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Abstract: Green manure crops intercropping is an effective agricultural practice to alleviate water
and nutrient deficit by improving soil properties in the Loess Plateau of China. However, green
manure crops intercropping could cause water and nutrient competition, but the effects of different
green manure crops intercropping on soil water and nutrient status are rarely evaluated. Thus, we
conducted a field experiment to investigate the responses of soil moisture, nitrogen, and yield to
green manure crops intercropping. Three intercropping patterns, apple–ryegrass (AR), apple–spring
rape (AS), and apple–alfalfa (AA), were set up with a blank control (CK), which employed clean
tillage in the inter-row and row. All treatments had no significant difference on evapotranspiration.
At maturity, AR, AS, and AA treatments reduced soil organic matter content by 4.2%, 6.5%, and
18.8%, and total nitrogen content by 0.01%, 1.3%, and 20.3%, relative to CK, respectively. The water
competition degree in AR, AS, and AA were 38.4%, 48.8%, and 64.6%, respectively. Ryegrass, spring
rape, and alfalfa’s nitrogen use efficiency were 19.71%, 29.24%, and 39.42%, respectively. AR and AS
treatments increased the apple yield by 11.7% and 5.7%, and water-use efficiency (WUE) by 14.4%
and 7.5%, relative to CK, respectively. AA treatment reduced the apple yield by 6.9% and WUE
by 6.8%, relative to CK. All treatments had no significant difference on apple quality. Therefore, in
normal water years, we suggest adapting the ryegrass–apple tree intercropping pattern for apple
production on the Plateau Loess, China.

Keywords: agroforestry; intercropping; interspecific competition; 15N tracer technique

1. Introduction

Apple is one of the most important fruit crops globally. Apple production in China
had reached 4.6 × 107 t, accounting for 49.37% of the world’s total production (9.31 × 107 t)
in 2021 [1]. The Loess Plateau is a major apple production area in China because of its
appropriate temperature and sunshine [2]. However, the water scarcity has been restricting
apple production of the Loess Plateau where the annual precipitation mostly happened
from July to September. Most rainfall would be lost by evaporation during this period
because of the high temperature [3]. In addition, another main reason for limiting apple
production in the Loess Plateau is the poor soil fertility. In the Loess Plateau, the soil organic
matter content in apple orchards is about 5.41–9.25 g/kg; in other Chinese apple-producing
areas, it is usually 6.53–15.57 g/kg [4].

Green manure crops are extensively employed in orchards because of their benefits
in promoting soil organic matter content, increasing water infiltration, decreasing soil
erosion, controlling weeds, and improving biodiversity [5–8]. Some studies showed that
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planting green manure crops can improve soil water status in orchards. For instance,
long-term grass intercropping significantly improved soil water-infiltration capacity and
water-holding capacity in apple orchards [9]. Grass growth in the Weibei apple orchard
could improve soil structure and promote soil water-storage capacity [10]. Cover crops
increased the infiltration water amount and soil moisture compared with convention
tillage [11]. Planting the subterranean clover (Trifolium repens L.) in olive orchards was
proved to be effective as a way of improving available soil water [12]. Additionally, some
studies also demonstrated that in orchards, green manure crops intercropping had the
effect of fertility improvement. White clover, crown vetch (Coronilla varia L.), and perennial
ryegrass living mulches significantly increased the soil total organic carbon, available
phosphorus, and available potassium contents [13]. With the increase in planting years,
grass growing could improve soil quality, and soil total nitrogen content increased by
3.05% [14]. By a meta-analysis, orchard grass mulch was identified as a promising practice
to increase soil organic carbon stock stocks at the 0–30-cm soil layer across China [15].
Crown vetch, orchard grass, and white clover mulching significantly increased soil organic
carbon and soil dissolved organic carbon contents in topsoil [16]. However, some people
found that green manure crops intercropped in orchards competed with fruit trees for water
and nutrients. Grass cover caused lower soil water content and exacerbated the desiccation
of the deep soil layer, with the increase in planting years [17]. Grass mulching caused lower
soil water content during the dry season on the arid area of the Weibei Loess Plateau [18].
In the early stage of grass growth (4 years), soil nutrient consumption was greater than
accumulation, and there was nutrient competition between apples and herbage in the
0–40-cm soil layer [19]. In apricot orchards of the arid Loess hilly and gully region, China,
intercropping erect milkvetch were unsuitable and generated the competition of water and
nutrients between apricots and erect milkvetch [20]. Therefore, it is significant to figure
out the water and nutrient utilization of apple–green manure crops agroforestry system for
promoting apple tree growth and improving yield.

As one of the essential mineral elements for fruit trees, nitrogen plays an important
role in the growth and development of apple trees and its yield formation. In addition, 15N
stable isotope tracing technique is an important method of nitrogen research at present.
However, in recent years, few studies were reported on the water and nutrient utilization of
apple tree–green manure crops agroforestry system, especially for intercropping different
green manure crops. Thus, we conducted a field trial to (1) Investigate the effects of
intercropping different green manure crops on soil moisture and fertility; (2) Explore the
water and nitrogen competition mechanism of apple tree–green manure crop agroforestry
systems; (3) Examine the effects of intercropping different green manure crops on fruit
yield, water use efficiency, and apple quality; (4) Select an intercropping model with better
water and nitrogen utilization effect for apple production in the gully area of the Loess
Plateau in China.

2. Materials and Methods
2.1. Study Area

The study area was located in Xunyi county, Shaanxi Province, China (35◦01′ N, 108◦27′ E),
which is a typical gully area on the Loess Plateau (Figure 1). The climate type of study area
is temperate continental monsoon climate. The county has an average altitude of 1430 m
and an average temperature difference between day and night of 12.6 ◦C. Annual mean
temperature and precipitation are 10.2 ◦C and 721.2 mm, respectively (based on Xunyi
county meteorological data for 1990–2022). The majority of rainfall falls in July, August,
and September (Figure 2). There are approximately 170 frost-free days and 2390 sunshine
hours per year. The field capacity of the tested orchard in the 0–1-m soil layer was found to
be 21.47% (w/w), while the average dry bulk density was 1.48 g/cm3. In the 0–1-m soil
layer, the basic fertility (mass ratio) was 11.62 g/kg of organic matter, 0.64 g/kg of total
nitrogen, 7.90 mg/kg of nitrate nitrogen, 5 mg/kg of ammonium nitrogen, 21.67 mg/kg of
available phosphorus, and 85.20 mg/kg of available potassium.
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2.2. Experimental Design

The experiment was carried out between May and October of 2022 in the Xunyi Apple
Experimental Station in Xianyang City, Shaanxi Province, China. The study site is a typical
gully area on the Loess Plateau. The total precipitation in 2022 is 698.2 mm. Based on the
precipitation data of Xunyi County from 1990–2020, the corresponding frequency value
of precipitation in 2022 was 50.3% via Pearson III curve, which was close to the frequency
value of the water normal year (p = 50%). Thus, the experiment’s results were considered
to be of certain representativeness.

The apple trees (Malus pumila M.) were planted in 2016. The row spacing of the trees
was 1.5 m × 4 m with a south–north orientation. The green manure crops (ryegrass (Lolium
perenne L.), spring rape (Brassica napus L.), and alfalfa (Medicago L.)) were sown in inter-row
(3 m) on the 12th of May in 2022. No irrigation and fertilization were employed on them
during the trial. Three green manure crops were ploughed at the end of the experiment
to fertilize the soil. The densities of seeding were recommended locally as follows: spring
rape of 15 kg/hm2, alfalfa of 15 kg/hm2, and ryegrass of 15 kg/hm2. We tilled the soil
before sowing the green manure crops. Three intercropping treatments were weeding
regularly. The plots on both sides of the test area were set as protection rows. The other
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management practices of apple trees are consistent with local practices. The daily irrigation
and fertilization of the orchard were conducted by drip irrigation. The position of the drip
irrigation belt is 50 cm above the ground of the fruit tree row.

The experiment was composed of two parts as follows. Experiment I (May to October
of 2022). The experiment was designed on a randomized block with four treatments:
apple–ryegrass intercropping (AR), apple–spring rape intercropping (AS), apple–alfalfa
intercropping (AA), and the control (CK) of employing clean tillage in the inter-row and
row (Figure 3). Each treatment was done with three replications (20 apple trees for each
replication). Experiment II (July to October of 2022): 15N field tracer microplots were set
up in the test plots of Experiment I (Figure 3). One microplot was randomly set up in
each test plot, and three microplots were set up under each treatment as replications. The
setting of the field tracer microplot was as follows: in each experimental plot, randomly
selecting a well-growing apple tree and using the iron sheet to create a square area around
it (one meter in length, width and depth; the iron sheet was 10 cm above the ground)
(Figure 3). Applying 10 g of 15N-labeled urea (Shanghai Research Institute of Chemical
Industry, abundance 10.02%) in each field tracer microplot on 28th of July in 2022. The
specific application method of the 15N-labeled urea was as follows: completely dissolving
10 g 15N-labeled urea in the watering can and spraying all of it evenly in the field tracer
microplot. Finally, evenly covering a thin layer of soil on the surface of the field tracer
microplot. The sowing density of green manure crops in the microplot was consistent with
the test plot; the water and fertilizer managements in the microplot were consistent with
local orchards.
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2.3. Measurements and Calculations
2.3.1. Soil Water Content (SWC) Measurements

In each plot, soils were sampled at four points (Figure 3). The soil samples in the 0–1 m
(with an interval of 20 cm) in each plot were collected by a soil auger (4 cm in diameter)
during the trial. The soil samples in each layer were partly separated to determine soil water
content via the oven-drying method (105 ◦C, 24 h). At the beginning of the experiment, the
soil samples were also collected to determine the initial SWC.

2.3.2. Soil Nutrient Content Determinations

Some subsamples of the above soils were taken into lab for nutrient content determi-
nation. Soil organic matter (SOM), total nitrogen (TN), nitrate nitrogen (NN), ammonium
nitrogen (AN), available phosphorus (AP), and available potassium (AK) were measured
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in 0–60-cm soil layers in each plot. SOM was determined by the potassium dichromate
external heating method; TN was determined by the Kjeldahl method; NN and AN were
measured via 1 mol/L KCL solution extraction and the AA3 continuous flow analyzer
(SEAL, Norderstedt, Germany); AP was determined by sodium bicarbonate extraction
colorimetry method; AK was determined by flame photometry. The determination meth-
ods of SOM, N, P, and K contents were based on the book Soil Agricultural Chemistry
Analysis [21].

2.3.3. 15N Isotope Abundance Determinations

In fruit-maturing period, the soil and plant samples from each 15N field tracer mi-
croplot were collected to measure 15N isotope abundance by stable isotope ratio mass
spectrometer (IRMS). An auger (4 cm diameter) was employed to collect 0–60-cm (with an
interval of 20 cm) isotope soil samples whose location of sampling points was shown in
Figure 3. Plant samples included apple trees’ roots, stems, branches (annual and perennial),
leaves, fruits, and the aboveground part of green manure crops in the microplot.

2.3.4. Nitrogen-Efficiency Determinations

In this study, the growth model was used to estimate the biomass of apple trees. The
growth model is to establish the mathematical relationship between the dry weight of each
part of the plant and each tree measurement factor through the actual monitoring value,
which can reflect the relationship between plant biomass and tree measurement factor
relations [22]. According to the nonlinear apple tree growth model established in this study
area [23] and the easily obtained tree measurement factors (tree height and base diameter),
the biomass of apple trees in this test site was estimated. The growth model was provided
by [22]:

W (kg) = a
(

D2(cm) × H (m)
)b

, (1)

where W is the biomass of fruit tree; a and b are the growth model parameters; D is the
base diameter of the fruit tree; H is the tree height. In order not to damage the fruit trees,
the biomass of roots, stems, and branches were calculated by the model, and the biomass of
leaves and fruits were measured in fruit maturing. H and D were measured every month
from fruit swelling to fruit maturing. a, b, and prediction accuracy are shown in Table 1 [23].
Prediction accuracy (P, %) is the accuracy verification index for the prediction effect of the
biomass model, and the specific calculation method is as follows:

P =

1−
tα
√

∑n
i=1(yi − ŷi)

2

ŷ
√

n(n− T)

 × 100%, (2)

where yi is the actual observed value, ŷi is the estimated value of the model; ŷ is the average
estimated value; n is the number of sample units; T is the number of parameters; tα is the t
value at the confidence level α.

Table 1. Parameters of growth model.

Organs a b R2 Prediction Accuracy/%

Stem 0.019 0.962 0.989 83.16
Branch 0.009 1.086 0.982 80.08

Root 0.015 0.976 0.971 87.91

The proportion (Ndff) of plant N derived from the urea labeled by 15N is provided by

Ndff =
atom%15Nexcesssample

atom%15Nexcessfertilizer
, (3)
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where atom%15Nexcess = atom%15N–15N natural abundance, and 15N natural abundance = 0.3663
± 0.0004 [24].

The nitrogen utilization rate of plant was calculated by:

NUE(%) =
Ndff(%) × Norgan (g)

nitrogen rate (g)
, (4)

where Norgan is the total nitrogen amount of plant organs, which equals organ biomass
multiplied by organ TN. In fruit maturing, 15N plant samples’ TN were also needed to
measure.

The nitrogen residue rate of 0–60-cm soil layer was calculated by:

NRE(%) =
Ndff(%) × N0–60 cm soil layer (g)

nitrogen rate (g)
, (5)

where N0–60 cm soil layer is the total nitrogen amount of the 0–60-cm soil layer, which equals
TN of 0–60 soil layer multiplied by corresponding soil volume. In fruit maturing, 15N soil
samples’ TN were also needed to measure.

The nitrogen loss rate of the 15N-labeled urea was calculated by:

NLE(%)= 1−NUE(%)−NRE(%), (6)

2.3.5. Soil Water Storage (SWS)

The formula of calculating soil water storage (SWS) was as:

SWS (mm)= SWCi(%) × γi

(
g cm−3

)
× H (cm) × 10, (7)

where SWCi is the soil gravimetric water content of each layer, γi is the bulk density of
each layer; Hi is the thickness of each layer.

2.3.6. Soil Water Difference Ratio (SWDR) [25]

A simple index was introduced to demonstrate the possibility of water competition
between apple trees and green manure crops as follows:

SWDR(%) =(SWCi(%)−SWCt(%))/SWCt(%) × 100%, (8)

where SWCi and SWCt represent the soil gravimetric water content in the inter-row and
row, respectively. We calculated the SWDR values of the control check (SWDRc) and an
intercropping treatment (SWDRi), respectively. If the value of SWDRi is negative and its
value is less than SWDRc, the water competition of green manure crops with apple trees
may take place with a high probability.

2.3.7. Evapotranspiration (ET) and Water Use Efficiency (WUE)

The calculation of crop water requirements (ET) based on soil–water balance equation:

ET = I (mm)+P (mm) + ∆W (mm), (9)

where I, P, ∆W are the amount of irrigation, precipitation, and soil water-storage change
in 0–1 m respectively from the beginning of the experiment (early May) to the ending of
the experiment (late October). The runoff, underground water recharge, and leakage were
neglected due to no heavy rain occurring and the deep level of underground water table.

WUE
(

kg ha−1mm−1
)
=

Y
(

kg ha−1
)

ET (mm)
, (10)

where Y is the yield of apple.
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2.3.8. Fruit Yield and Quality

Six apple trees were randomly selected at the fruit-maturing period from every plot to
measure apple yield. Four apples from four directions of each apple tree were collected to
determine fruit quality.

2.3.9. Data Analysis

The data were analyzed and processed via SPSS 26 and Excel 2016. One-way ANOVA
and multi-way ANOVA were performed to test whether different elements significantly
influence experimental indicators or not. The least significant difference method (LSD)
at p < 0.05 was used to evaluate any significant differences.

3. Results
3.1. Variation of Soil Water, TN, and SOM Contents
3.1.1. SWC Change

In general, during the trial period, the SWC of CK was greater than the other treat-
ments, averaging more than three intercropping treatments 3.8–10.3% and at different
growth stages, treatments were significant on SWC (Figure 4 and Table 2); the ET of CK
was greater than the other treatments averagely 0.1–2.5% and treatments had no significant
difference (Table 3 and Figure 5). During the fruit setting and fruit swelling, the SWC of
each treatment generally showed a trend of increasing with the depth of the soil layer
increased; at fruit maturing, the SWC of each treatment showed a downward trend; in addi-
tion, we found the SWC of each treatment in fruit setting was generally lower than the other
growth periods (Figure 4). Among three intercropping treatments, the maximum value
of total ET in AA treatment and the minimum value occurred in AR treatment (Table 3).
The ET at different growth stages under different intercropping treatments showed a trend
of increasing first and then decreasing; it reached the maximum values in the early fruit
swelling (Figure 5).

Table 2. Significance analysis of SWC in 0–1 m during the test.

Growth Period T SD P T × SD T × P SD × P T × SD × P

Fruit setting *** *** ns *** ** ** *
Early fruit swelling *** *** ns *** ns ns ns
Late fruit swelling *** *** ** *** *** * ns

Fruit maturing *** *** *** ** *** * ***

Note: In the one-way analysis of variance, T, SD, and P represent the influence of treatment, soil depth, and
position interaction on SWC, respectively. In the two-way analysis of variance, T × SD, T × P, and SD × P
represent the influence of treatment-soil depth, treatment–position, and soil depth–position interaction on SWC,
respectively. In the three-way analysis of variance, T × SD × P represents the influence of treatment-soil depth-
position interaction on SWC. *, **, ***, and ns represent significances at the p < 0.05, p < 0.01, and p <0.001 levels
and no significance, respectively.



Agronomy 2023, 13, 2009 8 of 14

Agronomy 2023, 13, 2009  8  of  16 
 

 

3. Results 

3.1. Variation of Soil Water,TN, and SOM Contents 

3.1.1. SWC Change 

In general, during the trial period, the SWC of CK was greater than the other treat-

ments, averaging more  than  three  intercropping  treatments 3.8–10.3% and at different 

growth stages, treatments were significant on SWC (Figure 4 and Table 2); the ET of CK 

was greater than the other treatments averagely 0.1–2.5% and treatments had no signifi-

cant difference (Table 3 and Figure 5). During the fruit setting and fruit swelling, the SWC 

of each treatment generally showed a trend of increasing with the depth of the soil layer 

increased; at fruit maturing,  the SWC of each  treatment showed a downward  trend; in 

addition, we found the SWC of each treatment in fruit setting was generally lower than 

the other growth periods (Figure 4). Among three intercropping treatments, the maximum 

value of total ET in AA treatment and the minimum value occurred in AR treatment (Table 

3). The ET at different growth stages under different intercropping treatments showed a 

trend of increasing first and then decreasing; it reached the maximum values in the early 

fruit swelling (Figure 5). 

 

Figure 4. Spatio–temporal distribution of soil-water contents (SWC) in 0–1-m soil layer during the 

experiment. a, b, c, d are the four sampling points perpendicular to the tree row; the distance from 

a, b, c to the tree row are 0.2 m, 0.6 m, and 1 m respectively; d  is  located  in the middle position 

between the selected tree and the prior tree. 1, 2, 3, and 4 represent four growth periods: fruit setting, 

early fruit swelling, late fruit swelling, and fruit maturing, respectively. AR, AS, AA, and CK repre-

sent apple–ryegrass, apple–spring rape, apple–alfalfa intercropping pattern and a control treatment 

with clear tillage in the inter-row and row, respectively. 

Table 2. Significance analysis of SWC in 0–1 m during the test. 

Growth Period  T  SD  P  T × SD  T × P  SD × P  T × SD × P 

Fruit setting  ***  ***  ns  ***  **  **  * 

Early fruit swelling  ***  ***  ns  ***  ns  ns  ns 

Late fruit swelling  ***  ***  **  ***  ***  *  ns 

Fruit maturing  ***  ***  ***  **  ***  *  *** 

Figure 4. Spatio–temporal distribution of soil-water contents (SWC) in 0–1-m soil layer during the
experiment. a, b, c, d are the four sampling points perpendicular to the tree row; the distance from a,
b, c to the tree row are 0.2 m, 0.6 m, and 1 m respectively; d is located in the middle position between
the selected tree and the prior tree. 1, 2, 3, and 4 represent four growth periods: fruit setting, early
fruit swelling, late fruit swelling, and fruit maturing, respectively. AR, AS, AA, and CK represent
apple–ryegrass, apple–spring rape, apple–alfalfa intercropping pattern and a control treatment with
clear tillage in the inter-row and row, respectively.
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Figure 5. Variation of evapotranspiration (ET) at different growth stages under different green manure
crops treatments. AR, AS, AA, and CK represent apple–ryegrass, apple–spring rape, apple–alfalfa
intercropping pattern and a control treatment with clear tillage in the inter-row and row, respectively.
BL, FS, EFS, LFS, and FM represent blooming, fruit setting, early fruit swelling, late fruit swelling,
and fruit maturing, respectively. T, G and T × G represent the influence of treatment, growth period,
and treatment-growth period interaction on ET, respectively. **, ***, and ns represent significances at
the p < 0.01, p <0.001 levels and no significance, respectively.
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Table 3. Yield, ET, and WUE of each treatment.

Index AR AS AA CK

Yield (kg ha−1) 50,375 ± 2625 a 47,667 ± 2524 a 42,000 ± 3437a 45,111 ± 2959 a
ET (mm) 587.9 ± 11.6 a 592.0 ± 15.3 a 601.7 ± 12.2 a 602.6 ± 13.2 a

WUE
(kg ha−1 mm−1) 85.7 ± 1.7 a 80.5 ± 2.1 ab 69.8 ± 1.4 c 74.9 ± 1.8 bc

Note: Values are listed as mean ± one standard deviation (n = 3). Different lowercase letters represent significant
differences among different treatments (p < 0.05). AR, AS, AA, and CK represent apple–ryegrass, apple–spring
rape, apple–alfalfa intercropping pattern and a control treatment with clear tillage in the inter-row and row,
respectively.

3.1.2. Distribution of TN and SOM Contents

The variation tendency of TN and SOM contents were consistent, and the maximum
value appeared in CK treatment; among three intercropping treatments, the maximum
value appeared in AR treatment, and the minimum value appeared in AA treatment
(Figure 6). The TN and SOM contents of three intercropping treatments were significantly
lower than CK treatment. At maturity, AR, AS, and AA treatments reduced soil organic
matter content by 4.2%, 6.5%, and 18.8%, and total nitrogen content by 0.01%, 1.3%, and
20.3%, relative to CK, respectively (Figure 6).
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Figure 6. Soil organic matter (SOM) and total nitrogen(TN) contents of each treatment at fruit matur-
ing. AR, AS, AA, and CK represent apple–ryegrass, apple–spring rape, apple–alfalfa intercropping
pattern, and a control treatment with clear tillage in the inter-row and row, respectively. Different
lowercase letters represent significant differences among different treatments (p < 0.05).

3.2. Water and Nitrogen Competition of Intercropping System
3.2.1. Water Competition

The results of SWDR showed that the times of water competition between green
manure crops and fruit trees among three intercropping treatments were AR: 7 times, AS:
6 times, AA: 7 times (Figure 7). We considered the absolute value of SWDR difference
(SWDRi-SWDRc) as an indicator to estimate the degrees of water competition because the
times did not show significant difference. The water competition degrees of AR, AA, and
AS were 38.4%, 48.8%, and 64.6%, respectively.
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Figure 7. Soil water difference ratio (SWDR) of each treatment during the trial. AR, AS, AA, and
CK represent apple–ryegrass, apple–spring rape, apple–alfalfa intercropping pattern, and a control
treatment with clear tillage in the inter-row and row, respectively. BL, FS, EFS, LFS, and FM represent
blooming, fruit setting, early fruit swelling, late fruit swelling, and fruit maturing, respectively.

3.2.2. Nitrogen Competition

The results of 15N isotope tracing indicated that the NUE of roots, stems, and branches
in apple trees were higher than the other organs of fruit trees. The NUE of fruit trees in all
three intercropping treatments were higher than CK treatment; among three intercropping
treatments, the maximum value of NUE of fruit trees appeared in AR treatment (24.37%),
which was 1.41 times of CK treatment, and the minimum value appeared in AA treatment
(19.74%), which was 1.14 times of CK treatment (Table 4). Green manure crops’ NUE of AA
treatment was the highest (39.42%); their NUE of AR treatment was the lowest (19.71%).
The nitrogen loss rate of all three intercropping treatments were less than CK treatment
(Table 4).

Table 4. Nitrogen efficiency of each treatment based on 15N isotope tracer technique.

Treatments
15NUEOrgan(%)

15NUEAt(%) 15NRE(%) 15NUEGmc(%) 15NLE(%)
Leaves Branch Stem Root Fruit

AR 0.84 ± 0.07
a

8.15 ± 0.36
a

1.53 ± 0.09
c

10.29 ±
0.30 a

3.56 ± 0.28
b

24.37 ±
1.53 a

10.45 ±
0.96 c

19.71 ±
0.95 c

45.47 ±
2.49 b

AS 0.70 ± 0.05
b

4.19 ± 0.29
b

3.47 ± 0.15
a

7.89 ± 0.37
c

3.83 ± 0.20
ab

20.08 ±
0.96 b

15.84 ±
1.11 b

29.24 ±
1.65 b

34.84 ±
1.83 c

AA 0.43 ± 0.03
d

4.40 ± 0.31
b

1.80 ± 0.06
b

8.91 ± 0.39
b

4.19 ± 0.15
a

19.74 ±
0.85 bc

26.85 ±
1.45 a

39.42 ±
2.21 a

14.00 ±
0.83 d

CK 0.53 ± 0.03
c

3.87 ± 0.15
b

1.44 ± 0.10
c

9.59 ± 0.48
ab

1.87 ± 0.12
c

17.30 ±
0.96 c

10.55 ±
0.67 c

72.16 ±
3.25 a

Note: Values are listed as mean ± one standard deviation (n = 3). Different lowercase letters represent significant
differences among different treatments (p < 0.05). AR, AS, AA, and CK represent apple–ryegrass, apple–spring
rape, apple–alfalfa intercropping pattern, and a control treatment with clear tillage in the inter-row and row,
respectively. 15NUEOrgan, 15NUEAt, 15NUEGmc, 15NRE, and 15NLE represent 15N utilization efficiency of apple
tree’s organs, apple tree, green manure crops, 15N residue rate in 0–60 cm soil layer, and 15N loss efficiency,
respectively.
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3.3. Yield, WUE, and Fruit Quality

AR treatment had the highest yield and AA treatment had the lowest yield. The yield
of AR and AS treatment were higher than CK treatment, but the yield of AA treatment
was lower than CK treatment (Table 3). The variation trend of WUE in each treatment was
consistent with the yield; the WUE of AR and AS treatment were higher than CK treatment;
and the WUE of AA treatment was lower than CK treatment (Table 3). In terms of apple
quality, there were no significant differences in all treatments (Table 5).

Table 5. Fruit quality of each treatment.

Treatment Titratable Acid (%) Soluble Sugar (g/kg) VC (mg/kg)

AR 0.24 ± 0.01 a 144.55 ± 10.10 a 4.51 ± 0.90 a
AS 0.24 ± 0.02 a 140.93 ± 12.39 a 5.71 ± 0.52 a
AA 0.24 ± 0.04 a 160.75 ± 20.76 a 4.51 ± 1.80 a
CK 0.23 ± 0.01 a 137.13 ± 8.47 a 5.71 ± 0.52a

Note: Values are listed as mean ± one standard deviation (n = 3). Different lowercase letters represent significant
differences among different treatments (p < 0.05). AR, AS, AA, and CK represent apple–ryegrass, apple–spring
rape, apple–alfalfa intercropping pattern, and a control treatment with clear tillage in the inter-row and row,
respectively.

4. Discussion

This article is based on one-season experimental data to expand. In addition, we
demonstrate the reliability of this study as follows. Firstly, the total precipitation in 2022
is 698.2 mm. Based on the precipitation data of Xunyi County from 1990–2020, the corre-
sponding frequency value of precipitation in 2022 was 50.3% via Pearson III curve, which
was fairly close to the frequency value of the normal water year (P = 50%). Thus, the
experiment’s results were considered to be a certain representativeness in the condition of
the normal water year. Secondly, in our study, the 15N isotope tracer technique was used
to investigate nitrogen competition and utilization under different intercropping patterns.
There are many studies on the use of 15N isotope technology to explore the nitrogen uti-
lization of apple trees, among which there are also many studies using the 15N isotope
experiment data of one season to obtain representative results [26–29]. Based on the above
two points, we believe that the data obtained in our study are representative and credible.
Of course, in subsequent tests, we will also further explore the long-term effects of different
treatments to better serve agricultural production.

4.1. Effects of Different Green Manure Crops on Soil Moisture and Fertility

During the experiment, the ET of CK was greater than three intercropping treatments,
but the SWC of three intercropping treatments was lower than CK treatment overall, and
there was no significant difference in ET among the treatments either on the scale of the
whole experimental cycle or on the scale of different growth periods (Figures 4 and 5, and
Table 3). This indicated that the intercropped green manure crops not only failed to play an
important role in water retention during the experiment, but also the soil water depletion
was exacerbated by the growth of green manure crops. This result contradicted previous
studies [9,30]. This may be because our experiment focused on the effect of green manure
crops on soil moisture of the apple orchard in the short period and did not consider the
cumulative effect of long-term intercropping of green manure crops. It may also be due to
the age of apple trees. These need to be further investigated in the follow-up experiment.

The SOM and TN content of each treatment decreased to different degrees compared to
the beginning of the experiment, and the SOM and TN content of CK treatment were greater
than three intercropping treatments (Figure 6). This indicated that three intercropping
treatments intensified the nutrient consumption in soil to different degrees, which is
different from previous studies [14,31,32]. The growing year, sowing density, and mixture
composed of cover crops may be the reasons. The green manure crop in AA treatment is
the legume crop, but the reduction degree of SOM and TN content in AA treatment were
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the greatest among treatments. This result is against the fact that legume green manure
can fix nitrogen and provide benefits to the crop growth at the same time as it or to the
subsequent crop [33]. This may be due to the short planting period of alfalfa, which not
only did not serve to increase soil nitrogen but instead intensified the nitrogen depletion in
soil [19,34].

4.2. Water and Nitrogen Competition of Intercropping Systems

In order to investigate whether green manure crops in intercropping systems com-
peted with fruit trees for water and nitrogen, relevant techniques and indicators were
employed. Firstly, a simple indicator (SWDR) was introduced to explore if green manure
crops competed with fruit trees for water. The results of SWDR indicated that three green
manure crops competed with fruit trees for water during the trial with a high probability
(Figure 7). This may be related to planting years and planting density [17,31]. It needs to be
explored in further experiments. The alfalfa of AA treatment competed with the fruit trees
to a larger extent (64.6%), and the ryegrass of AR treatment competed with fruit trees to a
smaller extent (38.4%).

The 15N isotope-tracing technique was introduced to investigate whether nitrogen
competition occurred in intercropping systems. The results indicated that the NUE of
fruit trees in all three intercropping treatments increased to different degrees compared
to CK treatment, with the AR treatment showing the largest increase of 62.58% and the
AA treatment showing a smaller increase of 39.65% compared to CK treatment (Table 4).
This suggested that intercropping green manure crops could promote nitrogen uptake
and utilization by fruit trees, which may be due to the reason that intercropping green
manure crops promoted the growth and development of the root system [27,35]. The
alfalfa of AA treatment had the highest nitrogen uptake rate, which also implied that the
intercropped alfalfa in inter-row of the orchard competed nitrogen with fruit trees with a
high possibility [34]. The ryegrass of AR treatment had lower nitrogen utilization and was
less likely to compete with fruit trees for nitrogen among the three green manure crops.
Compared with CK treatment, green manure crops in three intercropping treatments all
reduced nitrogen losses from the soil to different degrees (Table 4). The part of nitrogen
that avoided losing was either absorbed by the fruit trees or by the green manure crops
themselves.

4.3. Effects of Different Green Manure Crops on Yield, WUE, and Apple Quality

The AA treatment had the lowest yield among three intercropping treatments, even
lower than CK treatment, while both AR and AS treatments were higher than CK treatment
(Table 3), which was closely related to the water and nitrogen competition between green
manure crops and fruit trees in each treatment. The AA treatment had the largest degree of
water and nitrogen competition among three intercropping treatments, followed by the
AS treatment. AR treatment had the smallest degree of water and nitrogen competition
(Figure 7 and Table 4). This also indicated that mild competition may contribute to yield
improvement, while excessive competition would cause yield reduction, which is similar
to other studies [36,37]. In addition, the variation tendency of SOM, TN, and WUE of three
intercropping treatments were also consistent with yield (Table 3 and Figure 6). In addition,
there was no significant difference in apple quality among different treatments (Table 5).

5. Conclusions

Based on the one-season field trial, our study showed that green manure crops inter-
cropping did not significantly reduce evapotranspiration relative to CK. Meanwhile, AR,
AS, and AA treatments reduced soil organic matter and total nitrogen content relative to
CK. The AA treatment intensified water and nitrogen competition. The AR treatment had
better water and nitrogen utilization effects relative to AS and AA treatments. Moreover,
AR and AS treatments increased apple yield and WUE relative to CK. The AA treatment
reduced apple yield and WUE relative to CK. All treatments had no significant difference
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on apple quality. Altogether, these results suggest that in normal water years, adapting the
ryegrass–apple tree intercropping pattern is beneficial to apple production on the Plateau
Loess, China.
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