
patches as input, separating the mixing of spatial and channel dimensions and keeping the
same size and resolution throughout the network, thus increasing the effective receptive
field size and making it easier to mix distant spatial information;

(3) Compared with other methods, the FoldNet model achieved the highest recognition
accuracy of 99.84% on the laboratory dataset PlantVillage using only 685k parameters, and,
similarly, the highest recognition accuracy of 90.49% was obtained on the realistic scene
dataset FGVC8 using only 516k parameters, which demonstrates the high performance
and generalization ability of the proposed method. In addition, our method has excellent
robustness, especially when recognizing image data with different amounts of noise.

In Section 2, we review the related works in plant disease identification in detail. In
Section 3, we propose the FoldNet model. In Section 4, we describe the materials and
methods for the experiments performed, including data acquisition, data preprocessing,
optimization, experimental configuration, evaluation matrices, etc. In Section 5, we present
the results, discuss the results, and compare our results with those in the literature. In
Section 6, we state our conclusions and suggest possible topics for future research.

2. Related Works
2.1. Image Processing Algorithms and Traditional Machine Learning Algorithms

In plant disease recognition, image processing algorithms and traditional machine
learning algorithms were commonly used in the early stages to identify plant diseases [8],
always through image preprocessing to improve image quality, then segmenting leaves,
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fruits, or flowers from the background and separating healthy areas from diseased ar-
eas, then using statistical methods for feature extraction, and finally using supervised
classification algorithms or unsupervised clustering algorithms to classify the features.

Islam et al. [9] used image segmentation and multiclass support vector machines
(SVM) for the identification of three types of plant diseases in potato. Agrawal et al. [10]
used k-means to segment the image into three clusters and selected the cluster containing
the lesion points, then extracted texture and color features from the clusters, then finally
used multiclass SVM to classify grape leaf diseases. Dhakate et al. [11] presented a system
to identify and classify four classes of pomegranate diseases using a back propagation
algorithm, which first preprocesses the images and k-means clustering segmentation,
then uses a gray-level co-occurrence matrix (GLCM) method to extract texture features,
and finally uses an artificial neural network (ANN) to classify the diseases. Al-Hiary
et al. [12] similarly used an ANN classifier to classify five classes of leaf diseases and one
class of normal leaves. Kaushal et al. [13] proposed a method to identify plant diseases
using a k-nearest neighbors (KNN) classifier instead of an SVM classifier, which first
uses GLCM for texture feature extraction, followed by a k-means clustering algorithm for
image segmentation, and eventually uses a KNN classifier for plant disease classification.
Majumdar et al. [14] proposed a method for detection and identification of wheat rust
images using a fuzzy c-means clustering method.

Although machine learning has accomplished great achievements in image recognition,
there are still some restrictions, such as it can only focus on specific disease types and
requires manual observation, resulting in low accuracy and efficiency. Moreover, these
methods can only be performed on small datasets [15].

2.2. CNN-Based Models
2.2.1. Transfer Learning Approaches

In recent years, much research in the field of deep-learning-based plant disease identi-
fication and classification has been conducted utilizing a transfer learning approach, which
typically involves using a pre-trained classical network model as the initial model and then
fine-tuning it to adapt to plant disease datasets to solve plant disease identification and
classification problems.

Sagar et al. [16] used the pre-trained models InceptionV3 [17], Inception-ResNetV2 [18],
ResNet50 [19], MobileNet [20], and Densenet169 [21] to classify plant disease images in
the PlantVillage dataset containing 38 classes by fine-tuning the last layer of the network
model, and, finally, ResNet50 achieved the highest accuracy of 0.982. Mohanty et al. [22]
similarly used the PlantVillage dataset with 38 classes and employed the classical network
models AlexNet and GoogLeNet and then adopted both transfer learning and ab initio
training methods to classify plant disease images; eventually, with the transfer learning
training method, GoogLeNet achieved the highest test accuracy of 99.35%. Nevertheless,
the method has some limitations: firstly, the accuracy of the model is substantially reduced
when tested with images taken from realistic scenes; secondly, it is limited by homogeneous
backgrounds and oriented to the classification of individual leaves; finally, the proposed
method can only be used as a complement to existing solutions for disease diagnosis.

Brahimi et al. [23] also implemented classification of nine tomato disease leaf images
extracted from the PlantVillage public dataset using pre-trained AlexNet and GoogLeNet
and used visualization methods to understand symptoms and occlusion techniques to locate
disease regions in the leaves. Too et al. [24] used plant disease images from the PlantVillage
dataset containing 38 classes for classification, in which various classical networks such as
VGG-16, InceptionV4, DenseNets-121, ResNet-50, ResNet-101, and ResNet-152 were fine-
tuned and comparatively evaluated. Overall, DenseNet121 performed the best, achieving
99.75% test accuracy with only 7.1M model parameters.

Sethy et al. [3] evaluated the performance of 13 CNN models to identify four rice
diseases using transfer learning and deep feature plus support vector machine approaches,
and the experimental results showed that the deep feature plus support vector machine is
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superior to transfer learning for classification. Among them, ResNet50 with deep features
plus SVM performed the best with an F1-score of 0.9838. Rangarajan et al. [25] used eight
different pre-trained lightweight CNN models to automatically extract fusarium head
blight features, and the experimental results demonstrated the robustness of the method in
identifying fusarium that is head blight infected and healthy wheat through corresponding
pixels under laboratory conditions and motivated the exploitation of realistic scene data.
Its limitations are limited hyperspectral data and poor detection of field data.

2.2.2. Training-from-Scratch Approaches

In addition to transfer learning, scholars have proposed and trained improved neural
networks from scratch to improve the accuracy and efficiency of plant disease identification.

Bao et al. [8] designed a lightweight convolutional neural network model SimpleNet
for automatic recognition of fungal spot and scab images on wheat spikes in natural scenes
in the field. The SimpleNet model first uses the inverted residual block as the main module
and adds the convolutional block attention module (CBAM) to the inverted residual block
to focus the model on the wheat spike disease region and then also utilizes the feature
fusion module to achieve the fusion of shallow and deep features to reduce the loss of
detailed features of wheat spike disease during down-sampling. It was demonstrated that
the model can be ported to mobile devices to facilitate accurate identification of wheat
spike disease, but this method is only applicable to winter wheat spike images, which was
a data limitation of this study.

Goyal et al. [26] constructed a deep convolutional architecture containing 21 convolu-
tional layers, 7 maximum pooling layers, and 3 fully connected layers, and the architecture
achieved good recognition results on the LWDCD2020 dataset containing 10 wheat diseases.
Liu et al. [27] proposed a novel deep convolutional neural network model to accurately iden-
tify apple leaf diseases, which is a network built on the basis of AlexNet and GoogLeNet
with the first five convolutional layers of AlexNet in the head and two maximum pooling
layers and two GoogleNet Inception structures cascaded together in the tail. The exper-
imental results showed that the model can achieve 97.62% recognition accuracy, but its
limitations are the limited data variety and the inability to detect apple leaf diseases in
real time.

Peng Sun et al. [28] applied a convolutional neural network based on an attention
mechanism which is able to accurately identify soybean aphid images. Upadhyay et al. [29]
effectively utilized Otsu’s global threshold segmentation technique to binarize the images
and then combined it with four hidden-layer CNNs to detect and classify rice diseases;
the limitation of this method is that the disease classification is inferior in efficiency and
effectiveness. Albattah et al. [30] proposed a robust, drone-based deep learning approach,
the modified EfficientNetV2-B4, which adds an additional dense layer at the end of the
architecture. This method also uses the PlantVillage public dataset and experiments by
using a transfer learning approach to achieve good results and provide a lightweight
solution for plant disease classification.

Zuo et al. [31] proposed a multi-granularity feature aggregation method for intra- and
inter-class variation due to the combination of plant disease classes and plant species which
is good at capturing subtle features of diseases in multiple datasets, but the method uses
only a single network and had a significant trend of decreasing accuracy in the identification
of a few disease classes in a dataset with category imbalance. Zhong et al. [32] introduced a
transformer structure in a cassava leaf disease classification task and proposed a ResNet
(T-RNet) model embedded in a transformer which enhances the focus on the target region
by modeling the global information and suppressing the interference of background noise,
achieving an accuracy of 91.12% on a cassava leaf disease dataset.

2.3. Transformer-Based Models

Subsequently, transformer deep learning models have been used to make a series
of advances in the field of image recognition. For instance, in the field of plant disease
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identification, Guo et al. [33] proposed a convolutional Swin Transformer to identify the
degree and type of disease based on the Swin Transformer and achieved high detection
accuracy on variable datasets of natural and controlled environments. Borhani et al. [34]
proposed a lightweight deep learning method for real-time automatic classification of plant
diseases based on ViT. The method obtained not only a more accurate performance than
CNN or combined CNN and ViT models when classifying the unbalanced PlantVillage
dataset, but also achieved higher accuracy with fewer than 1M parameters; however, this
was still lower than the accuracy obtained by Mohanty et al. [22] with the training method
of transfer learning under the GoogleNet network.

3. FoldNet Model

The main objective of this study was to design a high-performance, highly robust
lightweight deep isotropic neural network model so that it can explore deeper layers for
more accurate identification and classification of plant diseases in laboratory settings and
realistic scenarios.

The FoldNet model is an improved CNN-based model which firstly incorporates a
technique in the field of complex networks to increase the performance of CNN networks.
We specifically describe the FoldNet network model in three parts.

3.1. Mapping Residual Neural Network Architectures to Directed Acyclic Graphs (DAGs)

The influence of the structural features of a residual neural network on its performance
is evaluated by mapping the architecture of the residual neural network to a directed
acyclic graph with a simple mapping rule. As shown in Figure 1, the nodes in the graph
represent nonlinear transitions between data, and the edges in the graph represent data
flow. According to such a mapping rule, the structure of the residual network is mapped as
a complete directed acyclic graph. Since all the weights of the neural network are mapped
to the nodes of the graph, and all the connectional structures are mapped to the edges of
the graph, such a mapping rule separates the effects of the network structure and the effects
of the nonlinear transformations on the performance of the network. Figure 1a shows a
residual neural network structure in which all the dashed lines of the jump connections
form a direct path. This direct path allows the forward activation and the reverse gradient
to flow straight through an identity function without loss of information and then the model
can be improved more consistently by increasing the depth while avoiding the gradient
vanishing and/or exploding problem. In summary, the direct path greatly improves the
performance of the model.

3.2. Improving the Incoherence of DAGs by Folding Residual Networks

In traditional residual neural networks, all jump connections are restricted to adjacent
layers, and the distance between any two layers is always equal to 1, which limits the
representational power of the network. The residual neural network folds the backbone
chain back and forward into an accordion-like structure, as shown in Figure 1b,c.

The improved accordion-like structure is superior to the chain-like structure of the
traditional residual neural network in terms of two features. First, the number of direct
paths is increased from one to multiple. Second, the distances between layers connected
by jump connections are different from each other. These two features are determined by
the so-called “folding length”; we named the folding neural network FoldNet-d, where d
is the “folding length”. In FoldNet-d networks, d represents the number of direct paths,
and the distance of jump connections is an integer in the set [2, 4, . . . , 2(d − 1)]. When
d = 1, the model degenerates to a traditional residual neural network. Figure 1a–c describes
the network architectures of FoldNet-1, FoldNet-2, and FoldNet-3, respectively, while
Figure 1d–f describes the directed acyclic graphs mapped from FoldNet-1, FoldNet-2, and
FoldNet-3, respectively.
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Figure 1. Three examples of mapping from neural networks to directed acyclic graphs. (a) Traditional
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summation and nonlinear transformation; the lines indicate the data flow between nodes.

The directed acyclic graphs with n nodes mapped from neural networks can be
formally represented by an n × n adjacency matrix A, in which element aij = 1 if a directed
edge from node i to node j exists, and element aij = 0 if not. The incoming and outgoing
degrees of node i are kin

i = ∑j aji and kout
i = ∑j aij, respectively. The first node (i = 1) can

never have inward edges, so kin
1 = 0. Analogously, the last node (i = n) can never have

outward edges, so kout
n = 0. The trophic level si of node i is defined by Equation (1).

si = 1 +
1

kin
i

∑j ajisj (1)

We define the trophic distance from node i to node j as xij = si − sj if an edge exists
from node i to node j. Then, we study the distribution of trophic distances p(x) over directed
acyclic graphs. The homogeneity of p(x) is generally referred to as trophic coherence: the
closer the trophic distances of all edges, the higher the coherence of the graph. The degree
of coherence is usually measured using the standard deviation of p(x), which is named as
the incoherence parameter: q =

√
x2 − 1.

We map the architecture of the neural network into a directed acyclic graph and use
the incoherence parameter q to measure the degree of order of the directed acyclic graph.
According to the main plot in Figure 2, the incoherence parameter q increases along with
the number of nodes (i.e., the layers of the neural network) and the fold length d in the
directed acyclic graph. The inset subplot in Figure 2 shows the cumulative distribution
function (CDF) of path lengths in the directed acyclic graph when the number of nodes is
equal to 50, where the proportion of shorter paths grows as the fold length d increases.
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By comparing the incoherence and path length of the FoldNet-d neural networks with
d ∈ [2–4] and the conventional residual neural network at d = 1, we argue that the disorder
of the folded residual network FoldNet-d is higher, and the shorter paths account for a
larger proportion, thus improving the performance of the FoldNet-d network.

3.3. Model Architecture

Isotropic CNNs emerged partially inspired by the state-of-the-art attention-based
transformer architectures in computer vision that are isotropic architectures. Compared
to pyramidical architectures, recent research discovered that isotropic architectures may
improve performance or even meet state-of-the-art performance with reduced layers. This
study designs a lightweight deep isotropic neural network model, FoldNet, which has
the same size and shape for all layers throughout the network. In this network model
architecture, images are first segmented into a series of patches, and then these patches are
passed to a repeating block chain, which is eventually used for automatic identification and
classification of plant disease images. Compared to traditional residual neural networks
with only one direct path, FoldNet has multiple direct paths throughout the network;
therefore, the model can explore deeper into the network and identify plant pest and
disease characteristics more accurately.

The FoldNet model architecture is shown in Figure 3a, consisting of a patch embedding
layer, repeatedly applied folding blocks, a global average pooling layer, and a classifier
block. The patch embedding layer can be implemented by a convolutional operation
with three input channels, h output channels, and the same kernel size and stride size
p. Each folding block contains d − 1 nonlinear transformations Fi, as shown by the red
dashed, rounded rectangles in Figure 3a. Each nonlinear transformation Fi itself consists
of a depth-wise convolution and a point-wise convolution, each followed with a GELU
activation function and a batch normalization layer, as illustrated in Figure 3b. The depth-
wise convolution is a grouped convolution with kernel size k, and the number of groups
equal to the number of channels h. The point-wise convolution is a full convolution with
a 1 × 1 kernel. Finally, a global average pooling layer is used to obtain the feature vector,
which is then passed to a linear classifier and a SoftMax function to predict the probability
of all classes.
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Figure 3. (a) The model architecture of FoldNet, which starts with a patch embedding layer, followed
by a series of folded blocks shown by red dashed rectangles, then a pooling layer and a linear classifier,
and finally a prediction class where the depth n = 6, the folding length d = 3, and the number of
folding blocks is equal to n/(d − 1) = 3. (b) Specific details of each nonlinear transform Fi, including
a depth-wise convolution and a point-wise convolution, each followed by a Gaussian error linear
unit (GELU) activation function and a batch normalization layer.

4. Materials and Methods
4.1. Image Acquisition

In order to design an efficient and accurate automatic plant disease identification
method, our proposed network architecture model was trained and validated on two
public datasets, which are summarized in Table 1.

Table 1. Overview of the PlantVillage and FGVC8 datasets.

Dataset Class Samples in Training Sets Samples in Validation Sets

PlantVillage 38 43,444 10,861
FGVC8 12 14,905 3727

The first PlantVillage dataset is a collection of 54,305 images of 14 different plant
species belonging to 38 classes, 12 of which are healthy, 26 of which are diseased. The
dataset was created by the Penn State College of Agricultural Sciences and the International
Institute of Tropical Agriculture as a resource for research and development of computer-
vision-based plant disease detection systems. The images in the dataset were collected
from various sources, including research institutions and citizen scientists, and represent a
wide variety of plant species and disease types. The plants include fruits such as apple,
blueberry, cherry, grape, orange, peach, raspberry, squash, and strawberry, crops such as
corn and soybean, and vegetables such as bell pepper, potato, and tomato. Each plant
has a healthy status or has a disease such as scab, rot, rust, and so on. In addition, the
distribution of images of the 38 classes is not uniform, so this unbalanced distribution
makes the classification task more challenging and more difficult in terms of training
compared to a balanced dataset. Figure 4 shows the unbalanced distribution of the number
of images. Figure 5 shows sample images of plant diseases for the 38 classes that appear in
the public PlantVillage dataset.
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The second FGVC8 dataset was provided by the Kaggle Phytopathology 2021-FGVC8
Challenge and has a total of 18,632 plant disease images belonging to 12 categories, all
4000 × 2672 pixels in size. This dataset reflects real field scenarios by representing leaf
images with non-homogeneous backgrounds taken at different maturity stages and at
different times of day under different focal camera settings. Figures 6 and 7 show the
imbalance distribution map of the FGVC8 public dataset and sample images of plant
diseases for the 12 classes, respectively.
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4.2. Image Preprocessing and Sample Augmentation Technique

First, all the images in the two datasets were rescaled to 256 × 256 pixels using the
resize method in the transforms module of the torchvision package. Then, they were di-
vided into a training set and validation set according to the ratio of 8:2. After that, an online
data enhancement method was adopted, and RandomHorizontalFlip, RandomVerticalFlip,
RandAugment [35], and ColorJitter methods in the transforms module of the torchvision
package were used to perform fast data enhancement operations on data images. By en-
hancing the image data for the training set, it expands the scale of the dataset, increases
the diversity of data samples, reduces the risk of model overfitting, and improves the
generalization ability and robustness of the model. Figure 8 shows examples of the original
images and the corresponding data-enhanced images.
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4.3. Optimization Method and Loss Function

For this research, we used the AdamW [36] optimization algorithm, which is based on
Adam with the addition of the L2 regular term to solve some problems of Adam by weights
decays. The AdamW optimization algorithm has several advantages compared with Adam.
First, the size of the weights can be better controlled while maintaining the stability of the
gradient by adding the L2 regular term. Second, the risk of overfitting can be effectively
reduced, thus improving the generalization ability of the model. Finally, AdamW has a
better performance when dealing with large-scale datasets.

The main goal of the optimization algorithm is to update the weights at each stage in
order to achieve the effect of optimizing the model. The learning rate is one of the most
important hyperparameters for training neural networks. If the learning rate is too large,
the model will be difficult to converge, and if it is too small, the convergence rate will be too
slow, so a reasonable learning rate is necessary for the model to converge to the minimum
point instead of the local optimum point or saddle point.

The loss function is commonly used to measure the goodness of a model, that is,
to express the degree of gap between the predicted and actual values. When dealing
with classification problems, the cross-entropy loss function is usually used to assess
the difference between the estimated and actual values. The cross-entropy loss function
portrays the distance between two probability distributions, and the smaller the value of
the cross-entropy loss, the better the model prediction. The cross-entropy loss function
L is defined in Equation (2), where y and ŷ are the observed labels and estimated labels,
respectively; o is the outputs of the neural networks that are often are called logits.

L(y, ŷ) = −∑n
i=1 yi log

exp(oi)

∑n
j=1 exp(oj)

(2)

4.4. Experimental Configuration and Hyperparameter Setting

In the experiments, the FoldNet model was implemented using Python programming
language and PyTorch deep learning framework and was trained and evaluated using
PyTorch Lightning library. In addition, due to the limited experimental conditions, we
used the online services from Kaggle.com and the PaperSpace.com to provide GPUs for
training and evaluation of the models. Kaggle Kernels offers T4 × 2 GPUs that allow each
user 30 h of free access per week with a limit of 9 h per run. PaperSpace.com offers a more
powerful and faster paid A4000 GPU, but it has a maximum run-time limit of 6 h per run.
The software and hardware configurations are shown in Table 2.

FoldNet was designed by changing the connectivity method of skip connections
between the layers in the residual neural network, which is a macro design methodology.
Therefore, we focused on the depth n and the fold length d of the model, which reflect
macro structural features of the model. Meanwhile, we kept the values of the patch size p
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and the kernel size k fixed, which reflects the micro design features of the model. According
to the suggestion in the ConvMixer [37] model, we set the patch size p = 8 and the kernel
size k = 5.

Table 2. Software and hardware environment.

Name PaperSpace Kaggle

CPU 8 cores 2 cores
GPU A-4000 T4 × 2
RAM 45 GB 13 GB

CUDA 11.6 11.4
Python 3.9 3.7.12
PyTorch 1.12 1.13

PyTorch Lightning 1.8.0 1.9.4

The FoldNet model has slightly different hyperparameter settings for different datasets.
For the PlantVillage dataset, we trained FoldNet for 100 epochs with a batch size of 128 and
utilized the AdamW optimizer with a learning rate of 0.01 and a weight decay of 0.1. There
was a linear warm up of 10 epochs with an initial learning rate of 0.00001 followed by a
cosine decay schedule. For the FGVC8 dataset, FoldNet was also trained for 100 epochs but
with a batch size of 64, also utilizing the AdamW optimizer with a learning rate of 0.01 but
with a weight decay of 0.05, where there was also a linear warm up of 10 epochs with an
initial learning rate of 0.00001 followed by a cosine decay schedule.

4.5. Evaluation Metrics

In the experiments, we used accuracy, precision, recall, and F1-score as evaluation
metrics to make a comprehensive assessment of model performance. We usually use the
following metrics to obtain evaluation results: If an instance is a positive class and is
predicted to be a positive class, it is a true-positive class TP (True Positive); if an instance is
a positive class but is predicted to be a negative class, it is a false-negative class FN (False
Negative); if an instance is a negative class but is predicted to be a positive class, it is a
false-positive class FP (False Positive); if an instance is a negative class and is predicted
to be a negative class, it is a true-negative class TN (True Negative). T/F represents the
correctness or incorrectness of the prediction, and P/N represents the positive or negative
case of the prediction result. The accuracy rate is the proportion of correctly predicted
samples to the total samples, which reflects the overall performance of the model and is
often expressed as in Equation (3). The precision rate is the proportion of samples both
predicted to be positive and actually positive to those predicted to be positive and is often
expressed as in Equation (4). Recall is the proportion of predicted positive and actual
positive samples to the actual positive samples and is often expressed as in Equation (5). In
order to obtain a balance between precision and recall, the F1-score metric is used, which is
the summed average of precision and recall, and this score considers both false positives
and false negatives; moreover, a higher F1-score indicates better model performance, which
is often expressed as in Equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1score =
2precision ∗ recall
precision + recall

(6)
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5. Results and Discussion
5.1. Experimental Results with Different Hyperparameter Values

Since the effect of depth n and fold length d on the performance of the FoldNet
model was orthogonal to the hidden dimension h, we conducted experiments for hidden
dimension h = 64 and h = 128, respectively, to compare the performance of the model for
plant disease recognition under different hyperparameters.

For the PlantVillage dataset, the experimental results of the FoldNet model are shown
in Table 3, with a total of 24 items. Through the experiments, our model obtained optimal
results at epoch = 98 when the hidden dimension h = 128. In detail, our model achieved
the best validation accuracy of 0.9984 and the lowest validation loss of 0.0039 on the
PlantVillage validation set, while the number of model parameters was only 685k, which
proves the effectiveness and robustness of the proposed model. As shown in Table 3, from
an overall perspective, FoldNet_2, FoldNet_3, and FoldNet_4 with d > 1 outperformed
FoldNet_1 with d = 1 on the PlantVillage dataset. In addition, when the hidden dimension
h = 128, the validation accuracy of all FoldNet models at the corresponding depth n was
higher than that at the hidden dimension h = 64, and the validation loss of all FoldNet
models at the corresponding depth n was lower than that at the hidden dimension h = 64.
Moreover, FoldNet_2 with d > 1 obtained the highest validation accuracy at depth n = 32
when the hidden dimension h = 128. Compared with FoldNet_1 with h = 128, FoldNet_2
improved the validation accuracy by 0.1% at the same depth n = 32, and its validation loss
was reduced by 0.88%. Compared with FoldNet_2 with h = 64, FoldNet_2 with h = 128
improved the validation accuracy by 0.1%, and its validation loss was reduced by 0.61% at
the same depth n = 32.

Table 3. Validation accuracy and validation loss of FoldNet-d (d = 1, 2, 3, 4) for the PlantVillage
dataset with hidden dimension h = 64 and h = 128. The depth n is calculated by the number of folding
blocks times d − 1. The patch size p and kernel size k are fixed as p = 8 and k = 5.

FoldNet-d Depth n
h = 64 h = 128 h = 64 h = 128

Val. Accuracy Val. Loss

FoldNet-1

16 0.9960 0.9974 0.0114 0.0092
24 0.9959 0.9976 0.0128 0.0085
32 0.9958 0.9974 0.0144 0.0127
40 0.9962 0.9968 0.0142 0.0105
48 0.9960 0.9976 0.0171 0.0110

FoldNet-2

16 0.9961 0.9976 0.0162 0.0071
24 0.9961 0.9980 0.0150 0.0062
32 0.9974 0.9984 0.0100 0.0039
40 0.9975 0.9977 0.0094 0.0078
48 0.9975 0.9983 0.0101 0.0084

FoldNet-3

16 0.9971 0.9978 0.0115 0.0105
18 0.9970 0.9981 0.0115 0.0097
24 0.9976 0.9983 0.0102 0.0053
26 0.9967 0.9982 0.0128 0.0075
32 0.9964 0.9981 0.0128 0.0097
34 0.9968 0.9981 0.0118 0.0087
48 0.9972 0.9979 0.0109 0.0072

FoldNet-4

15 0.9966 0.9982 0.0125 0.0066
21 0.9969 0.9980 0.0106 0.0077
27 0.9970 0.9981 0.0099 0.0075
33 0.9971 0.9980 0.0148 0.0081
39 0.9973 0.9981 0.0131 0.0063
45 0.9972 0.9981 0.0141 0.0094
48 0.9975 0.9983 0.0119 0.0088
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For the realistic scene dataset FGVC8, the experimental results of the FoldNet model
under this dataset are shown in Table 4, with a total of 24 items. Through the experiments,
our model obtained optimal results at epoch = 81 when the hidden dimension h = 128. In
detail, our model achieved the highest validation accuracy of 0.9049 and low validation
loss of 0.3789 on the validation set of FGVC8, while the number of model parameters was
only 516k, which, again, demonstrates the effectiveness and robustness of the proposed
model. As shown in Table 4, from an overall perspective, FoldNet_2, FoldNet_3, and
FoldNet_4 with d > 1 outperformed FoldNet_1 with d = 1 on the PlantVillage dataset.
In addition, when the hidden dimension h = 128, the validation accuracy of all FoldNet
models at the corresponding depth n was higher than that at the hidden dimension h = 64,
and the validation loss of all FoldNet models at the corresponding depth n was lower than
that at the hidden dimension h = 64. In addition, when the hidden dimension h = 128,
FoldNet_2 with d > 1 obtained the highest validation accuracy at depth n = 24. Compared
with FoldNet_1 with h = 128, FoldNet_2 improved the validation accuracy by 2.52% at
the same depth n = 24, and its validation loss was reduced by 2.13%. Compared with
FoldNet_2 with h = 64, FoldNet_2 with h = 128 improved the validation accuracy by 2.92%,
and its validation loss was reduced by 2.9% at the same depth n = 24.

Table 4. Validation accuracy and validation loss of FoldNet-d (d = 1, 2, 3, 4) for the FGVC8 dataset
with hidden dimension h = 64 and h = 128. The depth n is calculated by the number of folding blocks
times d − 1. The patch size p and kernel size k are fixed as p = 8 and k = 5.

FoldNet-d Depth n
h = 64 h = 128 h = 64 h = 128

Val. Accuracy Val. Loss

FoldNet-1

16 0.8714 0.8792 0.4151 0.3947
24 0.8703 0.8797 0.4027 0.4002
32 0.8696 0.8730 0.4076 0.3982
40 0.8669 0.8792 0.4200 0.4186
48 0.8687 0.8790 0.4022 0.3929

FoldNet-2

16 0.8804 0.8866 0.3857 0.3733
24 0.8757 0.9049 0.4079 0.3789
32 0.8787 0.8879 0.4182 0.3959
40 0.8714 0.8870 0.4080 0.4065
48 0.8719 0.8846 0.4082 0.4065

FoldNet-3

16 0.8681 0.8910 0.4053 0.3981
18 0.8828 0.8836 0.3879 0.3850
24 0.8706 0.8807 0.4079 0.3957
26 0.8787 0.8801 0.4031 0.3995
32 0.8736 0.8900 0.4105 0.3857
34 0.8810 0.8834 0.4023 0.3987
48 0.8745 0.8801 0.4143 0.4009

FoldNet-4

15 0.8774 0.8856 0.3945 0.3850
21 0.8774 0.8887 0.4332 0.3868
27 0.8792 0.8821 0.4113 0.4084
33 0.8743 0.8875 0.4012 0.3700
39 0.8768 0.8822 0.4050 0.4011
45 0.8836 0.8950 0.3958 0.3946
48 0.8793 0.8880 0.4003 0.3968

5.2. Confusion Matrix Analysis

To validate the success of the FoldNet network model for plant disease classification,
we used confusion matrices to evaluate the classification performance of the model. The
confusion matrix is a visualization tool in machine learning which is a table layout that
compares the predicted class labels with the actual class labels for all data instances. The
rows of the matrix represent the actual classes, while the columns represent the predicted
classes. By analyzing the confusion matrix, we can determine how well the model is able
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to distinguish between different classes, as well as which classes are most often confused
with one another. Popular performance metrics, such as accuracy, precision, recall, F1-score
can be derived from the confusion matrix.

The PlantVillage dataset has a tree-like hierarchical structure with three levels. The
root node is the overall category, plant. The first level is the 14 specific plant species. The
second level is the healthy or disease status of the plant. Thus, we used a hierarchical
confusion matrix to evaluate the model on the 10,861 validation images in the PlantVillage
dataset. The precision, recall, and F1-scores for each category in the PlantVillage dataset are
shown in Table 5. Due to the imbalance in numbers between categories in the PlantVillage
dataset, we used micro-averages to calculate the overall metrics. The micro-averages of
precision, recall, and F1-scores were 0.9984, 0.9984, and 0.9984.

Table 5. Performance evaluation on the PlantVillage for each class.

Plant Disease Class Labels Precision Recall F1-Score

Apple
Healthy 0 1.00 1.00 1.00

Scab 1 1.00 1.00 1.00
Black Rot 2 1.00 1.00 1.00

Cedar Rust 3 1.00 1.00 1.00

Blueberry Healthy 4 1.00 1.00 1.00

Cherry Healthy 5 1.00 0.9883 0.9941
Powdery Mildew 6 1.00 1.00 1.00

Corn

Healthy 7 1.00 1.00 1.00
Cercospora Leaf Spot 8 0.9736 0.9910 0.9823

Common Rust 9 1.00 0.9956 0.9978
Northern Leaf Blight 10 0.9951 0.9903 0.9927

Grape
Healthy 11 1.00 1.00 1.00

Black Rot 12 1.00 1.00 1.00
Black Measles 13 1.00 1.00 1.00

Isariopsis Leaf Spot 14 1.00 1.00 1.00
Orange Citrus Greening 15 1.00 0.9990 0.9995

Peach Healthy 16 1.00 1.00 1.00

Bacterial Spot 17 1.00 1.00 1.00

Bell
Pepper

Healthy 18 1.00 1.00 1.00
Bacterial Spot 19 0.9952 1.00 0.9976

Potato
Healthy 20 1.00 1.00 1.00

Early Blight 21 1.00 1.00 1.00
Late Blight 22 1.00 1.00 1.00

Raspberry Healthy 23 1.00 1.00 1.00

Soybean Healthy 24 0.9989 1.00 0.9994

Squash Powdery Mildew 25 0.9971 1.00 0.9985

Strawberry Healthy 26 1.00 1.00 1.00
Leaf Scorch 27 0.9949 1.00 0.9974

Tomato

Healthy 28 0.9965 1.00 0.9982
Bacterial Spot 29 0.9951 1.00 0.9975
Early Blight 30 0.9951 0.9857 0.9904
Late Blight 31 0.9951 0.9927 0.9939
Leaf Mold 32 1.00 1.00 1.00

Septoria Leaf Spot 33 0.9972 1.00 0.9986
Spider Mites 34 0.9936 1.00 0.9968
Target Spot 35 1.00 0.9966 0.9983

Yellow Leaf Curl 36 1.00 0.9972 0.9986
Mosaic Virus 37 1.00 1.00 1.00

Micro-Average 0.9984 0.9984 0.9984
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The FoldNet model achieved 99.84% accuracy on the PlantVillage dataset, and, as can
observed from the confusion matrix shown in Figure 9, the proposed FoldNet method had
fewer false positives and false negatives on the PlantVillage dataset, and only 17 images
in this dataset were misclassified. After quantitatively analyzing these 17 images, we
found three interesting points which needed to be noted: First, compared to incorrect
classification within the same species, incorrect classification across species was very rare.
Only five images were incorrectly identified as images of different plant species, as shown
in Figure 10, while the other 12 images were identified correctly by species, as shown in
Figure 11, even though they were identified incorrectly in terms of their disease status. This
reflects the robustness of the FoldNet model, which can correctly predict the species of an
image even if its prediction of the image’s disease status is wrong. Second, the 12 images
that were incorrectly classified within the same species belonged to two species, corn and
tomato, rather than being uniformly distributed across all the 14 species. Of the 12 images,
4 belonged to corn, and the other 8 images belonged to tomato. This reflects the complexity
of the images of corn and tomato. Third, in the 17 images that were classified incorrectly,
several images were wrong in ground truth or captured in an extreme situation. For
example, the first ‘Cherry Healthy’ image was actually a field background; two “Tomato
Late Blight” images had a very small foreground and a very large background.

For the FGVC8 apple leaf disease dataset, we still chose the hierarchical confusion
matrix to evaluate the model for the 3727 validation images in the FGVC8 dataset. The
precision, recall, and F1-scores for each category in the FGVC8 dataset are shown in Table 6.
Since the number of categories in the FGVC8 dataset is unbalanced, we used micro-averages
to calculate the overall metrics. The micro-averages of precision, recall, and F1-score were
0.9049, 0.9049, and 0.9049.

Table 6. Performance evaluation on the FGVC8 for each class.

Plant Disease Class Labels Precision Recall F1-Score

Apple

Complex 0 0.7071 0.7376 0.7220

Frogeye Leaf Spot 1 0.9007 0.9696 0.9339

Frogeye Leaf Spot
Complex 2 0.6666 0.3636 0.4705

Healthy 3 0.9572 0.9828 0.9698

Powdery Mildew 4 0.9288 0.9406 0.9347

Powdery Mildew
Complex 5 0.75 0.625 0.6818

Rust 6 0.8968 0.9630 0.9287

Rust Complex 7 1.00 0.6470 0.7857

Rust Frogeye Leaf
Spot 8 0.7222 0.5 0.5909

Scab 9 0.9563 0.9457 0.9509

Scab Frogeye Leaf
Spot 10 0.6125 0.4117 0.4924

Scab Frogeye Leaf
Spot Complex 11 0.8571 0.15 0.2553

Micro-Average 0.9049 0.9049 0.9049
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Figure 10. The 5 images that are incorrectly predicted as images of other plant species. (a) Actual:
Cherry Healthy, predicted: Soybean Healthy; (b) actual: Cherry Healthy, predicted: Strawberry Leaf
Scorch; (c) actual: Orange Citrus Greening, predicted: Tomato Late Blight; (d) actual: Tomato Early
Blight, predicted: Bell Pepper Bacterial Spot; (e) actual: Tomato Yellow Leaf Curl, predicted: Squash
Powdery Mildew.
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Figure 11. The 12 images with correctly predicted species, but incorrectly predicted disease state.
(a) Actual: Corn Cercospora Leaf Spot, predicted: Corn Northern Leaf Blight; (b) actual: Corn
Common Rust, predicted: Corn Cercospora Leaf Spot; (c) actual: Corn Northern Leaf Blight, predicted:
Corn Cercospora Leaf Spot; (d) actual: Corn Northern Leaf Blight, predicted: Corn Cercospora Leaf
Spot; (e) actual: Tomato Yellow Leaf Curl, predicted: Tomato Late Blight; (f) actual: Tomato Yellow
Leaf Curl, predicted: Tomato Bacterial Spot; (g) actual: Tomato Early Blight, predicted: Tomato Spider
Mites; (h) actual: Tomato Early Blight, predicted: Tomato Septoria Leaf Spot; (i) actual: Tomato Late
Blight, predicted: Tomato Bacterial Spot; (j) actual: Tomato Late Blight, predicted: Tomato Early
Blight; (k) actual: Tomato Late Blight, predicted: Tomato Healthy; (l) actual: Tomato Target Spot,
predicted: Tomato Spider Mites.

The FoldNet model achieved an accuracy of 90.49% on the FGVC8 dataset. From the
observation of the confusion matrix shown in Figure 12, we can obviously see that the
proposed FoldNet method had good overall classification performance for the 12 classes
in this dataset, but there were still some misclassified samples. Through comparative
analysis, firstly, we found that most of the misclassified samples exhibited similar epigenetic
characteristics, and, secondly, there were multiple different types of diseases in the complex
class of leaf diseases, and these diseases were difficult to distinguish from those in other
classes because of their similarity. Figure 13 shows some of the misclassified samples.

5.3. Qualitative Analysis

GradCAM [38] heat map is a visualization tool used to explain the decision process of
a deep learning model. Through GradCAM heat maps, we can analyze the features of the
regions that the model focuses on when classifying the input data. We randomly selected
three disease samples from each of the PlantVillage and FGVC8 validation datasets and then
use GradCAM to visualize the plant disease identification results, where red-highlighted
areas indicated areas where the model focused strongly on one category, and blue indicated
areas where the model discriminated more strongly between other categories. Figure 14
shows the original map of different plant diseases and the map of plant disease features
captured by the proposed method, respectively. After comparison, it was found that the
method can clearly discover the location of plant disease regions and gradually enhance
the characterization of disease features in the region of interest. In addition, we found
that the method is good at capturing plant disease areas and extracting subtle features for
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both laboratory data and realistic scenarios, thus improving the accurate identification of
plant diseases.
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5.3. Qualitative Analysis 

Figure 13. 4 example images of incorrectly predicted disease states. (a) Actual: Powdery Mildew,
predicted: Healthy; (b) actual: Rust, predicted: Healthy; (c) actual: Rust Frogeye Leaf Spot, predicted:
Complex; (d) actual: Scab Frogeye Leaf Spot Complex, predicted: Scab.
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5.4. Comparison with Other Methods

In this section, we describe an experiment to compare the performance of the proposed
method with other methods for disease identification, where all methods used the same
experimental methods and experimental environments, and all were performed on the
PlantVillage and FGVC8 datasets.

In Tables 7 and 8 we show the complexity of the model, from which we can obviously
see that our proposed method always contained a minimum number of parameters that is
fewer than 1M, both for the PlantVillage dataset and for the FGVC8 dataset. In addition, on
the PlantVillage dataset, the proposed method spendt the least amount of time compared to
the other methods to complete the task of identifying and classifying various plant diseases.
On the FGVC8 dataset, the proposed method also took less time than the other methods to
perform all operations. More specifically, on the PlantVillage dataset, the VGG16 model
contained the largest number of parameters, about 175 times more than the proposed
model FoldNet, and ResNet152 was the most resource-consuming method in terms of
processing time. However, in contrast, our proposed FoldNet model contained only 685k
parameters, which is fewer than any other model, and required only 1010 ms minimum
processing time. For the FGVC8 dataset, the Inception-ResNetV2 model contained the
largest number of parameters, about 100 times more than the proposed model FoldNet,
and PatchConvNet was the most resource-consuming method in terms of processing
time. However, in contrast, our proposed FoldNet model contained only 516k parameters,
which is fewer than any other model, and required only 3.6 h of minimum operation
time. In summary, the effectiveness of the FoldNet model for plant disease identification
in controlled environments and realistic scenarios was demonstrated, and, as seen in the
comparative analysis of Tables 7 and 8, our model provides a lightweight solution for plant
disease identification.

Table 7. Comparative analysis of the proposed method with other methods on PlantVillage regarding
computational complexity.

Model Parameter Processing Time

VGG16 [39] 119.6M 1051 ms
ResNet50 (transfer learning) [19] 23.6M 1583 ms

ResNet101 42.5M 2766 ms
ResNet152 58.5M 4366 ms

DenseNet201 [21] 20M 2573 ms
InceptionV4 [40] 41.2M 4042 ms
EfficientNet [41] 19.4M 1548 ms

EfficientNetV2 [42] 15.2M 1125 ms
DenseNet121 (transfer learning) [24] 7.1M 2165 ms

modified EfficientNetV2 [30] 14.4M 1053 ms
Proposed 685k 1010 ms

Table 8. Comparative analysis of the proposed method with other methods on FGVC8 regarding
computational complexity.

Model Parameter Time

Inception-ResNetV2 [18] 51.83M 4.8 h
SEResNet50 [43] 26.06M 4.1 h

PatchConvNet [44] 24.78M 6.5 h
ResMLP-S12 [45] 14.94M 4.5 h

CoAtNet [46] 16.99M 4.4 h
VAN-B0 [47] 3.85M 3.7 h

DenseNet-MFA [31] 9.45M 4.5 h
Proposed 516k 3.6 h

In Tables 9 and 10 we demonstrate the performance of the proposed method compared
with other methods in terms of average accuracy, average precision, average recall, and
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average F1-score. It can be seen that, for PlantVillage, our model achieved more advanced
results in terms of average accuracy, average precision, average recall, and average F1-score
compared to other methods. In detail, the average accuracy was 2.74–0.9% higher, the
average precision was 8.84–0.49% higher, the average recall was 6.84–0.49% higher, and
the average F1-score was 7.84–0.5% higher. The excellent performance demonstrated the
plant disease identification ability of the proposed model. It can be seen for FGVC8 that
our model achieved equally good results in recognizing plant disease images of realistic
scenes. Compared with other methods, the average accuracy was 11.59–0.54% higher, the
average precision was 10.43–1.45% higher, the average F1-score was 9.5–0.49% higher, and
the average recall achieved optimal results like those of other methods, all of which indicate
the excellent robustness of our model. Most importantly, our proposed model FoldNet
had only 516k parameters, which is lower than all other models, and required only 3.6 h
minimum operation time. This means it is possible to train and deploy the model faster,
which is important in real-time applications. Furthermore, the technology can be easily
ported to mobile or embedded devices, which offers tremendous promise for precision
agriculture development.

Table 9. Average values of deep-learning-based methods on PlantVillage dataset.

Model Accuracy Precision Recall F1-Score

ResNet50 0.982 0.94 0.94 0.94
DenseNet169 0.974 0.92 0.93 0.93

AlexNet (transfer learning) [22] 0.9928 0.9928 0.9927 0.9927
AlexNet (trained from scratch) 0.9782 0.9786 0.9782 0.9782

GoogleNet (transfer learning) [22] 0.9935 0.9935 0.9935 0.9934
GoogleNet (training from scratch) 0.9837 0.9839 0.9837 0.9836
DenseNet121 (transfer learning) 0.9975 - - -

MobileNet [20] 0.971 0.94 0.93 9.93
InceptionV3 [17] 0.971 0.92 0.94 0.93

Inception-ResNetV2 0.978 0.91 0.93 0.92
Module 4 [34] - 0.9878 0.9877 0.9877

Proposed 0.9984 0.9984 0.9984 0.9984

Table 10. Average values of deep-learning-based methods on the FGVC8.

Model Accuracy Precision Recall F1-Score

ResNet50 0.8664 0.8534 0.8664 0.8599
ResNet152 0.789 - - -

VGG16 0.83 - - -
DenseNet121 0.8704 0.8679 0.8704 0.8691
InceptionV3 0.803 - - -

MobileNetV2 [42] 0.8521 0.8513 0.8521 0.8517
Inception-ResNetV2 0.8590 0.8630 0.8590 0.8610

SEResNet50 0.8657 0.8504 0.8657 0.8580
PatchConvNet 0.8196 0.8007 0.8196 0.8100
ResMLP-S12 0.8535 0.8417 0.8535 0.8476

CoAtNet 0.8743 0.8653 0.8743 0.8698
VAN-B0 0.8853 0.8863 0.8853 0.8856

DenseNet-MFA 0.8995 0.8854 0.8995 0.8924
MobileNet + Xception +

InceptionResNet [48] 0.8731 0.8905 0.9100 0.9001

Proposed 0.9049 0.9049 0.9049 0.9049

6. Conclusions

In this study, we designed a lightweight deep isotropic neural network model, FoldNet,
to recognize plant disease images in controlled environments and realistic scenes. Within
this network model architecture, images are first segmented into a series of patches, which
are then passed to a repeating chain of blocks for automatic identification and classification
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of plant disease images. The proposed model has the same size and shape for all layers in
the whole network, which is achieved by folding the same block chains and then connecting
the blocks with skip connections at different distances. The model has multiple directly
connected paths in the whole network, can explore deeper layers, and thus can identify the
plant disease characteristics more accurately. Additionally, we used image preprocessing
techniques and sample-enhancement techniques to increase the size of the dataset and
improve the generalization of the model.

We evaluated the recognition performance of FoldNet for plant disease images of
the PlantVillage and FGVC8 datasets by adjusting its width h, depth n, and fold length
d. We found that the accuracy of FoldNet was positively correlated with its depth n and
fold length d, and it achieved the best recognition performance for the PlantVillage and
FGVC8 datasets when the width h equaled 128. Compared with several other state-of-
the-art models, FoldNet achieved competitive classification accuracy on the PlantVillage
and FGVC8 datasets with fewer parameters and less computational time. In summary,
FoldNet provides a lightweight, low-cost solution for plant disease identification oriented
to realistic scenarios.

Although our model can effectively capture minute features of plant diseases and en-
hance the ability to characterize diseases, there are still many aspects that can be improved.
To further improve the performance of the model, we plan to collect more realistic scenario
data of different types, parts, and stages of plant diseases in future work and develop more
efficient and accurate deep learning models that can not only distinguish multiple types of
plant diseases but also determine the stages of plant disease occurrence.
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