Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments
Abstract
:1. Introduction
2. System Overview and Notation
2.1. System Overview
2.2. Notation
3. Frontend Data Preprocessing and GNSS-VO Initialization
3.1. Visual SLAM
3.2. GNSS Data Preprocessing
3.3. GNSS-VO Time Alignment
3.4. GNSS-VO Initialization
4. Gaussian Mixture Models and Online Parameters Estimation
4.1. Multivariate Gaussian Distribution and Factor Graph
4.2. Gaussian Mixture Model and Factor Graph
4.3. Parameter Estimation Online
5. Global Optimization
5.1. Local Visual Factor
5.2. GNSS-RTK Factor
6. Results
6.1. Experiment Setup
6.2. Positioning Performance
6.3. Localization Performance
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite System |
RTK | Real-Time Kinematics |
GMM | Gaussian Mixture Model |
VBI | Variational Bayesian Inference |
SLAM | Simultaneous Localization and Mapping |
EKF | Extended Kalman Filter |
FGO | Factor Graph Optimization |
MM | Maximum Mixture |
EM | Expectation Maximization |
NLoS | Non-Line-of-Sight |
SfM | Structure from Motion |
LLA | Latitude-Longitude-Altitude |
ENU | East-North-Up |
ECEF | Earth-Centered Earth-Fixed |
SVD | Singular Value Decomposition |
ROS | Robot Operating System |
RMSE | Root Mean Square Error |
Appendix A
Sensors | GNSS-RTK |
---|---|
Sampling frequency | 20 HZ |
Operating temperature | −30° to +70° |
Signal frequency | GPS: LIC/A,L2C BDS: BIL,B2L GLONASS: LIOF,L20F QZSS: LIC/A,L2C |
NMEA-0183 protocol | Default GGA 115,200 baud rate |
Sensors | GNSS-RTK |
---|---|
Sampling frequency | 30 HZ |
Operating temperature | −10° to +50° |
Output Resolution | 1344 × 376 (WVGA) |
Attitude drift | Translation: 0.35%; rotation: 0.005°/m |
References
- Xu, Q.; Wang, M.; Du, Z.; Zhang, Y. A positioning algorithm of autonomous car based on map-matching and environmental perception. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; IEEE: Manhattan, NY, USA, 2014; pp. 707–712. [Google Scholar]
- Guan, Q.; Fan, C.; Chen, G.; Chen, C. Performance Evaluation of BDS/GPS Combined Single Point Positioning with Low-cost Single-Frequency Receiver. J. Indian Soc. Remote Sens. 2021, 49, 2847–2861. [Google Scholar] [CrossRef]
- Ferreira, A.; Matias, B.; Almeida, J.; Silva, E. Real-time GNSS precise positioning: RTKLIB for ROS. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420904526. [Google Scholar] [CrossRef]
- Guvenc, I.; Chong, C.C. A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics platform. Transp. Res. Part C: Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Meng, Z.; Xia, X.; Xu, R.; Liu, W.; Ma, J. HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D LiDAR. IEEE Trans. Intell. Veh. 2023. Early Acces. [Google Scholar] [CrossRef]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar]
- Sun, M.; Hua, C.; Pan, R. Binocular Ranging Based on Improved ORB-RANSAC. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; IEEE: Manhattan, NY, USA, 2022; pp. 6216–6221. [Google Scholar]
- Lin, N.; Zhao, W.; Liang, S.; Zhong, M. Real-Time Segmentation of Unstructured Environments by Combining Domain Generalization and Attention Mechanisms. Sensors 2023, 23, 6008. [Google Scholar] [PubMed]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar]
- Wang, R.; Schworer, M.; Cremers, D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3903–3911. [Google Scholar]
- Vetrella, A.R.; Fasano, G.; Accardo, D.; Moccia, A. Differential GNSS and vision-based tracking to improve navigation performance in cooperative multi-UAV systems. Sensors 2016, 16, 2164. [Google Scholar] [CrossRef] [Green Version]
- Thrun, S. Probabilistic algorithms in robotics. AI Mag. 2000, 21, 93. [Google Scholar]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous vehicle kinematics and dynamics synthesis for sideslip angle estimation based on consensus kalman filter. IEEE Trans. Control Syst. Technol. 2022, 31, 179–192. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Vehicle sideslip angle estimation by fusing inertial measurement unit and global navigation satellite system with heading alignment. Mech. Syst. Signal Process. 2021, 150, 107290. [Google Scholar] [CrossRef]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Yu, Z. IMU-based automated vehicle body sideslip angle and attitude estimation aided by GNSS using parallel adaptive Kalman filters. IEEE Trans. Veh. Technol. 2020, 69, 10668–10680. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated vehicle sideslip angle estimation considering signal measurement characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar]
- Dusha, D.; Mejias, L. Error analysis and attitude observability of a monocular GPS/visual odometry integrated navigation filter. Int. J. Robot. Res. 2012, 31, 714–737. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Cappelle, C.; Ruichek, Y.; Zann, F. Intelligent vehicle localization in urban environments using ekf-based visual odometry and gps fusion. IFAC Proc. Vol. 2011, 44, 13776–13781. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H.; Gao, Z.; Niu, X.; El-Sheimy, N. Tight fusion of a monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for precise navigation in GNSS-challenged environments. Remote Sens. 2019, 11, 610. [Google Scholar] [CrossRef] [Green Version]
- Dellaert, F.; Kaess, M. Factor graphs for robot perception. Found. Trends® Robot. 2017, 6, 1–139. [Google Scholar] [CrossRef]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. g 2 o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; IEEE: Manhattan, NY, USA, 2011; pp. 3607–3613. [Google Scholar]
- Agarwal, S.; Mierle, K.; The Ceres Solver Team. Ceres Solver. 2012. Available online: http://ceres-solver.org (accessed on 26 July 2023).
- Qin, T.; Cao, S.; Pan, J.; Shen, S. A general optimization-based framework for global pose estimation with multiple sensors. arXiv 2019, arXiv:1901.03642. [Google Scholar]
- Hou, Z.; Wang, R. A Loosely-Coupled GNSS-Visual-Inertial Fusion for State Estimation Based On Optimation. In Proceedings of the 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC), Greenville, SC, USA, 12–14 November 2021; IEEE: Manhattan, NY, USA, 2021; pp. 163–168. [Google Scholar]
- Han, S.; Deng, F.; Li, T.; Pei, H. Tightly coupled optimization-based GPS-visual-inertial odometry with online calibration and initialization. arXiv 2022, arXiv:2203.02677. [Google Scholar]
- Gong, Z.; Ying, R.; Wen, F.; Qian, J.; Liu, P. Tightly coupled integration of GNSS and vision SLAM using 10-DoF optimization on manifold. IEEE Sens. J. 2019, 19, 12105–12117. [Google Scholar] [CrossRef]
- Wen, W.; Pfeifer, T.; Bai, X.; Hsu, L.T. Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter. NAVIGATION J. Inst. Navig. 2021, 68, 315–331. [Google Scholar] [CrossRef]
- Brach, M.; Zasada, M. The effect of mounting height on GNSS receiver positioning accuracy in forest conditions. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2014, 35, 245–253. [Google Scholar]
- Gong, Z.; Liu, P.; Wen, F.; Ying, R.; Ji, X.; Miao, R.; Xue, W. Graph-based adaptive fusion of GNSS and VIO under intermittent GNSS-degraded environment. IEEE Trans. Instrum. Meas. 2020, 70, 1–16. [Google Scholar] [CrossRef]
- Gakne, P.V.; O’Keefe, K. Tightly-coupled GNSS/vision using a sky-pointing camera for vehicle navigation in urban areas. Sensors 2018, 18, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2009, 741, 659–663. [Google Scholar]
- Sünderhauf, N.; Protzel, P. Switchable constraints for robust pose graph SLAM. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; IEEE: Manhattan, NY, USA, 2012; pp. 1879–1884. [Google Scholar]
- Agarwal, P.; Tipaldi, G.D.; Spinello, L.; Stachniss, C.; Burgard, W. Robust map optimization using dynamic covariance scaling. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Manhattan, NY, USA, 2013; pp. 62–69. [Google Scholar]
- Agamennoni, G.; Furgale, P.; Siegwart, R. Self-tuning M-estimators. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: Manhattan, NY, USA, 2015; pp. 4628–4635. [Google Scholar]
- Pfeifer, T.; Lange, S.; Protzel, P. Dynamic Covariance Estimation—A parameter free approach to robust Sensor Fusion. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Republic of Korea, 16–18 November 2017; IEEE: Manhattan, NY, USA, 2017; pp. 359–365. [Google Scholar]
- Pfeifer, T.; Protzel, P. Robust sensor fusion with self-tuning mixture models. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Manhattan, NY, USA, 2018; pp. 3678–3685. [Google Scholar]
- Pfeifer, T.; Protzel, P. Expectation-maximization for adaptive mixture models in graph optimization. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Macau, China, 3–8 November 2019; IEEE: Manhattan, NY, USA, 2019; pp. 3151–3157. [Google Scholar]
- Pfeifer, T.; Protzel, P. Incrementally learned mixture models for GNSS localization. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; IEEE: Manhattan, NY, USA, 2019; pp. 1131–1138. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhu, J. Conversion of Earth-centered Earth-fixed coordinates to geodetic coordinates. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 957–961. [Google Scholar] [CrossRef]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 5, 698–700. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.M.; Kaess, M.; Leonard, J.J. Robust incremental online inference over sparse factor graphs: Beyond the Gaussian case. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Manhattan, NY, USA, 2013; pp. 1025–1032. [Google Scholar]
- Corduneanu, A.; Bishop, C.M. Variational Bayesian model selection for mixture distributions. In Proceedings of the Artificial Intelligence and Statistics; Morgan Kaufmann: Waltham, MA, USA, 2001; Volume 2001, pp. 27–34. [Google Scholar]
- Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2, 31–43. [Google Scholar] [CrossRef]
- Pfeifer, T. libRSF. Available online: https://github.com/TUC-ProAut/libRSF (accessed on 26 July 2023).
ORB-SLAM2 | GNSS | VINS-Fusion | GNSS/VO | GNSS/VO + GMM | |
---|---|---|---|---|---|
RMSE | 1.5579 | 1.1583 | 0.7721 | 0.6112 | 0.4245 |
Mean Error | 1.9434 | 2.1582 | 1.1755 | 1.0869 | 0.7380 |
Max Error | 5.4348 | 4.7775 | 3.1419 | 2.6007 | 1.4092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Zhao, W.; Lin, N.; Huang, Y. Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments. Agronomy 2023, 13, 1982. https://doi.org/10.3390/agronomy13081982
Liang S, Zhao W, Lin N, Huang Y. Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments. Agronomy. 2023; 13(8):1982. https://doi.org/10.3390/agronomy13081982
Chicago/Turabian StyleLiang, Shenghao, Wenfeng Zhao, Nuanchen Lin, and Yuanjue Huang. 2023. "Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments" Agronomy 13, no. 8: 1982. https://doi.org/10.3390/agronomy13081982
APA StyleLiang, S., Zhao, W., Lin, N., & Huang, Y. (2023). Adaptive Fusion Positioning Based on Gaussian Mixture Model for GNSS-RTK and Stereo Camera in Arboretum Environments. Agronomy, 13(8), 1982. https://doi.org/10.3390/agronomy13081982