Effects of Graphene on Yield, Grain Quality, 2-AP Biosynthesis and Antioxidant Systems of Fragrant Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Details
2.2. Determination of Yield and Yield-Related Attributes
2.3. Determination of Grain Quality
2.4. Determination of 2-AP Content in Grains
2.5. Determination of Parameters Related to 2-AP Accumulation
2.6. Determination of Parameters Related to Antioxidant Reactions
2.7. Determination of Pigment Contents
2.8. Statistical Analysis
3. Results
3.1. Effect of Graphene Application on Yield and Yield-Related Attributes in Rice
3.2. Effect of Graphene Application on Grain Quality
3.3. Effect of Graphene Application on 2-AP Content in Grains
3.4. Effect of Graphene Application on Proline, P5C, and Pyrroline Content
3.5. Effect of Graphene Application on Activity of PDH and P5CS
3.6. Effect on Antioxidant Reaction Parameters
3.7. Effect of Graphene Application on the Photosynthetic Pigments Contents
3.8. Correlation Analysis
3.9. Path Analysis
4. Discussion
4.1. Effects of Different Graphene Treatments on the Rice Yield
4.2. Effects of Different Graphene Treatments on the Grain Quality
4.3. Effects of Different Graphene Treatments on 2-AP Content in Grains
4.4. Effects of Different Graphene Treatments on the Antioxidant Response of Fragrant Rice Leaves
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mo, Z.; Lei, S.; Ashraf, U.; Khan, I.; Li, Y.; Pan, S.; Duan, M.; Tian, H.; Tang, X. Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. J. Cereal Sci. 2017, 75, 17–24. [Google Scholar] [CrossRef]
- Du, P.; Luo, H.; He, J.; Mao, T.; Du, B.; Hu, L. Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice. BMC Plant Biol. 2019, 19, 308. [Google Scholar] [CrossRef] [Green Version]
- Gui, R.; Chen, Y.; Jiang, Y.; Li, L.; Wang, Z.; Pan, S.; Zhang, M.; Tang, X.; Mo, Z. Deep placement of liquid fertilizer at tillering stage influences grain quality, 2-acetyl-1-pyrroline synthesis, and antioxidant response of fragrant rice. Field Crop. Res. 2022, 289, 108716. [Google Scholar] [CrossRef]
- Ruan, S.; Wu, F.; Lai, R.; Tang, X.; Luo, H.; He, L. Preliminary Application of Vermicompost in Rice Production: Effects of Nursery Raising with Vermicompost on Fragrant Rice Performances. Agronomy 2021, 11, 1253. [Google Scholar] [CrossRef]
- Routray, W.; Rayaguru, K. 2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products. Food Rev. Int. 2018, 34, 539–565. [Google Scholar] [CrossRef]
- Kasote, D.; Singh, V.K.; Bollinedi, H.; Singh, A.K.; Sreenivasulu, N.; Regina, A. Profiling of 2-Acetyl-1-Pyrroline and Other Volatile Compounds in Raw and Cooked Rice of Traditional and Improved Varieties of India. Foods 2021, 10, 1917. [Google Scholar] [CrossRef] [PubMed]
- Maraval, I.; Mestres, C.; Pernin, K.; Ribeyre, F.; Boulanger, R.; Guichard, E.; Gunata, Z. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC-O and GC-MS. J. Agric. Food Chem. 2008, 56, 5291–5298. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Li, Y.; Nie, J.; He, L.; Pan, S.; Duan, M.; Tian, H.; Xiao, L.; Zhong, K.; Tang, X. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. Rice 2019, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Yoshihashi, T.; Huong, N.T.T.; Inatomi, H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 2002, 50, 2001–2004. [Google Scholar] [CrossRef]
- Huang, T.-C.; Teng, C.-S.; Chang, J.-L.; Chuang, H.-S.; Ho, C.-T.; Wu, M.-L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J. Agric. Food Chem. 2008, 56, 7399–7404. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Shi, W.; Ji, Q.; He, F.; Zhang, Z.; Cheng, Z.; Liu, X.; Xu, M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 2008, 20, 1850–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangthaisong, P.; Sookgul, P.; Wanchana, S.; Arikit, S.; Malumpong, C. Abiotic Stress at the Early Grain Filling Stage Affects Aromatics, Grain Quality and Grain Yield in Thai Fragrant Rice (Oryza sativa) Cultivars. Agric. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Luo, H.; He, L.; Du, B.; Pan, S.; Mo, Z.; Duan, M.; Tian, H.; Tang, X. Biofortification with chelating selenium in fragrant rice: Effects on photosynthetic rates, aroma, grain quality and yield formation. Field Crop. Res. 2020, 255, 107909. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, Y.; Liang, F.; Li, Q.; Zhao, Q.; He, Y.; Lin, X.; Qin, X.; Cheng, S. Effect of foliar copper application on grain yield, 2-acetyl-1-Pyrroline and copper content in fragrant rice. Plant Physiol. Biochem. 2022, 182, 154–166. [Google Scholar] [CrossRef]
- Verma, S.K.; Das, A.K.; Gantait, S.; Kumar, V.; Gurel, E. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. Sci. Total Environ. 2019, 667, 485–499. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Qian, L.; Zhou, K.; Hu, R.; Huang, M.; Wang, M.; Zhao, G.; Liu, Y.; Xu, Z.; Zhu, H. Graphene Oxide Promoted Cadmium Uptake by Rice in Soil. ACS Sustain. Chem. Eng. 2019, 7, 10283–10292. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, Z.; He, K. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloid. Surf. B Biointerfaces 2019, 173, 632–638. [Google Scholar] [CrossRef]
- An, D.; Liu, B.; Yang, L.; Wang, T.-J.; Kan, C. Fabrication of graphene oxide/polymer latex composite film coated on KNO3 fertilizer to extend its release duration. Chem. Eng. J. 2017, 311, 318–325. [Google Scholar] [CrossRef]
- Kabiri, S.; Degryse, F.; Tran, D.N.H.; da Silva, R.C.; McLaughlin, M.J.; Losic, D. Graphene Oxide: A New Carrier for Slow Release of Plant Micronutrients. ACS Appl. Mater. Interfaces 2017, 9, 43325–43335. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, Q. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (Medicago sativa L.). Plant Physiol. Biochem. 2021, 163, 128–138. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, J.; Wang, R.; Zhang, H.; Xing, B.; Naeem, M.; Yao, T.; Li, R.; Xu, R.; Zhang, Z.; et al. Effects of graphene oxide on tomato growth in different stages. Plant Physiol. Biochem. 2021, 162, 447–455. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Fu, X.; Liu, A.; Cao, J.; Liu, J. Graphene Oxide, a Novel Nanomaterial as Soil Water Retention Agent, Dramatically Enhances Drought Stress Tolerance in Soybean Plants. Front. Plant Sci. 2022, 13, 810905. [Google Scholar] [CrossRef] [PubMed]
- Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wei, H.; Li, Z.; Li, S.; Yan, H.; He, Y.; Tian, Z. Effects of Graphene on Germination and Seedling Morphology in Rice. J. Nanosci. Nanotechnol. 2015, 15, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Fang, Z.; Cheng, X.; Wu, Y.; Mo, L.; Yan, C.; Zhou, L.; Ren, Y. Modulation of Antioxidant Attributes and Grain Yield in Fragrant Rice by Exogenous Cu Application. J. Plant Growth Regul. 2023, 42, 1444–1456. [Google Scholar] [CrossRef]
- Li, M.; Ashraf, U.; Tian, H.; Mo, Z.; Pan, S.; Anjum, S.A.; Duan, M.; Tang, X. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol. Biochem. 2016, 103, 167–175. [Google Scholar] [CrossRef]
- Tian, P.; Liu, S.; Zhao, X.; Sun, Z.; Yao, X.; Niu, S.; Crowther, T.W.; Wang, Q. Past climate conditions predict the influence of nitrogen enrichment on the temperature sensitivity of soil respiration. Commun. Earth Environ. 2021, 2, 251. [Google Scholar] [CrossRef]
- Younes, N.A.; Dawood, M.F.A.; Wardany, A.A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits of Capsicum annuum L. and Solanum melongena L. Chemosphere 2019, 228, 318–327. [Google Scholar] [CrossRef]
- Park, S.; Choi, K.S.; Kim, S.; Gwon, Y.; Kim, J. Graphene Oxide-Assisted Promotion of Plant Growth and Stability. Nanomaterials 2020, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Guo, Z.; Luo, W.; Monikh, F.A.; Xie, C.; Valsami-Jones, E.; Lynch, I.; Zhang, Z. Graphene Oxide-Induced pH Alteration, Iron Overload, and Subsequent Oxidative Damage in Rice (Oryza sativa L.): A New Mechanism of Nanomaterial Phytotoxicity. Environ. Sci. Technol. 2020, 54, 3181–3190. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, C.; Chen, F.; Yue, L.; Cao, X.; Liu, X.; Yao, Y.; Wang, Z.; Xing, B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. Sci. Total Environ. 2022, 824, 153712. [Google Scholar] [CrossRef]
- Gao, M.; Xu, Y.; Chang, X.; Dong, Y.; Song, Z. Effects of foliar application of graphene oxide on cadmium uptake by lettuce. J. Hazard. Mater. 2020, 398, 122859. [Google Scholar] [CrossRef]
- Park, S.-G.; Park, H.-S.; Baek, M.-K.; Jeong, J.-M.; Cho, Y.-C.; Lee, G.-M.; Lee, C.-M.; Suh, J.-P.; Kim, C.-S.; Kim, S.-M. Improving the Glossiness of Cooked Rice, an Important Component of Visual Rice Grain Quality. Rice 2019, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yuan, H.; Ji, H.; Liu, H.; Zhang, Y.; Wang, G.; Chen, L.; Guo, Z. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiol. Biochem. 2021, 163, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Potcho, P.M.; Imran, M.; Korohou, T.; Kamara, N.; Tang, X.R. Fertilizer Deep Placement Significantly Affected Yield, Rice Quality, 2-AP Biosynthesis and Physiological Characteristics of the Fragrant Rice Cultivars. Agronomy 2022, 12, 162. [Google Scholar] [CrossRef]
- Xie, W.; Li, Y.; Li, Y.; Ma, L.; Ashraf, U.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. Application of gamma-aminobutyric acid under low light conditions: Effects on yield, aroma, element status, and physiological attributes of fragrant rice. Ecotoxicol. Environ. Saf. 2021, 213, 111941. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Y.; Zhang, R.; Liu, G.; Wei, H.; Zhang, H.; Zhang, H. Mid-stage nitrogen application timing regulates yield formation, quality traits and 2-acetyl-1-pyrroline biosynthesis of fragrant rice. Field Crop. Res. 2022, 287, 108667. [Google Scholar] [CrossRef]
- Imran, M.; Shafiq, S.; Ashraf, U.; Qi, J.; Mo, Z.; Tang, X. Biosynthesis of 2-Acetyl-1-pyrroline in Fragrant Rice: Recent Insights into Agro-management, Environmental Factors, and Functional Genomics. J. Agric. Food Chem. 2023, 71, 4201–4215. [Google Scholar] [CrossRef]
- Xie, W.; Kong, L.; Ma, L.; Ashraf, U.; Pan, S.; Duan, M.; Tian, H.; Wu, L.; Tang, X.; Mo, Z. Enhancement of 2-acetyl-1-pyrroline (2AP) concentration, total yield, and quality in fragrant rice through exogenous γ-aminobutyric acid (GABA) application. J. Cereal Sci. 2020, 91, 102900. [Google Scholar] [CrossRef]
- Zhao, L.; Bai, T.; Wei, H.; Gardea-Torresdey, J.L.; Keller, A.; White, J.C. Nanobiotechnology-based strategies for enhanced crop stress resilience. Nat. Food 2022, 3, 829–836. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Harrach, B.D.; Pogany, M.; Kiraly, Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol. Biochem. 2012, 59, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bucinska, L.; Kiss, E.; Konik, P.; Knoppova, J.; Komenda, J.; Sobotka, R. The Ribosome-Bound Protein Pam68 Promotes Insertion of Chlorophyll into the CP47 Subunit of Photosystem II. Plant Physiol. 2018, 176, 2931–2942. [Google Scholar] [PubMed] [Green Version]
- Lu, K.; Shen, D.; Dong, S.; Chen, C.; Lin, S.; Lu, S.; Xing, B.; Mao, L. Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Res. 2020, 13, 3198–3205. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, R.; Fang, X.; Song, T.; Cai, X.; Liu, H.; Du, S. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): Short- and long-term exposure studies. J. Hazard. Mater. 2016, 317, 543–551. [Google Scholar] [CrossRef]
- Barrera, G.; Pizzimenti, S.; Daga, M.; Dianzani, C.; Arcaro, A.; Cetrangolo, G.P.; Giordano, G.; Cucci, M.A.; Graf, M.; Gentile, F. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants 2018, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Asli, S.; Neumann, P.M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009, 32, 577–584. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, H.; Wang, H.; Zhao, J.; Gao, K.; Qiao, J.; Li, J.; Ge, S. The Effects of Graphene-Family Nanomaterials on Plant Growth: A Review. Nanomaterials 2022, 12, 936. [Google Scholar] [CrossRef]
Season | Cultivar | Treatment | Panicle Number per Hill | Grains per Panicle | Filled Grains Rate (%) | 1000-Grain Weight (g) | Yield (g/pot) |
---|---|---|---|---|---|---|---|
Early season | 19× | CK | 7.17 | 101.17 ab | 75.46 | 20.91 | 61.16 |
T1 | 7.33 | 107.10 a | 77.03 | 22.34 a | 62.94 | ||
T2 | 7.50 | 103.77 ab | 85.08 | 21.34 ab | 58.75 | ||
T3 | 7.00 | 95.98 b | 80.09 | 20.67 | 59.25 | ||
Meixiangzhan | CK | 9.00 | 83.12 ab | 89.10 ± 1.78 ab | 19.84 | 48.60 | |
T1 | 9.33 | 90.46 a | 90.47 ± 1.19 a | 21.08 | 53.76 | ||
T2 | 8.83 | 76.66 b bc | 86.46 ± 2.45 ab | 20.41 ab | 50.72 | ||
T3 | 9.17 | 73.43 c | 84.62 ± 1.28 c | 19.76 b | 47.88 | ||
Late season | 19× | CK | 6.83 | 104.84 | 62.67 a | 20.64 ab | 39.57 b |
T1 | 7.50 | 121.42 | 65.52 a | 20.93 ab | 48.66 a | ||
T2 | 6.67 | 105.01 | 64.26 a | 21.08 a | 45.19 ab | ||
T3 | 6.50 | 102.18 | 62.58 a | 20.26 b | 41.11 b | ||
Meixiangzhan | CK | 7.00 | 76.85 ab | 73.36 ± 1.19 b | 17.21 b | 34.13 ab | |
T1 | 7.67 | 81.77 a | 77.44 ± 1.45 a | 17.81 a | 37.42 a | ||
T2 | 7.50 | 78.44 a | 73.90 ± 1.46 b | 17.75 a | 35.12 ab | ||
T3 | 7.33 | 69.25 b | 70.82 ± 2.17 b | 17.05 b | 32.63 b | ||
ANOVE | S | * | ns | ** | ** | ** | |
C | ** | ** | ** | ** | ** | ||
T | ** | ** | ** | ** | ** | ||
S × C | ** | * | ns | ** | ns | ||
S × T | ns | ns | ns | ns | * | ||
C × T | Ns | ns | ** | ns | ns | ||
S × C × T | Ns | * | ** | ns | ** |
Season | Cultivar | Treatment | Head Rice Rate (%) | Chalkiness Degree (%) | Protein Content (%) | Amylose Content (%) |
---|---|---|---|---|---|---|
Early season | 19× | CK | 40.07 ± 1.06 b | 14.68 ± 1.99 a | 6.70 ± 0.08 b | 16.60 ± 0.10 b |
T1 | 42.05 ± 0.55 a | 9.34 ± 0.87 b | 7.10 ± 0.08 a | 17.10 ± 0.26 a | ||
T2 | 41.52 ± 0.99 ab | 9.86 ± 0.59 b | 6.75 ± 0.17 b | 16.53 ± 0.23 b | ||
T3 | 41.10 ± 0.49 ab | 10.46 ± 1.38 b | 6.93 ± 0.21 ab | 16.40 ± 0.20 b | ||
Meixiangzhan | CK | 31.76 ± 0.45 c | 22.50 ± 1.23 bc | 7.03 ± 0.05 c | 16.53 ± 0.47 a | |
T1 | 33.71 ± 0.76 b | 20.22 ± 1.56 c | 7.10 ± 0.05 bc | 16.27 ± 0.38 a | ||
T2 | 34.10 ± 0.31 b | 23.14 ± 1.80 ab | 7.30 ± 0.08 a | 16.10 ± 0.26 a | ||
T3 | 35.17 ± 0.50 a | 25.27 ± 0.60 a | 7.23 ± 0.10 ab | 15.93 ± 0.15 a | ||
Late season | 19× | CK | 54.18 ± 0.57 b | 3.71 ± 0.56 a | 6.73 ± 0.05 c | 18.57 ± 0.23 ab |
T1 | 56.67 ± 0.75 a | 2.21 ± 0.24 b | 6.75 ± 0.06 bc | 18.80 ± 0.10 a | ||
T2 | 55.49 ± 0.55 ab | 2.87 ± 0.44 ab | 7.03 ± 0.05 a | 18.30 ± 0.10 b | ||
T3 | 54.17 ± 1.04 b | 3.52 ± 0.74 a | 6.85 ± 0.10 b | 18.50 ± 0.10 b | ||
Meixiangzhan | CK | 62.26 ± 0.69 b | 9.10 ± 0.08 c | 7.10 ± 0.08 a | 18.47 ± 0.15 a | |
T1 | 63.52 ± 0.50 a | 10.30 ± 1.00 c | 7.13 ± 0.10 a | 17.80 ± 0.20 b | ||
T2 | 64.23 ± 0.87 a | 12.17 ± 0.74 b | 7.15 ± 0.13 a | 17.93 ± 0.21 b | ||
T3 | 63.94 ± 0.40 a | 15.00 ± 1.22 a | 7.20 ± 0.14 a | 17.90 ± 0.10 b | ||
ANOVE | S | ** | ** | ns | ** | |
C | ** | ** | ** | ** | ||
T | ** | ** | ** | ** | ||
S × C | ** | ** | ns | ns | ||
S × T | ns | ** | ns | ns | ||
C × T | ** | ** | ns | ** | ||
S × C × T | ns | ns | ** | ns |
S | C | T | S × C | S × T | C × T | S × C × T | |
---|---|---|---|---|---|---|---|
2-AP | ** | * | ** | ns | ** | ** | ns |
Proline | * | ns | ** | ns | ns | * | ** |
P5C | ns | ** | ** | ns | ns | ns | ns |
Pyrroline | ** | ns | ** | * | * | ns | ns |
PDH | ns | ** | ** | ns | ** | ** | ns |
P5CS | ns | ns | ** | ns | * | * | ** |
POD | ns | ns | ** | ns | ns | ns | ** |
SOD | ** | ns | ** | ns | ** | ** | ** |
CAT | * | * | * | ** | ** | ns | * |
MDA | ** | ns | ** | ns | ns | ** | ns |
Chlorophyll a | ** | ** | ** | ns | ** | ** | ** |
Chlorophyll b | ** | ns | ** | ** | ** | ** | ** |
Total chlorophyll | ** | * | ** | ns | ** | ** | ** |
Carotenoid | ** | ns | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, S.; Cui, B.; Zhang, X.; Wei, J.; Pan, S.; Mo, Z.; Tian, H.; Duan, M.; Tang, X. Effects of Graphene on Yield, Grain Quality, 2-AP Biosynthesis and Antioxidant Systems of Fragrant Rice. Agronomy 2023, 13, 1894. https://doi.org/10.3390/agronomy13071894
Tong S, Cui B, Zhang X, Wei J, Pan S, Mo Z, Tian H, Duan M, Tang X. Effects of Graphene on Yield, Grain Quality, 2-AP Biosynthesis and Antioxidant Systems of Fragrant Rice. Agronomy. 2023; 13(7):1894. https://doi.org/10.3390/agronomy13071894
Chicago/Turabian StyleTong, Shaojie, Baoling Cui, Xuechan Zhang, Jianjiao Wei, Shenggang Pan, Zhaowen Mo, Hua Tian, Meiyang Duan, and Xiangru Tang. 2023. "Effects of Graphene on Yield, Grain Quality, 2-AP Biosynthesis and Antioxidant Systems of Fragrant Rice" Agronomy 13, no. 7: 1894. https://doi.org/10.3390/agronomy13071894
APA StyleTong, S., Cui, B., Zhang, X., Wei, J., Pan, S., Mo, Z., Tian, H., Duan, M., & Tang, X. (2023). Effects of Graphene on Yield, Grain Quality, 2-AP Biosynthesis and Antioxidant Systems of Fragrant Rice. Agronomy, 13(7), 1894. https://doi.org/10.3390/agronomy13071894