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Abstract: GABA (γ-aminobutyric acid) is found in plants and accumulates rapidly under stresses.
However, the contributions of glutamic acid and a (Glu)-derived pathway and polyamines (PAs)
catabolism pathway on GABA accumulation and the regulatory effects of exogenous putrescine
(Put) on a GABA shunt under suboptimal low root-zone temperatures remain unknown. Our
results showed that suboptimal low root-zone temperatures (treatment L) significantly increased
GABA contents and GABA transaminase (GABA-T) activities. The contribution rate of the PAs
catabolism pathway increased from 20.60% to 43.31%. Treatment L induced oxidative stress in Malus
baccata Borkh. roots. Exogenous Put increased the contents of endogenous Put, spermine (Spm),
and spermidine (Spd), promoted the transformation of PAs, increased the activities of superoxide
dismutase (SOD), peroxidase (POD), and catalase (CAT), and decreased the contents of hydrogen
peroxide (H2O2), superoxide anion (O2·−), and malondialdehyde (MDA). Meanwhile, contrasting
results were observed after aminoguanidine (AG, an inhibitor of diamine oxidase) application.
These findings revealed that the Glu-derived pathway is the main route of GABA synthesis. The
contribution rate of the Pas catabolism pathway increased gradually with the extension of treatment
time, and the treatment of exogenous Put significantly improved the tolerance of Malus baccata Borkh.
Roots to suboptimal low temperature by regulating the transformation of Pas, GABA shunt, and the
antioxidant system.

Keywords: γ-aminobutyric acid; polyamine; putrescine; glutamic acid; Malus baccata Borkh.; subopti-
mal low root-zone temperature

1. Introduction

GABA (γ-aminobutyric acid), first discovered in potato tubers in 1947, is a four-carbon
non-protein amino acid and is ubiquitous in organisms [1,2]. GABA is also a small-molecule
nitrogen-containing compound with a high level of physiological activity and plays an
important role in plant growth and development [3]. The content of GABA in various
tissues and organs of plants is at a low level under normal circumstances but accumulates
rapidly and massively when exposed to stresses, even more than some protein amino
acids [4–7]. Thus, GABA is considered to be a regulatory substance to resist stresses.

The GABA pathway in plants is shown in Figure 1, based on Shelp et al. and Wuddineh
et al. [8,9]. GABA accumulation in plant cells is considered to be the main pathway in which
Glu is converted to GABA by glutamate decarboxylase (GAD); however, the polyamine
catabolism pathway also contributes. Arginine is converted to putrescine via alternative
multi-step routes: arginine decarboxylase (ADC); arginase and ornithine decarboxylase
(ODC). The specific process of the polyamine catabolism pathway starts with putrescine
(Put), which is the main substrate for GABA. Put is not only converted to ∆1-pyrroline by
diamine oxidase (DAO) but also to spermidine (Spd) and spermine (Spm) via spermidine
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synthase and spermine synthase, respectively. Polyamine oxidases (POD) are responsible
for catalyzing Spd to ∆1-pyrroline and Spm to 1,3-Diaminopropane, respectively. Then,
1,3-Diaminopropane is converted to ∆1-pyrroline. Finally, ∆1-pyrroline is further converted
to GABA by the influence of aldehyde dehydrogenase. GABA derived from both Put and
Glu is converted to succinate acid (Suc), which is a natural intermediate of the tricarboxylic
acid cycle, via GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase
(SSADH). Consequently, GABA is closely related to a variety of physiological pathways
in plants and participates in the metabolic regulation process to improve plant resistance
under stress. In addition, it is worth mentioning that aminoguanidine (AG) is often used
in experiments as a specific inhibitor of DAO to evaluate the effect of PAs on GABA
shunts [10,11].
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Figure 1. The γ-aminobutyric acid (GABA) pathway in plants is derived from Shelp et al. and
Wuddineh et al. [8,9]. The primary metabolites under consideration here are indicated in the oval
frames. Abbreviations: ADC, arginine decarboxylase; ODC, ornithine decarboxylase; DAO, diamine
oxidase; PAO, polyamine oxidase; GAD, glutamate decarboxylase; GABA-T, GABA transaminase;
SSADH, succinic semialdehyde dehydrogenase.

Currently, Glu-derived GABA biosynthesis receives more attention under abiotic
stresses. However, the contribution of the polyamine catabolism pathway cannot be
ignored. Polyamines (PAs), which have potent biological activities usually including Put,
Spm, and Spd in plants, are ubiquitous in all cells and play an important role in plant growth
and development [12,13]. Hu et al. found that exogenous GABA played an important
role in alleviating Ca(NO3)2-induced injury to muskmelon seedlings by the physiological
regulation of PAs [14]. However, the physiological relationship between abiotic stress and
PAs in plants was met with debate [15,16]. On the one hand, PAs can enhance antioxidant
enzyme activities and deal with oxidative radicals to protect plants; at the same time, the
metabolism of PAs is closely connected to many other metabolic pathways to improve
drought tolerance [17], salt [18,19], low temperature [20], and other stress [21]. On the other
hand, PAs might be a potential cell-damaging factor due to hydrogen peroxide (H2O2)
produced by their catabolism [22,23]. Many researchers have attempted to investigate the
response of PAs metabolism to abiotic stress by exogenously adding PAs and their synthesis
inhibitors. Yang et al. found that exogenous Spd effectively responded to high temperature
by inhibiting stomatal opening and density, thus improving the net photosynthetic rate
and biomass in lettuce [24]. Many studies also indicated that the function of PAs under
stress can differ among plants and even parts of the same plant [25,26].

Suboptimal root-zone temperature occurs in early spring, which is the period when
fruit trees sprout in the northeast of China caused by the inconsistencies between soil
temperature and air temperature. Malus baccata Borkh., as one of the apple rootstocks, is
widely used in the apple-producing areas of northeastern China. It has been found that
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a suboptimal low root-zone temperature disturbs the growth and function of the roots of
Malus baccata Borkh.; subsequently, this adversely affects the growth and development of
the leaves [27,28]. We also found that suboptimally low root-zone temperatures can cause
endogenous GABA accumulation in M. baccata Borkh. seedlings, and exogenous GABA had
the effect of enhancing the antioxidant capacity of the roots [29]. However, the contribution
and relationship between the Glu-derived pathway and the PAs catabolism pathway on
GABA accumulation under low-temperature stress, respectively, are still unclear. Exoge-
nous Put and AG were applied in this experiment to clarify the contribution of the PAs
catabolism pathway to GABA accumulation under suboptimal root-zone temperature and
to explore the effect of PAs metabolic pathway on the seedlings. Results from this study
will provide some theoretical basis for the physiological metabolism of apple rootstocks in
the early growing season to improve the tolerance of the fruit species in northern China.

2. Materials and Methods
2.1. Plant Materials, Culture Conditions and Treatments

Malus baccata Borkh. was used in this experiment. The seedlings with 4~5 leaves
were cultivated in a 13 × 12 cm plastic pot filled with a soil mix containing 50% (V/V)
garden soil, 25% (V/V) river sand, and 25% (V/V) substrate. When the seedlings had
15 leaves, the ones with consistent growth and no disease and insect pests were selected for
experimental treatment. The whole experiment required an artificial climate chamber and
low thermostatic-temperature baths. For the former, the photoperiod was set for 14 h/10 h,
and the day and night temperatures were 18 ◦C/8 ◦C. Meanwhile, the latter was used to
control root zone temperature. The low thermostatic temperature baths were equipped
with a heat insulation board outside and a water circulation system inside, so that the root
zone temperature could be kept at about 5 ± 0.5 ◦C. The upper part was still in the above
artificial climate-chamber culture.

To adapt to the cultural conditions before the experimental treatment began, the
selected-M. baccata Borkh. seedlings were transferred to an artificial climate chamber. Pre-
cultivation was performed for 2 days. Then the seedlings were divided into four groups,
and the four treatments were defined as follows in Table 1.

Table 1. Conditions required for each treatment.

Treatment Irrigation (100
mL/pot) Upper Part Potted Part

Control dH2O 18 ◦C (14 h)/8 ◦C (10 h) 18 ◦C (14 h)/8 ◦C (10 h)
L dH2O 18 ◦C (14 h)/8 ◦C (10 h) 5 ± 0.5 ◦C (24 h)

L + Put 0.1 mmol·L−1 Put 18 ◦C (14 h)/8 ◦C (10 h) 5 ± 0.5 ◦C (24 h)
L + AG 10 mmol·L−1 AG 18 ◦C (14 h)/8 ◦C (10 h) 5 ± 0.5 ◦C (24 h)

Control, not subjected to any treatments; L, suboptimal root-zone temperature; L + Put, suboptimal root-zone
temperature + 0.1 mmol·L−1 putrescine (Solarbio, Beijing, China) solution; L + AG, suboptimal root-zone
temperature + 10 mmol·L−1 aminoguanidine (Solarbio) solution. Irrigation, each seedling was watered with
100 mL liquid before treating; upper part and potted part, the temperature during treating.

The root samples were collected at days 0, 1, 4, and 7 of treatment. First, they were
rinsed with dH2O, then frozen in liquid nitrogen. The frozen sample was ground in a ball
mill (MM400; Retsch, GmbH, Haan, Germany) into powder using liquid nitrogen, and
stored at −80 ◦C for physiological and metabolic analysis.

2.2. Determination of γ-Aminobutyric Acid and Glutamic Acid Content

The γ-aminobutyric acid (GABA) and glutamic acid (Glu) were extracted according to
the procedure of Baum et al. with some modifications [30]. We added 1 mL of extracting
solution, containing 25% chloroform (V/V), 60% methanol (V/V), and 15% dH2O (V/V),
to the frozen root powder s (~300 mg), and mixed it at 4 ◦C for 1 h, then centrifuged it at
12,000× g for 5 min at 4 ◦C. After the supernatant was transferred, we added 375 µL of
chloroform and 625 µL of dH2O step by step, and vortexed for 20 s. The mixtures were
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centrifuged in the same conditions as above. The organic phase containing GABA and
Glu was dried using the vacuum concentrator (Eppendorf GmbH, Hamburg, Germany),
redissolved in 1 mL of HPLC-grade acetonitrile, and filtered through a 0.22 µm membrane
for further analysis.

The GABA and Glu were treated using an ACQUITY UPLC BEH Amide column
(1.7 µm, 100 mm × 2.1 mm) at 35 ◦C. The mobile phase consisting of solvent A (0.5%
formic acid in acetonitrile) and solvent B (0.5% formic acid in 20 mM ammonium acetate
solution) was delivered at the flow rate of 0.6 mL·min−1. The gradient elution was as
follows: A% = 100, 100, 96, 80, 62, 55, 100, and 100 (0, 0.5, 2.5, 3.5, 4, 6, 6.5, and 8 min). The
compound was detected by a Xevo TQ-D triple quadrupole mass spectrometer (Waters,
Milford, MA, USA). The detection conditions refer to Helmond et al., with modification
as follows: the positive-ion mode; source temperature, 150 ◦C; capillary voltage, 3.00 kV;
cone voltage, 20 V; desolvation, 800 L·h−1; desolvation temperature, 400 ◦C [31]. MassLynx
version 4.1 analytical software was used for system control and data processing.

2.3. Determination of Polyamines Contents

Free polyamines (PAs) were extracted and derived as described in the methods of
Gong and Liu, with slight modifications [32]. The frozen root samples (~500 mg) were
homogenized in an extraction solution containing 5% perchloric acid. After being shaken
in a thermomixer at 4 ◦C for 1 h at 1500 rpm, the mixture was centrifuged at 12,000× g
for 30 min at 4 ◦C. The supernatant was transferred to another 10 mL tube for derivation.
We added 2 mL of 2M NaOH and 15 µL of benzoyl chloride into the supernatant step
by step, and vortexed for 20 s to mix them. After they were placed in a water bath at
37 ◦C for 20 min, 2 mL of saturated NaCl and 2 mL of ethyl ether were added to the tube.
Subsequently, the mixture was vortexed slightly for several seconds and centrifuged at
8000× g for 5 min. The ethyl ether phase containing benzoyl-polyamines was transferred,
vacuum-dried in a concentrator, then redissolved with 200 µL of HPLC-grade methanol.
The resulting solution was filtered through a 0.22 µm membrane and collected into a 2 mL
Waters screw top vial (Waters, Milford, MA, USA) for subsequent analysis.

Ultrahigh-performance liquid chromatography analysis of the free PAs was performed
on an ACQUITY UPLC H-Class Waters instrument equipped with a Xevo TQ-D mass spec-
trometer (Waters); the specific instrument setting conditions refer to Tsutsui et al. [33] and
Takayama et al. [34]. Chromatographic separation was performed on a Waters ACQUITY
UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 mm), with the mobile phase composed of
double distilled H2O (ddH2O) containing 0.1% formic acid (A) and acetonitrile containing
0.1% formic acid (B). Next, 2 µL of each resulting solution was loaded into the system.
The flow rate of 0.30 mL·min−1 was applied, with a gradient elution mode (B% = 50, 50,
75, 100, 100, 50, and 50; at 0, 2, 10, 13, 16, 16.1, and 19 min). An MS system fitted with
an electrospray ionization (ESI) source worked in a positive ion mode and scan mode for
multiple-reaction monitoring (MRM). ESI ionization conditions were as follows: source
temperature, 150 ◦C; capillary voltage, 3.00 kV; desolvation temperature, 500 ◦C; as curtain
and auxiliary gas, high-purity nitrogen (>99.999%) was used to a flow of 1000 L·h−1. The
identity of PAs compounds was confirmed by accurate mass measurements and authentic
standards using Masslynx version 4.1 software (Waters).

2.4. Determination of Enzyme Activities

Enzymes, the key enzymes in the GABA pathway in plants i.e., glutamate decarboxy-
lase (GAD), γ-aminobutyric acid transaminase (GABA-T), arginine decarboxylase (ADC),
ornithine decarboxylase (ODC), diamine oxidase (DAO), and polyamine oxidase (PAO),
were extracted from the root samples in a phosphate buffer (pH 7.2–7.4). After being
centrifuged at 5000× g for 20 min at 4 ◦C, the supernatant was collected for further analysis.
The enzyme activities were measured using enzyme-linked immunosorbent assay (ELISA)
detection kits (Mlbio, Enzyme-linked Biotechnology Co., Shanghai, China) on an ELISA
instrument at 450 nm according to the instructions of the kits.
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2.5. Determination of Hydroperoxide Content, Superoxide Anion Content and Lipid Peroxidation
(Malondialdehyde Content)

The hydroperoxide (H2O2) content was determined by measuring the absorbance of
the titanium-peroxide complex at 415 nm as described by Patterson et al. [35]. According to
Verma and Mishra [36], the superoxide anion (O2·−) content was measured by monitoring
the absorbance of hydroxylamine oxidation at 530 nm. The degree of lipid peroxidation
in roots was assessed by the malondialdehyde (MDA) contents. The MDA content was
determined spectrophotometrically at 450, 532, and 600 nm according to the methods of
Liu et al. [37].

2.6. Analysis of Antioxidative Enzyme Activities

Enzymes were extracted from the root samples (~200 mg) in 4 mL of 100 mM potassium
phosphate buffer containing 200 mg polyvinylpolypyrrolidone and 0.5% (v/v) Triton X-100
as described by He et al. [38]. After being centrifuged at 12,000× g for 20 min at 4 ◦C, the
supernatant was used for the following enzyme assays. The activities of SOD (EC 1.15.1.1),
POD (EC 1.11.1.7), and CAT (EC 1.11.1.6) were measured using the previously published
method by Khan et al. [39].

2.7. Statistical Analysis

Data represent means ± standard error (SE) of three biological replicates. Data were
processed in IBM SPSS Statistics (SPSS Inc., Chicago, IL, USA). All data were subjected to a
two-way analysis of variance (ANOVA) with Time and Treatment as factors for significant
changes (p < 0.05, *; p < 0.01, **; ns, not significant). A posteriori means comparisons were
performed by the Tukey-HSD method. Significance analysis was performed among the
four treatments or time points, and significant differences were annotated with lowercase
letters and capital letters, respectively. Differences were considered significant at p < 0.05.

3. Results
3.1. γ-Aminobutyric Acid (GABA) Content and GABA Transaminase (GABA-T) Activity

Compared with the control, γ-aminobutyric acid (GABA) content under suboptimal
low temperature root-zone (treatment L) was significantly increased by 57.97% on day 1,
and then decreased significantly with the extension of treating time. The changing trends
of exogenous Put application and exogenous AG application (treatment L + Put, treatment
L + AG) were similar to that of treatment L, both of which had the maximum value on
day 1. GABA content in treatment L + Put was higher than that of treatment L. However,
GABA content in treatment L + AG was between the treatments L and L + Put (Figure 2a).
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root-zone temperature from days 0 to 7. Each value is the mean ± SE of three replicates for indepen-
dent experiments under each treatment. Two-way ANOVA with Time and Treatment as factors for
significant changes are indicated. p < 0.01, **. Lowercase letters above the columns indicate significant
differences among treatments at the p < 0.05. Capital letters above the columns indicate significant
differences among time points at the p < 0.05. Control, not subjected by any treatments; L, suboptimal
root-zone temperature; L + Put, suboptimal root-zone temperature + 0.1 mmol·L−1 Put solution; L +
AG, suboptimal root-zone temperature + 10 mmol·L−1 AG solution.

Treatment L significantly inhibited GABA transaminase (GABA-T) activity during
days 1 to 4, and GABA-T activity in treatment L was significantly increased on day 7 com-
pared to the control. GABA-T activity in treatments L + Put and L + AG had a similar trend
to that of treatment L, that is, GABA-T activity was increased with treatment time. More-
over, exogenous Put (days 4 to 7) or AG (days 1 to 4) application significantly enhanced
GABA-T activity compared with the treatment L (Figure 2b).

3.2. Glutamic Acid (Glu) Content and Glutamate Decarboxylase (GAD) Activity

Glutamic acid (Glu) content in the control remained stable and showed an increasing
trend in the other three treatments. Treatment L significantly increased Glu content on day
7, increasing by 64.51% compared to the control. Compared to treatment L, Glu content in
treatment L + Put was significantly increased during days 1 to 4 and was slightly decreased
on day 7; however, Glu content in treatment L + AG was significantly increased in the
whole treatment time (Figure 3a).
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Figure 3. Effects of exogenous Put or AG application on (a) glutamic acid (Glu) content and (b) glu-
tamate decarboxylase (GAD) activity in Malus baccata Borkh. roots exposed to suboptimal low
root-zone temperature from days 0 to 7. Each value is the mean ± SE of three replicates for indepen-
dent experiments under each treatment. Two-way ANOVA with Time and Treatment as factors for
significant changes are indicated. p < 0.01, **; ns, not significant. Lowercase letters above the columns
indicate significant differences among treatments at the p < 0.05. Capital letters above the columns
indicate significant differences among time points at the p < 0.05. Treatments legend as in Figure 2.

Compared to the control, glutamate decarboxylase (GAD) activity in treatment L was
significantly enhanced during days 1 to 7, reaching the maximum value on day 4 and
increasing by 40.62%. Similar trends existed in treatments L + Put and L + AG, that is, the
maximum value appeared on day 4 and then decreased slightly. Compared to treatment L,
GAD activity in treatment L + Put was induced from days 1 to 7; GAD activity in treatment
L + AG was inhibited from days 1 to 4 and was higher than that of treatment L (Figure 3b).

3.3. Polyamines (PAs) Contents

As shown in Figure 4, the contents of (Figure 4a) putrescine (Put), (Figure 4b) sper-
midine (Spd), and (Figure 4c) spermine (Spm) in the control remained at a stable level
from days 0 to 7. Treatment L significantly induced the accumulation of Put, Spd and Spm
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contents compared to the control; Put and Spd contents reached the maximum on day 1,
increasing by 82.91% and 75.39%, respectively; Spm content kept increasing from day 1
to day 7. Compared to treatment L, treatment L + Put further increased the Put and Spd
contents with similar change trends. However, Spm content in treatment L + Put showed
a trend of first increasing and then decreasing, reaching the maximum value on day 4,
which increased by 43.56% compared to treatment L, and was significantly lower than
that of treatment L on day 7. Put and Spd contents showed similar trends in treatment
L + AG, reaching the highest level on day 4 compared with treatment L. Spm content
in treatment L + AG had the maximum value on day 1, increasing by 37.42% and then
gradually decreasing by 18.96% on day 7 compared with treatment L (Figure 4a–c).
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Figure 4. Effects of exogenous Put or AG application on the contents of (a) putrescine (Put), (b) sper-
midine (Spd) and (c) Spermine (Spm) in Malus baccata Borkh. roots exposed to suboptimal low
root-zone temperature from days 0 to 7. (d) Effects of exogenous Put or AG application on the ratio
of Spd and Spm with respect to Put [(Spd + Spm)/Put ratio] in Malus baccata Borkh. roots exposed
to suboptimal low root-zone temperature from days 0 to 7. Each value is the mean ± SE of three
replicates for independent experiments under each treatment. Two-way ANOVA with Time and
Treatment as factors for significant changes are indicated. p < 0.01, **. Lowercase letters above the
columns indicate significant differences among treatments at the p < 0.05. Capital letters above the
columns indicate significant differences among time points at the p < 0.05. Treatments legend as in
Figure 2.

The ratio of Spd and Spm with respect to Put [(Spd + Spm)/Put ratio] in treatment L
was lower than that of the control from days 0 to 4, and then gradually increased, higher
than that of the control on day 7. Compared to treatment L, exogenous Put and AG
application decreased the (Spd + Spm)/Put ratio. (Spd + Spm)/Put ratio in treatment L +
Put had a minimum value on day 1, and then gradually increased after day 1. However,
(Spd + Spm)/Put ratio in treatment L + AG decreased during days 0 to 7 (Figure 4d).
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3.4. The Enzyme Activities of Putrescine Biosynthetic and Catabolic Pathway

Compared with the control, treatment L significantly increased arginine decarboxylase
(ADC) and ornithine decarboxylase (ODC) activities with similar trends from days 0 to
7. The activities of ADC and ODC in treatment L were the maximum value on day 4,
2.37-fold and 3.06-fold that of the control, respectively. Exogenous Put application further
significantly enhanced the ADC activity. However, ODC activity in treatment L + Put was
significantly higher than that of treatment L on day 1 and then decreased slightly, which
was lower than that in treatment L from days 4 to 7. Compared to treatment L, ADC activity
in treatment L + AG was decreased on day 1 and increased on days 4 and 7; ODC activity
in treatment L + AG was the opposite, increasing on day 1 and decreasing on days 4 and 7
(Figure 5a,b).
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Figure 5. Effects of exogenous Put or AG application on the activities of (a) arginine decarboxylase
(ADC), (b) ornithine decarboxylase (ODC), (c) diamine oxidase (DAO) and (d) polyamine oxidase
(PAO) in Malus baccata Borkh. roots exposed to suboptimal low root-zone temperature from days 0 to
7. Each value is the mean ± SE of three replicates for independent experiments under each treatment.
Two-way ANOVA with Time and Treatment as factors for significant changes are indicated. p < 0.01,
**. Lowercase letters above the columns indicate significant differences among treatments at the
p < 0.05. Capital letters above the columns indicate significant differences among time points at the
p < 0.05. Treatments legend as in Figure 2.

The activities of diamine oxidase (DAO) and polyamine oxidase (PAO) were signifi-
cantly induced by treatment L relative to the control. Compared to treatment L, treatment L
+ Put further increased DAO and PAO activities from days 4 to 7. AG, as the DAO inhibitor,
significantly inhibited DAO activity throughout the experimental treatment. However,
PAO activity after AG application decreased on days 1 and 7 and increased on day 4 by
19.71% compared with treatment L (Figure 5c,d).
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3.5. Contributions of Glu-Derived Pathway and PAs Catabolism Pathway to GABA Accumulation

In order to explore the effects of the Glu-derived pathway and the PAs catabolism
pathway on GABA accumulation under suboptimal low root-zone temperature, we calcu-
lated the contribution rate by referring to the method of Yang et al. [40]. AG was the specific
inhibitor of DAO. As Figure 5c shows, treatment L + AG significantly reduced DAO activi-
ties from day 1 to day 7 compared to treatment L. Meanwhile, GABA contents in treatment
L + AG decreased compared to treatment L as in Figure 2a. Therefore, it could be inferred
that the contributing rates of the Glu-derived pathway and PAs catabolism pathway had
an effect on GABA accumulation. As shown in Figure 6, the Glu-derived pathway was the
main pathway for GABA accumulation compared to the PAs catabolism pathway under
suboptimal low root-zone temperature. However, the contributing rates of PAs catabolism
pathway increased from 20.60% to 43.31% with the extension of treatment time.
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3.6. The Contents of Hydroperoxide (H2O2), Superoxide Anion (O2·−), and
Malondialdehyde (MDA)

In the control, the contents of hydroperoxide (H2O2), superoxide anion (O2·−), and
malondialdehyde (MDA) remained at a relatively stable level from days 0 to 7; however, the
response to each treatment was different. Compared to the control, treatment L significantly
increased H2O2 from days 1 to 4, O2·− and MDA content from days 1 to 7, which increased
by 29.02%, and 36.25% for H2O2, O2·− at day 1, respectively, and then decreased slightly,
while MDA content continued to increase after day 1. After treatment L + Put, H2O2
content was lower on day 1 and higher on days 4 and 7 than that of treatment L; O2·− and
MDA content were reduced throughout the experimental period compared to treatment L.
Treatment L + AG further induced H2O2 and MDA accumulation compared to treatment
L, and a similar changing trend occurred in treatment L, respectively. O2·− content in
treatment L + AG significantly decreased on day 1 compared to treatment L and significantly
increased on day 7 relative to treatment L + Put (Figure 7).
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Figure 7. Effects of exogenous Put or AG application on the contents of (a) hydroperoxide (H2O2),
(b) superoxide anion (O2·−), and (c) malondialdehyde (MDA) in Malus baccata Borkh. roots exposed
to suboptimal low root-zone temperature from days 0 to 7. Each value is the mean ± SE of three
replicates for independent experiments under each treatment. Two-way ANOVA with Time and
Treatment as factors for significant changes are indicated. p < 0.01, **. Lowercase letters above the
columns indicate significant differences among treatments at the p < 0.05. Capital letters above the
columns indicate significant differences among time points at the p < 0.05. Treatments legend as in
Figure 2.

3.7. Antioxidant Enzyme Activity

Compared to the control, superoxide dismutase (SOD) activity under treatment L
was slightly increased on day 1 by 3.09% and significantly decreased after day 1; the
activities of peroxidase (POD) and catalase (CAT) under treatment L were reduced on day
1, and then gradually enhanced from days 4 to 7, increased by 6.93% and 20.57% on day
7, respectively. Compared to treatment L, SOD and CAT activities in treatment L + Put
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were significantly increased from days 1 to 7, and POD activity only on day 4. After AG
application, the changing trend of SOD activity was similar to that in treatment L, but
significantly enhanced from day 4 compared to treatment L; POD activity was lower than
that of treatment L throughout the whole process; the changing trend of CAT activity was
contrary to that of treatment L, significantly higher than that of treatment L on day 1 and
then gradually decreased (Figure 8).
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Figure 8. Effects of exogenous Put or AG application on the activities of (a) superoxide dismutase
(SOD), (b) peroxidase (POD), and (c) catalase (CAT) in Malus baccata Borkh. roots exposed to
suboptimal low root-zone temperature from days 0 to 7. Each value is the mean ± SE of three
replicates for independent experiments under each treatment. Two-way ANOVA with Time and
Treatment as factors for significant changes are indicated. p < 0.01, **. Lowercase letters above the
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Figure 2.
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4. Discussion

The GABA shunt is an important pathway for plants to rapidly respond to stresses,
which could be activated in a short period [41]. In this study, suboptimal low root-zone
temperature (treatment L) significantly increased endogenous GABA contents, and GABA-
T enzyme activities significantly increased with the extension of treatment time. This was
consistent with the results of the anthurium cut flowers responding to the low postharvest
temperature. [42]. Exogenous Put application (treatment L + Put) further increased endoge-
nous GABA contents and GABA-T activities compared to treatment L. These indicated
that treatments L and L + Put significantly enhanced GABA accumulations and GABA
shunt activities. Compared to treatment L, endogenous GABA was significantly reduced
after adding AG, which is the diamine oxidase inhibitor. However, GABA-T activities still
increased. This may be the reason that endogenous GABA comes from two pathways. As
we all know, the Glu-derived pathway and PAs catabolism pathway could cause GABA
accumulation under stresses [43]. Therefore, we further investigated the contributions
of two pathways to GABA accumulation under suboptimal low root-zone temperature.
Compared to the control, treatment L significantly enhanced the activities of GAD and
DAO and increased the contents of Glu (day 7), Put, Spd, and Spm, indicating that both
pathways were activated by suboptimal low root-zone temperature. This provided further
evidence for the source of endogenous GABA accumulation. Yang et al. found that AG,
which is the specific inhibitor of DAO, could slightly decrease GAD activity, consistent with
our study [44]. AG application (treatment L + AG) significantly decreased DAO activities
from days 1 to 7, resulting in decrease of the GABA contents compared to treatment L. The
contribution rate of the PAs catabolism pathway could be calculated using these data [40].
We found that the PAs catabolism pathway provided about 20~40% of GABA formation
under treatment L. Hence, it could be inferred that the Glu-derived pathway was the main
route of GABA accumulation, and the contribution rate of the PAs catabolism pathway
continued to increase as processing time was prolonged under suboptimal low root-zone
temperature.

Reactive oxygen species (ROS) could be produced in various subcellular compartments
under low temperature stress and are precisely controlled by enzymatic and non-enzymatic
antioxidant defense systems [45–47]. Excessive accumulation of ROS will cause membrane
lipid peroxidation, which was evaluated by the MDA content in roots [48,49]. Obviously,
the suboptimal low root-zone temperature caused oxidative stress to the roots in this study,
which agreed with our previous research [27]. SOD, as the first defense in the antioxidant
system of plants, can convert excessive O2·− into H2O2; and then H2O2 was reduced to
H2O and O2 by POD and CAT in the cytoplasm [50–53]. The antioxidant enzymes could
regulate and cooperate with each other in the process of ROS clearance [54]. Zhang et al.
found that SOD and CAT played a greater role in decomposing ROS than POD [55], and
similar results were found in this study, especially that CAT activities were significantly
enhanced from days 4 to 7. However, this did not reverse the trend towards oxidative stress
in roots. Many previous studies have shown that PAs are related to plant stress resistance.
PAs are essential biomolecules involved in the regulation of many developmental and
growth processes as well as their response to different environmental stimuli. While PAs
can act as osmoregulatory substances to maintain cell osmotic balance and against ROS,
their catabolism is known to generate ROS. Therefore, maintaining the cellular pools of
PAs concentration and interconversion between different PAs is critical to accomplish their
normal functions [13,22,56,57]. Kielkowska et al. found that exogenously applied PAs
maintained the viability of B. oleracea L. var. capitata protoplasts by alleviating oxidative
stress and stimulating mitotic activity, which further affected the plant regeneration pro-
cess [58]. Pretreatment with putrescine induces the unique expression of various general
stress-related genes [59]. In this study, exogenous Put application significantly decreased
the contents of O2·− and MDA, indicating that it could relieve oxidative stress due to
suboptimal low root-zone temperature. However, H2O2 contents were increased from days
4 to 7, which may be the result of Put catabolism. Our results showed that (Spd + Spm)/Put
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ratio continued to increase from days 1 to 7 after Put application, indicating that exogenous
Put promoted the transformation of Put to Spd and Spm. Many studies have reported
that the (Spd + Spm)/Put ratio was positively correlated with the activity of antioxidant
enzymes, and exogenous Put could reduce ROS by enhancing the activities of SOD, POD,
and CAT, consistent with the results of this study [58,60–62]. DAO is the key enzyme of
the synthesis of GABA by the PAs catabolism pathway. After AG application, the H2O2
contents significantly increased and aggravated membrane peroxidation, indicating that
inhibiting the flow of PAs to GABA leads to increased damage of the suboptimal low
root-zone temperature.

5. Conclusions

Suboptimal low root-zone temperature activates the GABA shunt and causes GABA
accumulation. In this process, the Glu-derived pathway dominates, but the contribution
rate of the PAs catabolism pathway increases gradually with the extension of treatment
time. Suboptimal low root-zone temperature causes oxidative stress, and exogenous Put
could reduce the damage by increasing endogenous PAs contents, GABA shunt activities,
and antioxidant enzyme activities.
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