Ethylene Signaling Pathway Genes in Strawberry and Their Expression Patterns during Fruit Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Screening of Ethylene Signaling Pathway Genes in Strawberry
2.3. Physicochemical Property and Subcellular Localization Analysis
2.4. Chromosomal Mapping and Phylogenetic Tree Analysis
2.5. Gene Structure and Conserved Motif Analysis
2.6. Protein–Protein Interaction Network Prediction
2.7. Transcriptome Analysis during Fruit Development and Ripening
2.8. RNA Extraction, cDNA Synthesis and qRT-PCR
3. Results
3.1. Identification and Characterization of Ethylene Signaling Pathway Genes in Strawberry
3.2. Chromosomal Localization and Phylogenetic Tree
3.3. Gene Structure and Conserved Motif
3.4. Protein–Protein Interaction Network Analysis
3.5. Expression Profiles during Fruit Ripening
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bleecker, A.B.; Kende, H. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 2000, 16, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merchante, C.; Alonso, J.M.; Stepanova, A.N. Ethylene signaling: Simple ligand, complex regulation. Curr. Opin. Plant Biol. 2013, 16, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Husain, T.; Fatima, A.; Suhel, M.; Singh, S.; Sharma, A.; Prasad, S.M.; Singh, V.P. A brief appraisal of ethylene signaling under abiotic stress in plants. Plant Signal. Behav. 2020, 15, 1782051. [Google Scholar] [CrossRef] [PubMed]
- Broekgaarden, C.; Caarls, L.; Vos, I.A.; Pieterse, C.M.; Van Wees, S.C. Ethylene: Traffic controller on hormonal crossroads to defense. Plant Physiol. 2015, 169, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.F.; Hoffman, N.E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Guo, H.; Ecker, J.R. The ethylene signaling pathway: New insights. Curr. Opin. Plant Biol. 2004, 7, 40–49. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef]
- Schaller, G.E. Ethylene and the regulation of plant development. BMC Biol. 2012, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, M.; Liu, M.; Su, D.; Chen, J.; Gao, Y.; Bouzayen, M.; Li, Z. The molecular regulation of ethylene in fruit ripening. Small Methods 2020, 4, 1900485. [Google Scholar] [CrossRef]
- Chen, T.; Qin, G.; Tian, S. Regulatory network of fruit ripening: Current understanding and future challenges. New Phytol. 2020, 228, 1219–1226. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, Q.; Zhu, H. Towards a better understanding of fruit ripening: Crosstalk of hormones in the regulation of fruit ripening. Front. Plant Sci. 2023, 14, 1173877. [Google Scholar] [CrossRef]
- Yin, X.-R.; Chen, K.-S.; Allan, A.C.; Wu, R.-M.; Zhang, B.; Lallu, N.; Ferguson, I.B. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J. Exp. Bot. 2008, 59, 2097–2108. [Google Scholar] [CrossRef] [Green Version]
- Jourda, C.; Cardi, C.; Mbéguié-A-Mbéguié, D.; Bocs, S.; Garsmeur, O.; D’Hont, A.; Yahiaoui, N. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. New Phytol. 2014, 202, 986–1000. [Google Scholar] [CrossRef]
- Tieman, D.M.; Ciardi, J.A.; Taylor, M.G.; Klee, H.J. Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J. 2001, 26, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J. Am. Soc. Hortic. Sci. 2014, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Yuan, B.; Zhang, M.; Wang, L.; Cui, M.; Wang, Q.; Leng, P. Fruit-specific rnai-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J. Exp. Bot. 2012, 63, 3097–3108. [Google Scholar] [CrossRef] [Green Version]
- Mou, W.; Li, D.; Bu, J.; Jiang, Y.; Khan, Z.U.; Luo, Z.; Mao, L.; Ying, T. Comprehensive analysis of aba effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS ONE 2016, 11, e0154072. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Bai, J.; Tao, X.; Mou, W.; Luo, Z.; Mao, L.; Ban, Z.; Ying, T.; Li, L. Synergistic effect of abscisic acid and ethylene on color development in tomato (Solanum lycopersicum L.) fruit. Sci. Hortic. 2018, 235, 169–180. [Google Scholar] [CrossRef]
- Mou, W.; Li, D.; Luo, Z.; Li, L.; Mao, L.; Ying, T. SlAREB1 transcriptional activation of nor is involved in abscisic acid-modulated ethylene biosynthesis during tomato fruit ripening. Plant Sci. 2018, 276, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Feng, Y.; Yuan, S.; Zhao, X.; Wu, C.; Wang, C.; Xue, Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: A review. Plant Mol. Biol. 2021, 107, 477–497. [Google Scholar] [CrossRef]
- Bai, Q.; Huang, Y.; Shen, Y. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Front. Plant Sci. 2021, 11, 619953. [Google Scholar] [CrossRef]
- Chervin, C.; El-Kereamy, A.; Roustan, J.-P.; Latché, A.; Lamon, J.; Bouzayen, M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Fan, X.; Mattheis, J.P. Responses of ‘Bing’and ‘Rainier’ sweet cherries to ethylene and 1-methylcyclopropene. J. Am. Soc. Hortic. Sci. 2002, 127, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Cherian, S.; Figueroa, C.R.; Nair, H. ‘Movers and shakers’ in the regulation of fruit ripening: A cross-dissection of climacteric versus non-climacteric fruit. J. Exp. Bot. 2014, 65, 4705–4722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Grimplet, J.; David, K.; Castellarin, S.D.; Terol, J.; Wong, D.C.; Luo, Z.; Schaffer, R.; Celton, J.-M.; Talon, M. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Sci. 2018, 276, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Lichter, A.; Chalupowicz, D.; Gamrasni, D.; Goldberg, T.; Nerya, O.; Ben-Arie, R.; Porat, R. Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biol. Technol. 2016, 111, 322–329. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Li, Z.; Liu, M. Role of ethylene response factors (ERFs) in fruit ripening. Food Qual. Saf. 2020, 4, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.-L.; Shen, S.-L.; Yin, X.-R.; Xu, Q.; Sun, C.-D.; Grierson, D.; Ferguson, I.; Chen, K.-S. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Mol. Biol. Rep. 2014, 41, 4261–4271. [Google Scholar] [CrossRef] [PubMed]
- Kuang, J.-F.; Chen, J.-Y.; Luo, M.; Wu, K.-Q.; Sun, W.; Jiang, Y.-M.; Lu, W.-J. Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence. J. Exp. Bot. 2012, 63, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.-F.; Chai, Y.-M.; Li, C.-L.; Lu, D.; Luo, J.-J.; Qin, L.; Shen, Y.-Y. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 2011, 157, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, N.M.; Bustamante, C.A.; Civello, P.M.; Martínez, G.A. Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J. Sci. Food Agric. 2010, 90, 683–689. [Google Scholar] [CrossRef]
- Villarreal, N.M.; Marina, M.; Nardi, C.F.; Civello, P.M.; Martínez, G.A. Novel insights of ethylene role in strawberry cell wall metabolism. Plant Sci. 2016, 252, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Balogh, A.; Koncz, T.; Tisza, V.; Kiss, E.; Heszky, L. The effect of 1-MCP on the expression of several ripening-related genes in strawberries. HortScience 2005, 40, 2088–2090. [Google Scholar] [CrossRef]
- Sun, J.-H.; Luo, J.-J.; Tian, L.; Li, C.-L.; Xing, Y.; Shen, Y.-Y. New evidence for the role of ethylene in strawberry fruit ripening. J. Plant Growth Regul. 2013, 32, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Trainotti, L.; Pavanello, A.; Casadoro, G. Different ethylene receptors show an increased expression during the ripening of strawberries: Does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J. Exp. Bot. 2005, 56, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, C.; Deng, M.; Li, S.; Chen, Y.; Gu, X.; Tang, G.; Lin, Y.; Wang, Y.; He, W.; et al. Genome-wide analysis of the erf family and identification of potential genes involved in fruit ripening in octoploid strawberry. Int. J. Mol. Sci. 2022, 23, 10550. [Google Scholar] [CrossRef]
- Li, D.; Li, L.; Luo, Z.; Mou, W.; Mao, L.; Ying, T. Comparative transcriptome analysis reveals the influence of abscisic acid on the metabolism of pigments, ascorbic acid and folic acid during strawberry fruit ripening. PLoS ONE 2015, 10, e0130037. [Google Scholar] [CrossRef]
- Zhao, F.; Li, G.; Hu, P.; Zhao, X.; Li, L.; Wei, W.; Feng, J.; Zhou, H. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci. Rep. 2018, 8, 2721. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yu, H.; Wang, X.; Xie, X.; Yue, X.; Tang, H. An alternative cetyltrimethylammonium bromide-based protocol for rna isolation from blackberry (Rubus L.). Genet. Mol. Res. 2012, 11, 1773–1782. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Zou, D.; Li, J.; Huang, Y.; Zheng, X.; Tan, B.; Cheng, J.; Wang, W.; Zhang, L.; et al. Ethylene accelerates grape ripening via increasing VvERF75-induced ethylene synthesis and chlorophyll degradation. Fruit Res. 2023, 3, 3. [Google Scholar] [CrossRef]
- Chaudhary, P.R.; Jayaprakasha, G.; Patil, B.S. Ethylene degreening modulates health promoting phytochemicals in Rio red grapefruit. Food Chem. 2015, 188, 77–83. [Google Scholar] [CrossRef]
- Rodrigo, M.J.; Zacarias, L. Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biol. Technol. 2007, 43, 14–22. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Huang, X. Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul. 2007, 52, 189–198. [Google Scholar] [CrossRef]
- Farneti, B.; Khomenko, I.; Ajelli, M.; Emanuelli, F.; Biasioli, F.; Giongo, L. Ethylene production affects blueberry fruit texture and storability. Front. Plant Sci. 2022, 13, 813863. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.V.; Almeida, D.P.; Pintado, M. Effect of postharvest application of ethylene on the profile of phenolic acids and anthocyanins in three blueberry cultivars (Vaccinium corymbosum). J. Sci. Food Agric. 2018, 98, 5052–5061. [Google Scholar] [CrossRef]
- Cao, Y.; Han, Y.; Meng, D.; Li, D.; Jin, Q.; Lin, Y.; Cai, Y. Genome-wide analysis suggests high level of microsynteny and purifying selection affect the evolution of EIN3/EIL family in Rosaceae. PeerJ 2017, 5, e3400. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhao, A.; Zhu, P.; Li, J.; Han, L.; Wang, X.; Fan, W.; Lü, R.; Wang, C.; Li, Z.; et al. Characterization and expression of genes involved in the ethylene biosynthesis and signal transduction during ripening of mulberry fruit. PLoS ONE 2015, 10, e0122081. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Wang, Y.; Pan, L.; Niu, L.; Lu, Z.; Cui, G.; Zeng, W.; Wang, Z. Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Sci. Hortic. 2017, 224, 306–316. [Google Scholar] [CrossRef]
- Liu, M.; Pirrello, J.; Chervin, C.; Roustan, J.-P.; Bouzayen, M. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiol. 2015, 169, 2380–2390. [Google Scholar] [CrossRef] [Green Version]
- Chervin, C.; Deluc, L. Ethylene signalling receptors and transcription factors over the grape berry development: Gene expression profiling. Vitis 2010, 49, 129–136. [Google Scholar]
- Yaghobi, M.; Heidari, P. Genome-wide analysis of aquaporin gene family in triticum turgidum and its expression profile in response to salt stress. Genes 2023, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Hashemipetroudi, S.H.; Arab, M.; Heidari, P.; Kuhlmann, M. Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment. Front. Plant Sci. 2023, 14, 1112354. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Y.; Jiang, L.; Lin, Y.; Gu, X.; Chen, Q.; Sun, B.; Zhang, Y.; Luo, Y.; Wang, Y.; et al. Genome-wide characterization of snf1-related protein kinases (snrks) and expression analysis of snrk1. 1 in strawberry. Genes 2020, 11, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Xiong, J.-S.; Jiang, Y.-T.; Wang, L.; Cheng, Z.-M. Evolution of the R2R3-MYB gene family in six Rosaceae species and expression in woodland strawberry. J. Integr. Agric. 2019, 18, 2753–2770. [Google Scholar] [CrossRef]
- Ahmadizadeh, M.; Rezaee, S.; Heidari, P. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in Camelina sativa. Gene Rep. 2020, 21, 100894. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, B.; Leng, X.; Sun, X.; Shangguan, L.; Jia, H.; Fang, J. Comparison and verification of the genes involved in ethylene biosynthesis and signaling in apple, grape, peach, pear and strawberry. Acta Physiol. Plant. 2016, 38, 44. [Google Scholar]
- Chen, C.; Zhang, M.; Zhang, M.; Yang, M.; Dai, S.; Meng, Q.; Lv, W.; Zhuang, K. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. Plant Physiol. 2023, 192, kiad151. [Google Scholar] [CrossRef]
- Peng, J.; Li, Z.; Wen, X.; Li, W.; Shi, H.; Yang, L.; Zhu, H.; Guo, H. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet. 2014, 10, e1004664. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Li, C.; Yuan, Y.; Zhao, M.; Li, J. Xyloglucan endotransglucosylase/hydrolase genes LcXTH4/7/19 are involved in fruitlet abscission and are activated by LcEIL2/3 in litchi. Physiol. Plant. 2021, 173, 1136–1146. [Google Scholar] [CrossRef]
- Ma, X.; Ying, P.; He, Z.; Wu, H.; Li, J.; Zhao, M. The LcKNAT1-LcEIL2/3 regulatory module is involved in fruitlet abscission in litchi. Front. Plant Sci. 2022, 12, 3258. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yuan, Y.; Wu, Q.; Wang, J.; Li, J.; Zhao, M. LcEIL2/3 are involved in fruitlet abscission via activating genes related to ethylene biosynthesis and cell wall remodeling in litchi. Plant J. 2020, 103, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-J.; Grierson, D.; Shi, Y.; Chen, K.-S. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. Hortic. Res. 2022, 9, uhac089. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fan, D.; Hao, Q.; Jia, W. Signal transduction in non-climacteric fruit ripening. Hortic. Res. 2022, 9, uhac190. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Joyce, D.C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul. 2003, 39, 171–174. [Google Scholar] [CrossRef]
Name | Protein Size | MW (Da) | Theoretical pI | Instability Index | Aliphatic Index | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|
FaETR1 | 741 | 83,123.00 | 6.97 | 49.44 | 108.49 | 0.120 | ER |
FaETR2 | 741 | 83,037.96 | 6.82 | 49.72 | 109.01 | 0.135 | ER |
FaETR3 | 741 | 83,162.03 | 7.15 | 49.57 | 108.10 | 0.106 | ER |
FaETR4 | 633 | 70,886.33 | 6.11 | 36.77 | 105.34 | 0.109 | ER |
FaETR5 | 633 | 70,856.21 | 5.83 | 36.41 | 105.34 | 0.104 | ER |
FaETR6 | 633 | 70,805.21 | 6.04 | 36.21 | 105.04 | 0.117 | ER |
FaETR7 | 553 | 62,261.50 | 5.92 | 37.50 | 108.05 | 0.126 | ER |
FaETR8 | 741 | 83,152.04 | 7.14 | 49.01 | 108.35 | 0.116 | ER |
FaETR9 | 765 | 84,496.32 | 6.66 | 40.47 | 103.20 | 0.132 | ER |
FaETR10 | 765 | 84,601.37 | 6.49 | 40.22 | 102.30 | 0.123 | ER |
FaETR11 | 765 | 84,544.39 | 6.49 | 40.37 | 102.30 | 0.124 | ER |
FaETR12 | 774 | 86,848.73 | 6.31 | 40.41 | 97.07 | 0.017 | ER |
FaETR13 | 769 | 86,328.16 | 6.80 | 44.43 | 97.20 | 0.013 | ER |
FaETR14 | 774 | 87,072.14 | 7.25 | 44.55 | 96.45 | 0.002 | ER |
FaETR15 | 774 | 86,920.84 | 6.41 | 42.38 | 97.07 | 0.016 | ER |
Name | Protein Size | MW (Da) | Theoretical pI | Instability Index | Aliphatic Index | GRAVY | Subcellular Location |
---|---|---|---|---|---|---|---|
FaEIN1 | 616 | 69,685.51 | 5.41 | 47.26 | 61.09 | −0.690 | nucleus |
FaEIN2 | 618 | 70,050.05 | 5.47 | 47.89 | 62.14 | −0.677 | nucleus |
FaEIN3 | 618 | 69,906.89 | 5.52 | 46.86 | 61.50 | −0.675 | nucleus |
FaEIN4 | 617 | 69,732.66 | 5.53 | 47.91 | 62.40 | −0.668 | nucleus |
FaEIN5 | 602 | 67,753.36 | 5.09 | 49.95 | 65.76 | −0.633 | nucleus |
FaEIN6 | 602 | 67,664.21 | 5.17 | 50.03 | 64.80 | −0.657 | nucleus |
FaEIN7 | 593 | 66,308.72 | 5.62 | 56.76 | 71.21 | −0.732 | nucleus |
FaEIN8 | 593 | 66,332.72 | 5.50 | 53.83 | 70.56 | −0.732 | nucleus |
FaEIN9 | 797 | 88,258.07 | 6.13 | 51.47 | 77.06 | −0.533 | nucleus |
FaEIN10 | 590 | 66,162.56 | 5.68 | 55.08 | 70.42 | −0.749 | nucleus |
FaEIN11 | 449 | 50,979.55 | 5.10 | 43.40 | 77.71 | −0.607 | nucleus |
FaEIN12 | 232 | 26,951.89 | 5.94 | 55.40 | 85.30 | −0.674 | nucleus |
FaEIN13 | 408 | 46,862.97 | 5.11 | 46.53 | 73.55 | −0.682 | nucleus |
FaEIN14 | 275 | 31,453.79 | 6.20 | 43.51 | 61.35 | −0.589 | nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Deng, M.; Gu, X.; Guo, C.; Chen, Y.; Lin, Y.; Chen, Q.; Wang, Y.; Zhang, Y.; Luo, Y.; et al. Ethylene Signaling Pathway Genes in Strawberry and Their Expression Patterns during Fruit Ripening. Agronomy 2023, 13, 1930. https://doi.org/10.3390/agronomy13071930
Zhang Y, Deng M, Gu X, Guo C, Chen Y, Lin Y, Chen Q, Wang Y, Zhang Y, Luo Y, et al. Ethylene Signaling Pathway Genes in Strawberry and Their Expression Patterns during Fruit Ripening. Agronomy. 2023; 13(7):1930. https://doi.org/10.3390/agronomy13071930
Chicago/Turabian StyleZhang, Yunting, Meiyi Deng, Xianjie Gu, Chenhui Guo, Yan Chen, Yuanxiu Lin, Qing Chen, Yan Wang, Yong Zhang, Ya Luo, and et al. 2023. "Ethylene Signaling Pathway Genes in Strawberry and Their Expression Patterns during Fruit Ripening" Agronomy 13, no. 7: 1930. https://doi.org/10.3390/agronomy13071930
APA StyleZhang, Y., Deng, M., Gu, X., Guo, C., Chen, Y., Lin, Y., Chen, Q., Wang, Y., Zhang, Y., Luo, Y., Wang, X., & Tang, H. (2023). Ethylene Signaling Pathway Genes in Strawberry and Their Expression Patterns during Fruit Ripening. Agronomy, 13(7), 1930. https://doi.org/10.3390/agronomy13071930