Field Screening of Wheat Cultivars for Enhanced Growth, Yield, Yield Attributes, and Nitrogen Use Efficiencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Overview
2.2. Experimental Frameworks and Treatments
2.3. Crop Management
2.4. Crop Parameters
2.5. Computations of Related Metrics
2.6. Statistical Analysis
3. Results
3.1. Plant Height
3.2. Number of Tillers
3.3. Chlorophyll Content
3.4. Grain Quality of Wheat
3.5. Wheat Grain Yield and Yield Components
3.6. Plant Nitrogen Uptake and Utilization
3.7. Grain Yield Efficiency Index
3.8. Exploration of the Correlation among Various Agro-Morphological Traits of Wheat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walling, E.; Vaneeckhaute, C. Nitrogen Fertilizers and the Environment. In Nitrate Handbook; CRC Press: Boca Raton, FL, USA, 2022; pp. 103–135. [Google Scholar] [CrossRef]
- Kostić, M.M.; Tagarakis, A.C.; Ljubičić, N.; Blagojević, D.; Radulović, M.; Ivošević, B.; Rakić, D. The Effect of N Fertilizer Application Timing on Wheat Yield on Chernozem Soil. Agronomy 2021, 11, 1413. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. Nitrogen Fixation. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ziaei, S.; Mazloumzadeh, S.; Jabbary, M. A comparison of energy use and productivity of wheat and barley (case study). J. Saudi Soc. Agric. Sci. 2015, 14, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 March 2023).
- Salim, N.; Raza, A. Nutrient use efficiency (NUE) for sustainable wheat production: A review. J. Plant Nutr. 2019, 43, 297–315. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Stahl, A.; Wittkop, B.; Lichthardt, C.; Nagler, S.; Rose, T.; Chen, T.-W.; Zetzsche, H.; Seddig, S.; Baig, M.M.; et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 2019, 5, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Cormier, F.; Foulkes, J.; Hirel, B.; Gouache, D.; Moënne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen-use efficiency: A review for wheat (T. aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Gaju, O.; Allard, V.; Martre, P.; Snape, J.W.; Heumez, E.; LeGouis, J.; Foulkes, M.J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 2011, 123, 139–152. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Frels, K.; Regassa, T.; Waters, B.M.; Baenziger, P.S. Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. Euphytica 2017, 213, 87. [Google Scholar] [CrossRef] [Green Version]
- Nehe, A.; Misra, S.; Murchie, E.; Chinnathambi, K.; Foulkes, M. Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars. Field Crops Res. 2018, 225, 152–162. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011, 61, 410–420. [Google Scholar] [CrossRef]
- Hawkesford, M.J. The diversity of nitrogen use efficiency for wheat varieties and the potential for crop improvement. Better Crops 2012, 96, 10–12. [Google Scholar]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 2012, 12, 389–410. [Google Scholar]
- Duan, Y.-H.; Shi, X.-J.; Li, S.-L.; Sun, X.-F.; He, X.-H. Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments. J. Integr. Agric. 2014, 13, 588–596. [Google Scholar] [CrossRef]
- Singh, B. Nitrogen Use Efficiency in Crop Production in India: Trends, Issues, and Challenges. Agric. Res. 2023, 12, 32–44. [Google Scholar] [CrossRef]
- Rahman, M.A.; Sarker, M.; Amin, M.; Jahan, A.; Akhter, M. Yield Response and Nitrogen Use Efficiency of Wheat Under Different Doses and Split Application of Nitrogen Fertilizer. Bangladesh J. Agric. Res. 1970, 36, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954; Available online: https://ia903207.us.archive.org/21/items/estimationofavai939olse/estimationofavai939olse.pdf (accessed on 1 January 2023).
- Hanway, J.J.; Heidel, H. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa State Coll. Agric. Bull. 1952, 57, 1–31. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Methodology for Evaluation of Lowland Rice Genotypes for Nitrogen Use Efficiency. J. Plant Nutr. 2003, 26, 1315–1333. [Google Scholar] [CrossRef]
- Mendiburu, F.D.; Yaseen, M. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 2023.03.1-446. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 1 January 2023).
- Roberts, T.L. Right product, right rate, right time and right place… the foundation of best management practices for fertilizer. Fertil. Best Manag. Pract. 2007, 29, 1–8. [Google Scholar]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Res. 2004, 85, 213–236. [Google Scholar] [CrossRef]
- Yano, G.T.; Takahashi, H.W.; Watanabe, T.S. Avaliação de fontes de nitrogênio e épocas de aplicação em cobertura para o cultivo do trigo. Semin. Ciências Agrárias 2005, 26, 141–148. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Singh, L.K.; Yadav, A.K.; Khatri-Chhetri, A.; Jat, H.S.; Sharma, P.C.; Jat, M.L.; Stirling, C.M. Identifying optimum rates of fertilizer nitrogen application to maximize economic return and minimize nitrous oxide emission from rice–wheat systems in the Indo-Gangetic Plains of India. Arch. Agron. Soil Sci. 2020, 66, 2039–2054. [Google Scholar] [CrossRef] [Green Version]
- Khan, G.R.; Akma, M. Nitrogen application rate and timing management for improved grain quality parameters of wheat crop. Pak. J. Agric. Sci. 2021, 58, 1141–1153. [Google Scholar]
- Khan, G.R.; Alkharabsheh, H.M.; Akmal, M.; AL-Huqail, A.A.; Ali, N.; Alhammad, B.A.; Hoogenboom, G. Split Nitrogen Application Rates for Wheat (Triticum aestivum L.) Yield and Grain N Using the CSM-CERES-Wheat Model. Agronomy 2022, 12, 1766. [Google Scholar] [CrossRef]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M Interactions to Increase Harvest Index and Yield of Early Sown Wheat. Front. Plant Sci. 2020, 11, 994. [Google Scholar] [CrossRef]
- Fuertes-Mendizábal, T.; Aizpurua, A.; González-Moro, M.; Estavillo, J. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur. J. Agron. 2010, 33, 52–61. [Google Scholar] [CrossRef]
- Tedone, L.; Verdini, L.; Grassano, N.; Tarraf, W.; De Mastro, G. Optimising nitrogen in order to improve the efficiency, eco-physiology, yield and quality on one cultivar of durum wheat. Ital. J. Agron. 2014, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Singh, M.; Sidhu, H.; Humphreys, E.; Thind, H.; Jat, M.; Blackwell, J.; Singh, V. Nitrogen management for zero till wheat with surface retention of rice residues in north-west India. Field Crops Res. 2015, 184, 183–191. [Google Scholar] [CrossRef]
- Singh, B. Agronomic benefits of neem coated urea—A review. In International Fertilizer Association Review Papers; International Fertilizer Association: Paris, France, 2016. [Google Scholar]
- Yang, R.; Baker, R.J. Genotype-Environment Interactions in Two Wheat Crosses. Crops Sci. 1991, 31, 83–87. [Google Scholar] [CrossRef]
- El-Metwally, I.M.; Saudy, H.S. Herbicides tankmixtures efficiency on weeds and wheat productivity. Ann. Agric. Sci. Moshtohor. Benha. Univ. 2009, 47, 95–109. [Google Scholar]
- El-Habbal, M.S.; Noureldin, N.A.; Zolfakar, H.A. Response of some wheat cultivars to transplanting. Ann. Agric. Sci. 2000, 45, 189–199. [Google Scholar]
- Hassan, A.A.; Gaballah, A.B. Response of some wheat cultivars to different levels and sources of nitrogen fertilizers under new reclaimed sandy soils. Zagazig J. Agric. Res. 2000, 27, 13–29. [Google Scholar]
- Fu, Q.; Wang, Q.; Shen, X.; Fan, J. Optimizing water and nitrogen inputs for winter wheat cropping system on the Loess Plateau, China. J. Arid. Land 2014, 6, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Chen, J.; Cao, F.; Jiang, L.; Zou, Y.; Deng, G. Improving physiological N-use efficiency by increasing harvest index in rice: A case in super-hybrid cultivar Guiliangyou 2. Arch. Agron. Soil Sci. 2015, 62, 725–743. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.; Cao, J.; Fang, S.; Tian, A.; Liu, Y.; Cao, F.; Yin, X.; Zou, Y. Primary-tiller panicle number is critical to achieving high grain yields in machine-transplanted hybrid rice. Sci. Rep. 2020, 10, 2811. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.; Haque, M.M. Growth, Yield and Nitrogen Use Efficiency of New Rice Variety under Variable Nitrogen Rates. Am. J. Plant Sci. 2016, 7, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effect of nitrogen levels and coated urea on growth, yields and nitrogen use efficiency in aromatic rice. J. Plant Nutr. 2015, 39, 875–882. [Google Scholar] [CrossRef]
- Ferrante, A.; Savin, R.; Slafer, G.A. Floret development of durum wheat in response to nitrogen availability. J. Exp. Bot. 2010, 61, 4351–4359. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, Y.; Qiao, Y.; Sun, H.; Liu, W.; Qiao, W.; Li, W.; Liu, M.; Dong, B. Low light stress promotes new tiller regeneration by changing source–sink relationship and activating expression of expansin genes in wheat. Plant Cell Environ. 2023, 46, 1562–1581. [Google Scholar] [CrossRef]
- Tanka, P.G.; Brian, K.N. Impacts of tillage systems, nitrogen fertilizer rates and a legume green manure on light interception and yield of winter wheat. Cogent Food Agric. 2019, 5, 1580176. [Google Scholar]
- Wolf, N.; Wolf, A.; Hoskins, B. Dry matter analysis method. A report to the manure analysis. Cop. Ext. Publ. 2003, 3769, 1–2. [Google Scholar]
- Yingkui, Y.; Yasuyuki, I.; Sachiko, I. Year-Round forage yield stability through a system combining triple-maize crops with winter barley in kyushu, Japan. Am. J. Agric. Biol. Sci. 2016, 11, 19–28. [Google Scholar]
- Ahmed, S.; Raza, M.A.; Zhou, T.; Hussain, S.; Bin Khalid, M.H.; Feng, L.; Wasaya, A.; Iqbal, N.; Ahmed, A.; Liu, W.; et al. Responses of Soybean Dry Matter Production, Phosphorus Accumulation, and Seed Yield to Sowing Time under Relay Intercropping with Maize. Agronomy 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Bertheloot, J.; Martre, P.; Andrieu, B. Dynamics of Light and Nitrogen Distribution during Grain Filling within Wheat Canopy. Plant Physiol. 2008, 148, 1707–1720. [Google Scholar] [CrossRef] [Green Version]
- Hessini, K.; Issaoui, K.; Ferchichi, S.; Saif, T.; Abdelly, C.; Siddique, K.H.; Cruz, C. Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol. Biochem. 2019, 139, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.D.S.; Smart, D.R.; Muhammad, S.; Armstrong, C.M.; Sanden, B.L.; Houlton, B.Z.; Brown, P.H. Intensive fertilizer use increases orchard N cycling and lowers net global warming potential. Sci. Total. Environ. 2020, 722, 137889. [Google Scholar] [CrossRef]
- Xue, C.; Erley, G.S.A.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.-H. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, R.H.; Bremer, E.; Middleton, A.B.; Pfiffner, P.G.; Dowbenko, R.E. Controlled-release urea for winter wheat in southern Alberta. Can. J. Soil Sci. 2007, 87, 85–91. [Google Scholar] [CrossRef]
- Effah, Z.; Li, L.; Xie, J.; Liu, C.; Xu, A.; Karikari, B.; Anwar, S.; Zeng, M. Regulation of Nitrogen Metabolism, Photosynthetic Activity, and Yield Attributes of Spring Wheat by Nitrogen Fertilizer in the Semi-arid Loess Plateau Region. J. Plant Growth Regul. 2022, 42, 1120–1133. [Google Scholar] [CrossRef]
- Balotf, S.; Kavoosi, G.; Kholdebarin, B. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings. Biotechnol. Appl. Biochem. 2015, 63, 220–229. [Google Scholar] [CrossRef]
- Lambeck, I.C.; Fischer-Schrader, K.; Niks, D.; Roeper, J.; Chi, J.-C.; Hille, R.; Schwarz, G. Molecular Mechanism of 14-3-3 Protein-mediated Inhibition of Plant Nitrate Reductase*. J. Biol. Chem. 2012, 287, 4562–4571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bingham, I.; Karley, A.; White, P.; Thomas, W.; Russell, J. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. Eur. J. Agron. 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Singh, U.; Ladha, J.; Castillo, E.; Punzalan, G.; Tirol-Padre, A.; Duqueza, M. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res. 1998, 58, 35–53. [Google Scholar] [CrossRef]
- Xue, L.; Yu, Y.; Yang, L. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environ. Res. Lett. 2014, 9, 115010. [Google Scholar] [CrossRef]
- Jia, S.; Wang, X.; Yang, Y.; Dai, K.; Meng, C.; Zhao, Q.; Zhang, X.; Zhang, D.; Feng, Z.; Sun, Y.; et al. Fate of labeled urea-15N as basal and topdressing applications in an irrigated wheat–maize rotation system in North China Plain: I winter wheat. Nutr. Cycl. Agroecosystems 2011, 90, 331–346. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Z.; Zhao, J.; Wang, Y.; Yu, Z. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat–soil system. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011, 61, 681–692. [Google Scholar] [CrossRef]
- Zhu, G.; Peng, S.; Huang, J.; Cui, K.; Nie, L.; Wang, F. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River. Sci. Rep. 2016, 6, 21049. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Yuan, S.; Huang, L.; Sun, F.; Zhu, G.; Li, G.; Fahad, S.; Peng, S.; Wang, F. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China. Front. Plant Sci. 2016, 7, 1024. [Google Scholar] [CrossRef] [Green Version]
- Touzy, G.; Rincent, R.; Bogard, M.; Lafarge, S.; Dubreuil, P.; Mini, A.; Deswarte, J.-C.; Beauchêne, K.; Le Gouis, J.; Praud, S. Using environmental clustering to identify specific drought tolerance QTLs in bread wheat (T. aestivum L.). Theor. Appl. Genet. 2019, 132, 2859–2880. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield Physiology of Rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Jiang, L.G.; Cao, W.X.; Gan, X.Q.; Xu, J.Y.; Dong, D.F.; Chen, N.P.; Lu, F.Y.; Qin, H.D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Agri. Sci. China 2004, 37, 490–496. [Google Scholar]
- Fageria, N.K.; dos Santos, A.B.; Coelho, A.M. Growth, yield, and yield components of lowland rice as influenced by ammonium sulfate and urea fertilization. J. Plant Nutr. 2011, 34, 371–386. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V.; Clark, R. Physiology of Crop Production; CRC Press: 2006. [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Huang, L.; Sun, F.; Yuan, S.; Peng, S.; Wang, F. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res 2018, 216, 150–157. [Google Scholar] [CrossRef]
- Huang, L.; Sun, F.; Yuan, S.; Peng, S.; Wang, F. Responses of candidate green super rice and super hybrid rice varieties to simplified and reduced input practice. Field Crops Res. 2018, 218, 78–87. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Zhang, Z.; Li, Y.; Zhang, Y.; Dong, H.; Fang, Y.; Han, L.; Xu, W.; Hu, L. Genetic improvement analysis of nitrogen uptake, utilization, translocation, and distribution in Chinese wheat in Henan Province. Field Crops Res. 2021, 277, 108406. [Google Scholar] [CrossRef]
- Ayadi, S.; Karmous, C.; Chamekh, Z.; Hammami, Z.; Baraket, M.; Esposito, S.; Rezgui, S.; Trifa, Y. Effects of nitrogen rates on grain yield and nitrogen agronomic efficiency of durum wheat genotypes under different environments. Ann. Appl. Biol. 2015, 168, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Kubar, M.S.; Alshallash, K.S.; Asghar, M.A.; Feng, M.; Raza, A.; Wang, C.; Saleem, K.; Ullah, A.; Yang, W.; Kubar, K.A.; et al. Improving Winter Wheat Photosynthesis, Nitrogen Use Efficiency, and Yield by Optimizing Nitrogen Fertilization. Life 2022, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Boulelouah, N.; Berbache, M.R.; Bedjaoui, H.; Selama, N.; Rebouh, N.Y. Influence of Nitrogen Fertilizer Rate on Yield, Grain Quality and Nitrogen Use Efficiency of Durum Wheat (Triticum durum Desf) under Algerian Semiarid Conditions. Agriculture 2022, 12, 1937. [Google Scholar] [CrossRef]
- Wang, W.; Huang, L.; Zhu, G.; Zhang, H.; Wang, Z.; Adnan, M.; Saud, S.; Hayat, Z.; Fahad, S. Screening of Rice Cultivars for Nitrogen Use Efficiency and Yield Stability under Varying Nitrogen Levels. J. Plant Growth Regul. 2021, 41, 1808–1819. [Google Scholar] [CrossRef]
Nitrogen × Cultivar | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 DAS | N0 | 22.28 jk | 21.28 jkl | 16.40 n | 21.10 jklm | 22.65 j | 15.53 n | 20.84 klm | 19.47 m | 19.74 lm | 20.26 lm | 19.95 b |
N75 | 32.10 cd | 31.41 de | 28.46 h | 30.72 def | 34.72 b | 26.60 i | 30.43 defg | 28.80 gh | 29.32 fgh | 29.97 efgh | 30.25 a | |
N150 | 34.40 b | 33.72 bc | 30.68 def | 33.53 bc | 38.24 a | 29.15 fgh | 33.31 bc | 31.36 de | 31.39 de | 32.00 cd | 32.78 a | |
Mean | 29.59 b | 28.80 bc | 25.18 f | 28.45 c | 31.87 a | 23.76 g | 28.19 cd | 26.54 e | 26.82 e | 27.41 de | ||
*N × C = 1.79/*C × N = 8.61 | ||||||||||||
60 DAS | N0 | 64.50 o | 71.00 lm | 55.00 qr | 68.50 mn | 74.00 kl | 52.50 r | 65.50 no | 57.00 pq | 60.00 p | 64.00 o | 63.20 c |
N75 | 82.07 efgh | 85.23 cde | 73.27 kl | 83.50 defg | 88.00 bc | 71.00 lm | 82.00 efgh | 75.81 jk | 78.90 hij | 80.50 ghi | 80.03 b | |
N150 | 86.15 bcd | 92.23 a | 76.50 jk | 88.73 b | 94.73 a | 72.00 l | 87.67 bc | 78.12 ij | 81.50 fgh | 84.00 def | 84.16 a | |
Mean | 77.57 de | 82.82 b | 68.26 h | 80.24 c | 85.58 a | 65.17 i | 78.39 cd | 70.31g | 73.47 f | 76.17 e | ||
*N × C = 3.32/*C × N = 3.28 | ||||||||||||
90 DAS | N0 | 79 p | 101 g | 73 r | 95 j | 106 f | 71 s | 90 m | 75 q | 80 p | 84 o | 85.10 c |
N75 | 97 i | 114 c | 92 l | 108 de | 117 b | 87 n | 107 ef | 94 jk | 99 h | 102 g | 101.40 b | |
N150 | 98 hi | 118 ab | 95 j | 115 c | 119 a | 93 kl | 109 d | 97 i | 102 g | 105 f | 104.83 a | |
Mean | 91.03 g | 110.70 b | 86.37 i | 105.70 c | 113.70 a | 83.37 j | 101.70 d | 88.37 h | 93.37 f | 96.81 e | ||
*N × C =1.99/*C × N = 3.19 | ||||||||||||
HS | N0 | 93.83 l | 108.50 h | 86.17 n | 104.67 i | 118.50 de | 76.50 o | 100.50 jk | 90.33 m | 94.83 l | 99.50 k | 97.33 c |
N75 | 113.17 g | 120.83 cd | 102.17 j | 118.83 de | 123.84 b | 99.67 k | 116.67 ef | 107.50 h | 114.83F g | 116.00 f | 113.35 b | |
N150 | 115.33f g | 123.50 b | 109.50 h | 122.33 bc | 130.00 a | 108.00 h | 119.83 d | 113.33 g | 118.50 de | 119.17 d | 117.95 a | |
Mean | 107.44 f | 117.61 b | 99.28 h | 115.28 c | 124.11 a | 94.72 i | 112.33 d | 103.72 g | 109.39 e | 111.56 d | ||
*N × C = 2.41/*C × N = 3.04 |
Nitrogen × Cultivar | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 DAS | N0 | 105 m | 101 n | 68 t | 56 u | 107 kl | 84 q | 114 h | 86 p | 110 j | 79 r | 91 b |
N75 | 121 e | 116 g | 83 q | 72 s | 125 d | 105 m | 133 b | 107 k | 129 c | 101 n | 109 a | |
N150 | 125 d | 119 f | 96 o | 85 p | 128 c | 112 i | 137 a | 106 lm | 134 b | 108 k | 115 a | |
Mean | 117 d | 112 e | 82 h | 71 i | 120 c | 100 f | 128 a | 100 f | 124 b | 96 g | ||
*N × C = 1.76/*C × N = 8.19 | ||||||||||||
60 DAS | N0 | 341 t | 332 u | 282 y | 261 z | 351 s | 310 v | 368 q | 308 w | 361 r | 296 x | 321 c |
N75 | 458 f | 406 o | 407 no | 385 p | 454 g | 416 m | 486 c | 420 l | 435 k | 409 n | 428 b | |
N150 | 475 d | 462 e | 418 l | 409 n | 485 c | 450 h | 545 a | 437 j | 494 b | 441 i | 462 a | |
Mean | 425 c | 400 d | 369 h | 352 i | 430 b | 392 e | 466 a | 388 f | 430 b | 382 g | ||
*N × C = 1.82/*C × N = 8.19 | ||||||||||||
90 DAS | N0 | 375 m | 362 n | 303 q | 288 r | 387 l | 335 o | 403 k | 332 o | 409 k | 322 p | 352 c |
N75 | 486 gh | 478 h | 448 i | 419 j | 506 e | 477 h | 549 b | 480 h | 524 c | 458 i | 483 b | |
N150 | 520 cd | 513 de | 496 fg | 482 h | 523 cd | 507 e | 589 a | 504 ef | 542 b | 504 ef | 518 a | |
Mean | 460 d | 451 e | 416 h | 396 i | 472 c | 439 f | 514 a | 439 f | 491 b | 428 g | ||
*N × C = 10.02/*C × N = 17.71 | ||||||||||||
Seed/spike | N0 | 47 p | 49 n | 50 l | 51 k | 53 h | 49 n | 51 j | 49 o | 52 i | 50 m | 50 c |
N75 | 49 n | 52 i | 55 e | 55 e | 58 c | 52 i | 55 e | 50 l | 56 d | 53 g | 54 b | |
N150 | 50 l | 52 i | 55 e | 56 d | 60 a | 53 g | 58 c | 52 i | 59 b | 54 f | 55 a | |
Mean | 49 j | 51 h | 53 e | 54 d | 57 a | 51 g | 55 c | 50 i | 56 b | 52 f | ||
*N × C = 0.07/*C × N = 0.58 |
Nitrogen × Cultivar * | SPAD 30-DAS | SPAD 60-DAS | SPAD 90-DAS |
---|---|---|---|
N0 | 30.9 b | 33.9 a | 40.6 b |
N75 | 33.7 a | 39.5 a | 45.5 a |
N150 | 35.4 a | 42.4 a | 47.8 a |
CD (p = 0.05) | 1.9 | 8.6 | 3.2 |
C1 | 32.2 e | 35.0 f | 43.5 gh |
C2 | 31.8 e | 34.1 f | 43.1 h |
C3 | 33.3 cd | 38.2 d | 44.4 ef |
C4 | 33.9 bc | 41.2 b | 45.3 bc |
C5 | 32.9d | 36.4 e | 43.8 fg |
C6 | 33.8 bc | 39.9 c | 45.0 cd |
C7 | 33.3 cd | 37.6 d | 44.2 ef |
C8 | 34.7 a | 42.9 a | 46.3 a |
C9 | 33.6 bc | 38.6 d | 44.6 de |
C10 | 34.2 ab | 41.8 b | 45.7 ab |
CD (p = 0.05) | 0.6 | 1 | 0.6 |
Interaction | Ns | Ns | ns |
Nitrogen × Cultivar * | 1000-Grain Weight (g) | Protein Content (%) |
---|---|---|
N0 | 39.10 c | 9.14 c |
N75 | 42.15 b | 11.27 b |
N150 | 43.88 a | 12.16 a |
CD (p = 0.05) | 0.83 | 0.72 |
C1 | 41.59 ef | 9.17 f |
C2 | 40.70 i | 11.37 b |
C3 | 41.85 de | 9.44 ef |
C4 | 42.57 ab | 11.51 b |
C5 | 41.05 gh | 12.55 a |
C6 | 42.13 cd | 11.25 b |
C7 | 41.28 fg | 9.78 e |
C8 | 42.31 bc | 10.33 d |
C9 | 40.90 hi | 12.32 a |
C10 | 42.74 a | 10.85 c |
CD (p = 0.05) | 0.33 | 0.40 |
Interaction | Ns | ns |
Nitrogen × Cultivar | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
30 DAS | N0 | 56 w | 61 v | 67 qrs | 64 tu | 69 q | 63 uv | 66 rs | 58 w | 68 qr | 65 st | 64 c |
N75 | 78 p | 82 o | 93 ghi | 87 lmn | 96 ef | 85 n | 91 hij | 81 o | 94 fg | 89 jkl | 88 b | |
N150 | 86 mn | 90 ijk | 102 bc | 96 ef | 106 a | 93 gh | 100 cd | 88 klm | 103 b | 98 de | 96 a | |
Mean | 74 i | 78 g | 87 b | 82 e | 90 a | 80 f | 86 c | 76 h | 88 b | 84 d | ||
*N × C = 2.55/*C × N = 8.20 | ||||||||||||
60 DAS | N0 | 211 b | 216 z | 222 v | 219 x | 226 t | 218 y | 221 v | 215 a | 224 u | 220 w | 219 c |
N75 | 301 s | 305 q | 316 l | 309 o | 320 j | 307 p | 314 m | 303 r | 318 k | 312 n | 311 b | |
N150 | 323I | 328 g | 342 c | 333 f | 350 a | 332 f | 339 d | 326 h | 346 b | 335 e | 335 a | |
Mean | 278 j | 283 h | 293 c | 287 f | 298 a | 286 g | 291 d | 281 i | 296 b | 289 e | ||
*N × C = 1/*C × N = 5.31 | ||||||||||||
90 DAS | N0 | 542 y | 547 wx | 557 rs | 551 uv | 561 q | 549 vw | 555 st | 544 xy | 559 qr | 553 tu | 552 c |
N75 | 749 p | 758 o | 782 k | 770 m | 787 j | 767 n | 780 k | 752 p | 785 j | 775 l | 770 b | |
N150 | 819 i | 829 g | 857 c | 834 f | 871 a | 832 fg | 848 d | 825 h | 864 b | 839 e | 842 a | |
Mean | 703 j | 711 h | 732 c | 718 f | 740 a | 716 g | 728 d | 707 i | 736 b | 722 e | ||
*N × C = 3.02/*C × N = 9.12 |
Nitrogen × Cultivar | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain yield (t/ha) | N0 | 1.68 r | 1.93 pqr | 2.50 mno | 2.67 lmn | 3.24 k | 2.17 opq | 2.83 klm | 1.85 qr | 3.24 k | 2.30 nop | 2.44 c |
N75 | 2.41 mno | 3.09 kl | 4.88 gh | 4.65 hi | 5.33 ef | 4.38 ij | 4.70 hi | 3.07 kl | 4.94 fgh | 4.61 hi | 4.20 b | |
N150 | 4.06 j | 5.32 efg | 6.34 cd | 6.60 bc | 7.39 a | 5.56 e | 6.79 bc | 4.15 j | 6.95 ab | 6.06 d | 5.92 a | |
Mean | 2.72 h | 3.45 f | 4.57 cd | 4.64 c | 5.32 a | 4.04 e | 4.77 c | 3.02 g | 5.04 b | 4.32 d | ||
*N × C = 0.45/*C × N = 1.70 | ||||||||||||
Straw yield (t/ha) | N0 | 3.10 k | 3.25 jk | 4.01 hi | 4.10 ghi | 4.62 fgh | 3.60 ijk | 4.20 ghi | 3.24 jk | 4.70 fg | 3.75 ij | 3.86 c |
N75 | 4.08 ghi | 4.86 f | 7.23 d | 6.70 de | 7.21 d | 6.76 de | 6.61 de | 4.93 f | 6.83 de | 7.02 de | 6.22 b | |
N150 | 6.51 e | 8.04 c | 8.67 abc | 8.78 ab | 8.92 a | 8.15 bc | 8.57 abc | 6.44 e | 8.63 abc | 8.58 abc | 8.13 a | |
Mean | 4.56 e | 5.38 d | 6.64 ab | 6.53 bc | 6.92 a | 6.17 c | 6.46 bc | 4.87 e | 6.72 ab | 6.45 bc | ||
*N × C = 0.64/*C × N = 1.85 | ||||||||||||
Biological yield (t/ha) | N0 | 4.78 n | 5.17 mn | 6.51 kl | 6.77 kl | 7.86 j | 5.78 lmn | 7.03 jk | 5.09 mn | 7.94 j | 6.05 klm | 6.30 c |
N75 | 4.78 n | 5.17 mn | 6.51 kl | 6.77 kl | 7.86 j | 5.78 lmn | 7.03 jk | 5.09 mn | 7.94 j | 6.05 klm | 10.43 b | |
N150 | 10.57 i | 13.37 de | 15.02 b | 15.38 ab | 16.31 a | 13.70 cd | 15.36 ab | 10.60 hi | 15.58 ab | 14.65 bc | 14.05 a | |
Mean | 7.28 g | 8.83 e | 11.21 bc | 11.16 bc | 12.24 a | 10.20 d | 11.23 bc | 7.90 f | 11.76 ab | 10.78 cd | ||
*N × C = 1.04/*C × N = 3.50 | ||||||||||||
Harvest index (%) | N0 | 34.96 t | 37.05 r | 38.31 o | 39.25 m | 41.10 hi | 37.42 q | 40.15 k | 36.06 s | 40.73 j | 37.85 p | 38.29 c |
N75 | 36.97 r | 38.65 n | 40.29 k | 40.92 ij | 42.47 e | 39.28 m | 41.46 g | 38.18 o | 41.89 f | 39.57 l | 39.97 b | |
N150 | 38.27 o | 39.73 l | 42.17 f | 42.89 d | 45.18 a | 40.39 k | 44.07 c | 39.00 m | 44.50 b | 41.24 gh | 41.74 a | |
Mean | 36.73 j | 38.47 h | 40.26 e | 41.02 d | 42.92 a | 39.03 g | 41.89 c | 37.75 i | 42.37 b | 39.55 f | ||
*N × C = 0.28/*C × N = 0.55 |
Nitrogen × Cultivar | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TUN (Kg ha−1) | N0 | 32.5 l | 48.3 jk | 47.8 jk | 62.1 j | 85.2 i | 50.1 jk | 53.6 jk | 39.6 kl | 85.0 i | 50.6 jk | 55.5 b |
N75 | 59.4 j | 89.2 i | 117.9 fgh | 126.6 fg | 155.7 de | 121.7 fgh | 112.5 gh | 83.0 i | 143.1 e | 127.5 f | 113.6 ab | |
N150 | 110.5 h | 144.2 e | 170.2 cd | 191.6 b | 223.0 a | 166.8 cd | 181.2 bc | 121.3 fgh | 209.5 a | 177.6 bc | 169.6 a | |
Mean | 67.5 g | 93.9 e | 112.0 d | 126.8 c | 154.6 a | 112.9 d | 115.8 d | 81.3 f | 145.8 b | 118.5 cd | ||
*N × C = 14.6/*C × N = 61.8 | ||||||||||||
NUEg (kg kg−1) | N0 | 52.0 a | 39.9 efg | 52.8 a | 43.5 cd | 38.2 fgh | 43.3 cd | 53.6 a | 46.7 b | 38.3 fgh | 45.7 bc | 45.4 a |
N75 | 40.4 ef | 34.9 ijk | 41.5 de | 36.8 hi | 34.3 jk | 36.2 hij | 41.8 de | 36.9 hi | 34.6 ijk | 36.2 hij | 37.4 b | |
N150 | 36.8 hi | 36.9 hi | 37.4 h | 34.6 ijk | 33.3 k | 33.6 k | 37.6 gh | 34.5 ijk | 33.4 k | 34.2 jk | 35.2 b | |
Mean | 43.1 a | 37.2 d | 43.9 a | 38.3 bcd | 35.3 e | 37.7 cd | 44.3 a | 39.4 b | 35.4 e | 38.7 bc | ||
*N × C = 2.4/*C × N = 3.6 | ||||||||||||
NHI (%) | N0 | 70.9 kl | 75.1 efgh | 74.4 efgh | 77.8 ab | 78.3 a | 74.5 efgh | 76.9 abcd | 71.9 jk | 77.1 abc | 74.2 gh | 75.1 a |
N75 | 67.9 m | 74.3 fgh | 70.8 kl | 75.9 cde | 76.9 bcd | 73.7 hi | 73.7 hi | 70.9 kl | 75.8 defg | 72.6 ij | 73.2 ab | |
N150 | 63.3 n | 72.6 ij | 66.7 m | 75.2 efgh | 76.7 abcd | 71.9 jk | 70.9 kl | 66.9 m | 75.6 cdef | 69.8 l | 71 b | |
Mean | 67.4 f | 74.0 c | 70.6 e | 76.3 b | 77.3 a | 73.4 c | 73.9 c | 69.9 e | 76.2 b | 72.2 d | ||
*N × C = 1.5/*C × N = 3 |
Cultivar | GYEI |
---|---|
C1 | 0.26 |
C2 | 0.55 |
C3 | 1.40 |
C4 | 1.39 |
C5 | 1.99 |
C6 | 0.97 |
C7 | 1.47 |
C8 | 0.35 |
C9 | 1.63 |
C10 | 1.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawdiya, S.; Kumar, D.; Shivay, Y.S.; Kour, B.; Kumar, R.; Meena, S.; Saini, R.; Choudhary, K.; Al-Ansari, N.; Alataway, A.; et al. Field Screening of Wheat Cultivars for Enhanced Growth, Yield, Yield Attributes, and Nitrogen Use Efficiencies. Agronomy 2023, 13, 2011. https://doi.org/10.3390/agronomy13082011
Gawdiya S, Kumar D, Shivay YS, Kour B, Kumar R, Meena S, Saini R, Choudhary K, Al-Ansari N, Alataway A, et al. Field Screening of Wheat Cultivars for Enhanced Growth, Yield, Yield Attributes, and Nitrogen Use Efficiencies. Agronomy. 2023; 13(8):2011. https://doi.org/10.3390/agronomy13082011
Chicago/Turabian StyleGawdiya, Sandeep, Dinesh Kumar, Yashbir Singh Shivay, Babanpreet Kour, Rajesh Kumar, Siyaram Meena, Ravi Saini, Kamal Choudhary, Nadhir Al-Ansari, Abed Alataway, and et al. 2023. "Field Screening of Wheat Cultivars for Enhanced Growth, Yield, Yield Attributes, and Nitrogen Use Efficiencies" Agronomy 13, no. 8: 2011. https://doi.org/10.3390/agronomy13082011
APA StyleGawdiya, S., Kumar, D., Shivay, Y. S., Kour, B., Kumar, R., Meena, S., Saini, R., Choudhary, K., Al-Ansari, N., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2023). Field Screening of Wheat Cultivars for Enhanced Growth, Yield, Yield Attributes, and Nitrogen Use Efficiencies. Agronomy, 13(8), 2011. https://doi.org/10.3390/agronomy13082011