Combined Application of Boron and Zinc Improves Seed and Oil Yields and Oil Quality of Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details and Crop Husbandry
2.3. Data Collection
2.4. Plant Height and Yield-Related Traits
2.5. B and Zn Contents in Leaves
2.6. Estimation of Oil Yield and Oil Quality Traits
2.7. Determination of Protein and Soluble Sugar Contents
2.8. Estimation of Chlorophyll Contents, Photosynthesis, Transpiration Rate, and Stomatal Conductance
2.9. Antioxidant Enzymes
2.9.1. Extraction
2.9.2. Peroxidase (POD) Activity
2.9.3. Superoxide Dismutase (SOD) Activity
2.10. Data Analysis
3. Results
3.1. Growth, Yield, and Boron and Zinc Contents
3.2. Oil Yield and Quality
3.3. Physiological Parameters
3.4. Antioxidant Enzyme Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Oliveira Neto, S.S.; Zeffa, D.M.; Freiria, G.H.; Zoz, T.; da Silva, C.J.; Zanotto, M.D.; Sobrinho, R.L.; Alamri, S.A.; Okla, M.K.; AbdElgawad, H. Adaptability and Stability of Safflower Genotypes for Oil Production. Plants 2022, 11, 708. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Ul-Allah, S.; Farooq, S. Sesame (Sesamum indicum L.). In Neglected and Underutilized Crops; Elsevier: Amsterdam, The Netherlands, 2023; pp. 733–755. [Google Scholar]
- GOP. Economic Survey of Pakistan; Economic Advisory Wing: Islamabad, Pakistan, 2021. [Google Scholar]
- Singh, V.; Pandey, S.; Synrem, G. Line x Tester Analysis for Seed Yield and Its Components in Toria (Brassica campestris L. Var. Toria). J. Pharmacogn. Phytochem 2022, 11, 393–398. [Google Scholar]
- FAO. FAOSTAT 2023. Available online: www.faostat.fao.org (accessed on 11 January 2023).
- Gunstone, F.D. Vegetable Oils in Food Technology; Gunstone, F.D., Ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 9781444332681. [Google Scholar]
- Barth, C.A. Rapeseed for Human Nutrition–Present Knowledge and Future Options. In Proceedings of the 12th International Rapeseed Congress, Wuhan, China, 26–30 March 2007; pp. 3–5. [Google Scholar]
- Ghazani, S.M.; Marangoni, A.G. Minor Components in Canola Oil and Effects of Refining on These Constituents: A Review. J. Am. Oil Chem. Soc. 2013, 90, 923–932. [Google Scholar] [CrossRef]
- Li, X.; Yu, X.; Yang, H.; Wang, J.; Li, Z.; Bai, C.; Wang, J.; Wang, B.; Zhou, G.; Kuai, J. Physiological Response Mechanism of Oilseed Rape to Abiotic Stress and the Stress-Resistant Cultivation Regulation. In Sustainable Crop Productivity and Quality Under Climate Change; Elsevier: Amsterdam, The Netherlands, 2022; pp. 207–234. [Google Scholar]
- Molazem, D.; Azimi, J.; Dideban, T. Measuring the Yield and Its Components, in the Canola in Different Planting Date and Plant Density of the West Guilan. Int. J. Agric. Crop Sci. 2013, 6, 869–872. [Google Scholar]
- Wynne, K.; Neely, C.B.; Adams, C.; Kimura, E.; DeLaune, P.B.; Hathcoat, D.; Gerrish, B. Testing Row Spacing and Planting Rate for Fall-planted Spring Canola in the Southern United States. Agron. J. 2020, 112, 1952–1962. [Google Scholar] [CrossRef] [Green Version]
- Dirwai, T.L.; Senzanje, A.; Mabhaudhi, T. Calibration and Evaluation of the FAO AquaCrop Model for Canola (Brassica napus) under Varied Moistube Irrigation Regimes. Agriculture 2021, 11, 410. [Google Scholar] [CrossRef]
- Weymann, W.; Böttcher, U.; Sieling, K.; Kage, H. Effects of Weather Conditions during Different Growth Phases on Yield Formation of Winter Oilseed Rape. Field Crop. Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Moradi Aghdam, A.; Sayfzadeh, S.; Shirani Rad, A.H.; Valadabadi, S.A.; Zakerin, H.R. The Assessment of Water Stress and Delay Cropping on Quantitative and Qualitative Traits of Rapeseed Genotypes. Ind. Crops Prod. 2019, 131, 160–165. [Google Scholar] [CrossRef]
- Gan, Y.; Angadi, S.V.; Cutforth, H.; Potts, D.; Angadi, V.V.; McDonald, C.L. Canola and Mustard Response to Short Periods of Temperature and Water Stress at Different Developmental Stages. Can. J. Plant Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Bybordi, A.; Seyyedi, S.M. How Nitrogen and Zinc Levels Affect Seed Yield, Quality, and Nutrient Uptake of Canola Irrigated with Saline and Ultra-Saline Water. Commun. Soil Sci. Plant Anal. 2017, 48, 345–355. [Google Scholar] [CrossRef]
- Procko, C.; Crenshaw, C.M.; Ljung, K.; Noel, J.P.; Chory, J. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa. Plant Physiol. 2014, 165, 1285–1301. [Google Scholar] [CrossRef] [Green Version]
- Kadioglu, H.; Hatterman-Valenti, H.; Jia, X.; Chu, X.; Aslan, H.; Simsek, H. Groundwater Table Effects on the Yield, Growth, and Water Use of Canola (Brassica napus L.) Plant. Water 2019, 11, 1730. [Google Scholar] [CrossRef] [Green Version]
- Borie, F.; Rubio, R.; Rouanet, J.L.; Morales, A.; Borie, G.; Rojas, C. Effects of Tillage Systems on Soil Characteristics, Glomalin and Mycorrhizal Propagules in a Chilean Ultisol. Soil Tillage Res. 2006, 88, 253–261. [Google Scholar] [CrossRef]
- Stevenson, F.J. Organic Matter-Micronutrient Reactions in Soil. In Micronutrients in Agriculture; Soil Science Society of America, Inc.: Madison, WI, USA, 2018; pp. 145–186. ISBN 9780891188780. [Google Scholar]
- Rehman, A.; Farooq, M.; Ozturk, L.; Asif, M.; Siddique, K.H.M. Zinc Nutrition in Wheat-Based Cropping Systems. Plant Soil 2018, 422, 283–315. [Google Scholar] [CrossRef]
- Nataraja, T.H.; Halepyati, A.S.; Pujari, B.T.; Desai, B.K. Influence of Phosphorus Levels and Micronutrients on Physiological Parameters of Wheat (Triticum durum Dcsf.). Karnataka J. Agric. Sci. 2006, 19, 685–687. [Google Scholar]
- Chaudry, E.H.; Timmer, V.; Javed, A.S.; Siddique, M.T. Wheat Response to Micronutrients in Rainfed Areas of Punjab. Soil Environ. 2007, 26, 97–101. [Google Scholar]
- Mandal, A.; Patra, A.; Singh, D.; Swarup, A.; Ebhinmasto, R. Effect of Long-Term Application of Manure and Fertilizer on Biological and Biochemical Activities in Soil during Crop Development Stages. Bioresour. Technol. 2007, 98, 3585–3592. [Google Scholar] [CrossRef]
- Tsonev, T.; Cebola Lidon, F.J. Zinc in Plants-an Overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Tang, L.; Hamid, Y.; Liu, D.; Shohag, M.J.I.; Zehra, A.; He, Z.; Feng, Y.; Yang, X. Foliar Application of Zinc and Selenium Alleviates Cadmium and Lead Toxicity of Water Spinach—Bioavailability/Cytotoxicity Study with Human Cell Lines. Environ. Int. 2020, 145, 106122. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of Cereal Grains with Zinc: Agronomic or Genetic Biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Shoja, T.; Majidian, M.; Rabiee, M. Effects of Zinc, Boron and Sulfur on Grain Yield, Activity of Some Antioxidant Enzymes and Fatty Acid Composition of Rapeseed (Brassica napus L.). Acta Agric. Slov. 2018, 111, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Afsahi, K.; Nazari, M.; Omidi, H.; Shekari, F.; Bostani, A.A. The Effects of Different Methods of Zinc Application on Canola Seed Yield and Oil Content. J. Plant Nutr. 2020, 43, 1070–1079. [Google Scholar] [CrossRef]
- Rafique, E.; Rashid, A.; Ryan, J.; Bhatti, A.U. Zinc Deficiency in Rainfed Wheat in Pakistan: Magnitude, Spatial Variability, Management, and Plant Analysis Diagnostic Norms. Commun. Soil Sci. Plant Anal. 2006, 37, 181–197. [Google Scholar] [CrossRef]
- Cakmak, I. Tansley Review No. 111 Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Rehman, A.u.; Wang, X.; Hussain, A.; Qamar, R.; Khalofah, A.; Hussain, M. Boron Application in Yermosols Improves Grain Yield and Quality of Chickpea (Cicer arietinum L.). J. King Saud Univ. Sci. 2022, 34, 101768. [Google Scholar] [CrossRef]
- Ahmad, W.; Zia, M.H.; Malhi, S.S.; Niaz, A.; Ullah, S. Boron Deficiency in Soils and Crops: A Review. Crop Plant 2012, 2012, 65–97. [Google Scholar]
- Oosterhuis, D.M.; Zhao, D. Effect of Boron Deficiency on the Growth and Carbohydrate Metabolism of Cotton. In Plant Nutrition; Springer: Berlin/Heidelberg, Germany, 2001; pp. 166–167. [Google Scholar]
- Goldbach, H.E.; Yu, Q.; Wingender, R.; Schulz, M.; Wimmer, M.; Findeklee, P.; Baluška, F. Rapid Response Reactions of Roots to Boron Deprivation. J. Plant Nutr. Soil Sci. 2001, 164, 173–181. [Google Scholar] [CrossRef]
- Miwa, K.; Fujiwara, T. Boron Transport in Plants: Co-Ordinated Regulation of Transporters. Ann. Bot. 2010, 105, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Rashid, A.; Ryan, J. Micronutrient Constraints to Crop Production in Soils with Mediterranean-Type Characteristics: A Review. J. Plant Nutr. 2004, 27, 959–975. [Google Scholar] [CrossRef]
- Gupta, U.; Solanki, H. Impact of Boron Deficiency on Plant Growth. Int. J. Bioassays 2013, 2, 1048–1050. [Google Scholar]
- Kastori, R.; Maksimovic, I.; Kraljevic-Balalic, M.; Kobiljski, B. Physiological and Genetic Basis of Plant Tolerance to Excess Boron. Zb. Matice Prir. Nauk. 2008, 114, 41–51. [Google Scholar] [CrossRef]
- McClung, J.P. Iron, Zinc, and Physical Performance. Biol. Trace Element Res. 2019, 188, 135–139. [Google Scholar] [CrossRef]
- Pizzorno, L. Nothing Boring about Boron. Integr. Med. 2015, 14, 35. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for Micronutrients in Staple Food Crops from a Human Nutrition Perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Zoveda, F.; Garcia, S.; Pandey, S.; Thomas, G.; Soto, D.; Bianchi, G.; Steinfeld, H.; Faures, J.M.; Griffin, J.; Lipper, L.; et al. Building a Common Vision for Sustainable Food and Agriculture: Principles and Approaches; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Available online: https://www.fao.org/3/i3940e/i3940e.pdf (accessed on 10 June 2023).
- Alloway, B.J. Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Farooq, M.; Naveed, M.; Nawaz, A.; Shahzad, B. Seed Priming of Zn with Endophytic Bacteria Improves the Productivity and Grain Biofortification of Bread Wheat. Eur. J. Agron. 2018, 94, 98–107. [Google Scholar] [CrossRef]
- Ngozi, U.F. The Role of Biofortification in the Reduction of Micronutrient Food Insecurity in Developing Countries. Afr. J. Biotechnol. 2013, 12, 5559–5566. [Google Scholar]
- Atique-ur-Rehman; Ali, U.I.; Qamar, R.; Rehman, A.; Hussain, M.; Javeed, H.M.R.; Ahmad, S. Boron Foliage Application Mediates Growth, Oil Yield and Quality of Sunflower in Yermosols of Southern Punjab. Int. J. Agric. Biol. 2019, 21, 209–214. [Google Scholar] [CrossRef]
- Alloway, B.J. Micronutrient Deficiencies in Global Crop Production; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 1402068603. [Google Scholar]
- He, D.-H.; Lin, Z.-X.; Zhang, X.-L.; Nie, Y.-C.; Guo, X.-P.; Feng, C.-D.; Stewart, J.M. Mapping QTLs of Traits Contributing to Yield and Analysis of Genetic Effects in Tetraploid Cotton. Euphytica 2005, 144, 141–149. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Mohamed, H.M. Effect of Microbial Inoculation and EDTA on the Uptake and Translocation of Heavy Metal by Corn and Sunflower. Chemosphere 2009, 76, 893–899. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Galavi, M.; Ahmadvand, G. Effect of Zinc and Manganese Foliar Application on Yield, Quality and Enrichment on Potato (Solanum tuberosum L.). Asian J. Plant Sci. 2007, 6, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils 1. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- U.S. Government Printing Office. Salinity Laboratory Staff Diagnosis and Improvement of Saline and Alkali Soils, USDA Handbook 60; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Dellavalle, N.B. Determination of Soil-Paste PH and Conductivity of Saturation Extract. In Handbook on Reference Methods for Soil Analysis; Soil Plant Analysis Council Inc.: Athens, Greece, 1992; pp. 40–43. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Campbell, W.R.; Hanna, M.I. The Determination of Nitrogen by Modified Kjeldahl Methods. J. Biol. Chem. 1937, 119, 1–7. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, Sodium, and Potassium. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 225–246. [Google Scholar]
- Johnson, G.V.; Fixen, P.E. Testing Soils for Sulfur, Boron, Molybdenum, and Chlorine. In Soil Testing and Plant Analysis, 3rd ed.; Soil Science Society of America: Madison, WI, USA, 1990; pp. 265–273. [Google Scholar]
- Lindsay, W.L.; Martens, D.C. Testing Soils for Copper, Iron, Manganese, and Zinc. Soil Test. Plant Anal. 1990, 3, 229–264. [Google Scholar]
- Bingham, F.T. Boron. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 431–447. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Rowland, A.P. Chemical Analysis. Methods in Plant Ecology; Moore, P.D., Chapman, S.B., Eds.; Blackwell: London, UK, 1986. [Google Scholar]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid Preparation of Fatty Acid Esters from Lipids for Gas Chromatographic Analysis. Anal. Chem. 1966, 38, 514–515. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Willis, A.J. The Estimation of Carbohydrates in Plant Extracts by Anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.; Prithiviraj, B.; Smith, D.L. Photosynthetic Responses of Corn and Soybean to Foliar Application of Salicylates. J. Plant Physiol. 2003, 160, 485–492. [Google Scholar] [CrossRef]
- Zekri, M. Effects of NaCl on Growth and Physiology of Sour Orange and Cleopatra Mandarin Seedlings. Sci. Hortic. 1991, 47, 305–315. [Google Scholar] [CrossRef]
- Moya, J.L. Chloride Absorption in Salt-Sensitive Carrizo Citrange and Salt-Tolerant Cleopatra Mandarin Citrus Rootstocks Is Linked to Water Use. J. Exp. Bot. 2003, 54, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Azhar, N.; Hussain, B.; Ashraf, M.Y.; Abbasi, K.Y. Water Stress Mediated Changes in Growth, Physiology and Secondary Metabolites of Desi Ajwain (Trachyspermum ammi L.). Pak. J. Bot. 2011, 43, 15–19. [Google Scholar]
- Ullah, N.; Haq, I.U.; Safdar, N.; Mirza, B. Physiological and Biochemical Mechanisms of Allelopathy Mediated by the Allelochemical Extracts of Phytolacca latbenia (Moq.) H. Walter. Toxicol. Ind. Health 2015, 31, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedure of Statistics. A Biometrical Approach, 3rd ed.; McGraw HillBookCo. Inc.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Kanwal, S.; Rahmatullah; Maqsood, M.A.; Bakhat, H.F.S.G. Zinc Requirement of Maize Hybrids and Indigenous Varieties on Udic Haplustalf. J. Plant Nutr. 2009, 32, 470–478. [Google Scholar] [CrossRef]
- Aref, F. Influence of Zinc and Boron Interaction on Residual Available Iron and Manganese in the Soil after Corn Harvest. Am. Eurasian J. Agric. Environ. Sci. 2010, 8, 767–772. [Google Scholar]
- Shaaban, M.M.; El-Fouly, M.M.; Abdel, A.-W.A. Zinc-Boron Relationship in Wheat Plants Grown under Low or High Levels of Calcium Carbonate in the Soil. Pak. J. Biol. Sci. 2004, 7, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Anjum, S.A.; Randhawa, M.A.; Ullah, E.; Naeem, M.; Qamar, R.; Ashraf, U.; Nadeem, M. Influence of Zinc Nutrition on Growth and Yield Behaviour of Maize (Zea mays L.) Hybrids. Am. J. Plant Sci. 2014, 05, 2646–2654. [Google Scholar] [CrossRef] [Green Version]
- Beckie, H.J.; Francis, A.; Hall, L.M. The Biology of Canadian Weeds. 27. Avena fatua L. (Updated). Can. J. Plant Sci. 2012, 92, 1329–1357. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.A.T.; Cagol, A.; Silva, T.R.B.; Nobrega, L.H.P. Boron Application before Sowing of Sunflower Hybrid. J. Food Agric. Environ. 2011, 9, 580–583. [Google Scholar]
- Shrestha, A.; Pradhan, S.; Shrestha, J.; Subedi, M. Role of Seed Priming in Improving Seed Germination and Seedling Growth of Maize (Zea mays L.) under Rain Fed Condition. J. Agric. Nat. Resour. 2019, 2, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Potarzycki, J.; Grzebisz, W. Effect of Zinc Foliar Application on Grain Yield of Maize and Its Yielding Compone. Plant Soil Environ. 2009, 55, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Morshedi, A.; Naghibi, H. Effects of Foliar Application of CU and ZN on Yield and Quality of Canola Seed (Brassica napus L.). J. Agric. 2004, 11, 15–22. [Google Scholar]
- Yang, M.; Shi, L.; Xu, F.-S.; Lu, J.-W.; Wang, Y.-H. Effects of B, Mo, Zn, and Their Interactions on Seed Yield of Rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar] [CrossRef]
- De Oliveira, R.H.; Dias Milanez, C.R.; Moraes-Dallaqua, M.A.; Rosolem, C.A. Boron Deficiency Inhibits Petiole and Peduncle Cell Development and Reduces Growth of Cotton. J. Plant Nutr. 2006, 29, 2035–2048. [Google Scholar] [CrossRef]
- Fontes, R.L.F.; Medeiros, J.F.; Neves, J.C.L.; Carvalho, O.S.; Medeiros, J.C. Growth of Brazilian Cotton Cultivars in Response to Soil Applied Boron. J. Plant Nutr. 2008, 31, 902–918. [Google Scholar] [CrossRef]
- Bellaloui, N.; Hu, Y.; Mengistu, A.; Kassem, M.A.; Abel, C.A. Effects of Foliar Boron Application on Seed Composition, Cell Wall Boron, and Seed Δ15N and Δ13C Isotopes in Water-Stressed Soybean Plants. Front. Plant Sci. 2013, 4, 270. [Google Scholar] [CrossRef] [Green Version]
- Sher, A.; Sattar, A.; Qayyum, A.; Ijaz, M.; Nawaz, A.; Manaf, A.; Hussain, M. Optimizing the NPK Application in White Mustard (Sinapis alba L.) under an Arid Climate in Punjab, Pakistan. J. Plant Nutr. 2019, 42, 1556–1565. [Google Scholar] [CrossRef]
- Kalantar Ahmadi, A.; Shoushi Dezfouli, A.A. Effects of Foliar Application of Micronutrients on Seed Yield and Oil Quality of Canola (Brassica napus L. Cv. Hyola401) under Drought Stress Conditions. Iran. Soc. Crops Plant Breed. Sci. 2019, 21, 237–253. [Google Scholar] [CrossRef]
- Bellaloui, N.; Hanks, J.E.; Fisher, D.K.; Mengistu, A. Soybean Seed Composition Is Influenced by Within-Field Variability in Soil Nutrients. Crop Manag. 2009, 8, 1–12. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. Sulphur Uptake, Yield Responses and the Interactions between Nitrogen and Sulphur in Winter Oilseed Rape (Brassica napus). J. Agric. Sci. 1996, 126, 53–62. [Google Scholar] [CrossRef]
- Zhou, T.; Hua, Y.; Huang, Y.; Ding, G.; Shi, L.; Xu, F. Physiological and Transcriptional Analyses Reveal Differential Phytohormone Responses to Boron Deficiency in Brassica napus Genotypes. Front. Plant Sci. 2016, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Daun, J. Effects of Variety and Crude Protein Content on Nutrients and Anti-Nutrients in Lentils (Lens culinaris). Food Chem. 2006, 95, 493–502. [Google Scholar] [CrossRef]
- Akta, L.Y.; Gemici, M.; Türkyalmaz, B.; Güven, A. The Effects of High Boron Concentration on Growing and Protein Metabolism in Wheat. JA Natoila Eagean Agric. Res. 2004, 14, 88–99. [Google Scholar]
- Li, Y.; Hou, L.; Song, B.; Yang, L.; Li, L. Effects of Increased Nitrogen and Phosphorus Deposition on Offspring Performance of Two Dominant Species in a Temperate Steppe Ecosystem. Sci. Rep. 2017, 7, 40951. [Google Scholar] [CrossRef] [Green Version]
- Pinho, L.G.R.; Campostrini, E.; Monnerat, P.H.; Netto, A.T.; Pires, A.A.; Marciano, C.R.; Soares, Y.J.B. Boron Deficiency Affects Gas Exchange and Photochemical Efficiency (JPI Test Parameters) in Green Dwarf Coconut. J. Plant Nutr. 2010, 33, 439–451. [Google Scholar] [CrossRef]
- Han, S.; Chen, L.-S.; Jiang, H.-X.; Smith, B.R.; Yang, L.-T.; Xie, C.-Y. Boron Deficiency Decreases Growth and Photosynthesis, and Increases Starch and Hexoses in Leaves of Citrus Seedlings. J. Plant Physiol. 2008, 165, 1331–1341. [Google Scholar] [CrossRef]
- Khan, M.B.; Farooq, M.; Hussain, M.; Shahnawaz; Shabir, G. Foliar Application of Micronutrients Improves the Wheat Yield and Net Economic Return. Int. J. Agric. Biol. 2010, 12, 953–956. [Google Scholar]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780123849052. [Google Scholar]
- Monreal, C.M.; DeRosa, M.; Mallubhotla, S.C.; Bindraban, P.S.; Dimkpa, C. The Application of Nanotechnology for Micronutrients in Soil-Plant Systems (VFRC Report 2015/3). VFRC Rep. 2015, 3, 44. [Google Scholar]
Soil Properties | Values | Analytical Method and Reference | |
---|---|---|---|
2020–2021 | 2021–2022 | ||
Physical composition [54] | |||
Sand (g kg−1) | 470 ± 3.2 | 468 ± 3.3 | Bouyoucos hydrometer method [54] |
Silt (g kg−1) | 239 ± 2.4 | 239 ± 2.2 | |
Clay (g kg−1) | 289 ± 1.5 | 289 ± 1.4 | |
Textural class | Loam–clay loam | ||
Chemical composition | |||
Saturation % | 40.22 ± 1.18 | 40.72 ± 1.15 | [55] |
pH | 7.6 ± 0.04 | 7.7 ± 0.02 | [56] |
ECe (µS cm−1) | 15.42 ± 22.2 | 16.82 ± 28.76 | [56] |
Soil organic matter (g kg−1) | 7.40 ± 0.61 | 7.40 ± 0.32 | Walkley and Black method [57] |
Total soil N (mg kg−1) | 4.09 ± 8.14 | 4.14 ± 7.32 | Modified Kjeldahl method [58] |
Extractable P (mg kg−1 soil) | 7.39 ± 0.11 | 7.73 ± 0.31 | Olsen’s method [59] |
Available potassium (mg kg−1) | 271 ± 12.12 | 273 ± 11.14 | Flame photometric method [60] |
Hot-water-soluble boron (mg kg−1) | 0.33 ± 0.08 | 0.37 ± 0.12 | Hot water extraction [61] |
DTPA-extractable zinc (mg kg−1) | 0.46 ± 0.11 | 0.51 ± 0.14 | DTPA soil test [62] |
Treatments | Plant Height (cm) | Number of Siliques Plant−1 | Number of Seeds Silique−1 | 1000-Seed Weight (g) | ||||
---|---|---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | |
Control | 122.20 ± 2.46 E | 117.97 ± 2.21 F | 200.21 ± 2.60 F | 194.63 ± 4.21 G | 13.02 ± 1.04 E | 10.94 ± 0.92 E | 2.63 ± 0.09 C | 2.44 ± 0.11 E |
B0 + Zn8 | 125.67 ± 0.87 DE | 126.17 ± 1.40 E | 260.74 ± 2.89 AB | 253.41 ± 9.42 B | 15.14 ± 0.48 CD | 15.23 ± 0.58 C | 2.86 ± 0.15 BC | 2.64 ± 0.09 D |
B0 + Zn10 | 127.43 ± 1.59 CD | 128.37 ± 1.78 CD | 204.94 ± 2.08 E | 198.45 ± 3.02 F | 15.21 ± 0.50 CD | 15.07 ± 0.66 C | 3.26 ± 0.41 AB | 2.84 ± 0.11 BC |
B1 + Zn0 | 129.13 ± 1.30 BCD | 124.77 ± 1.45 E | 237.45 ± 4.16 CD | 243.78 ± 5.23 C | 15.33 ± 0.69 CD | 15.04 ± 0.71 C | 3.23 ± 0.38 AB | 2.94 ± 0.08 B |
B1 + Zn8 | 132.20 ± 2.04 AB | 126.57 ± 1.15 DE | 249.14 ± 7.37 BC | 244.15 ± 4.41 C | 16.22 ± 0.71 BC | 16.15 ± 1.02 BC | 3.03 ± 0.31 ABC | 2.64 ± 0.09 D |
B1 + Zn10 | 131.15 ± 1.01 ABC | 124.97 ± 1.49 E | 230.47 ± 1.15 D | 230.32 ± 8.78 D | 18.21 ± 0.50 B | 17.33 ± 0.48 B | 2.93 ± 0.45 ABC | 2.74 ± 0.15 CD |
B2 + Zn0 | 132.40 ± 1.16 AB | 132.57 ± 2.35 B | 232.97 ± 6.36 CD | 218.95 ± 7.86 E | 13.44 ± 0.64 E | 11.47 ± 0.71 DE | 3.00 ± 0.32 ABC | 2.84 ± 0.12 BC |
B2 + Zn8 | 135.60 ± 1.33 A | 134.97 ± 2.12 A | 268.73 ± 11.18 A | 274.32 ± 10.31 A | 21.45 ± 0.66 A | 21.63 ± 1.95 A | 3.30 ± 0.12 A | 3.34 ± 0.11 A |
B2 + Zn10 | 129.60 ± 1.89 BCD | 129.97 ± 1.90 C | 229.44 ± 6.69 D | 241.96 ± 4.54 C | 14.94 ± 0.82 DE | 12.86 ± 0.55 D | 3.10 ± 0.25 AB | 2.74 ± 0.13 CD |
LSD0.05 | 4.72 | 2.02 | 17.20 | 3.43 | 2.18 | 1.71 | 0.43 | 0.10 |
Treatments | Seed Yield (t ha−1) | B Content in Leaves (mg kg−1) | Zn Content in Leaves (mg kg−1) | |||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | |
Control | 1.82 ± 0.05 D | 1.79 ± 0.11 D | 10.25 ± 0.09 G | 10.23 ± 0.21 H | 27.46 ± 0.87 I | 27.42 ± 1.14 I |
B0 + Zn8 | 2.01 ± 0.06 CD | 1.79 ± 0.10 D | 11.13 ± 0.14 F | 11.09 ± 0.22 G | 32.13 ± 1.02 F | 32.09 ± 0.98 F |
B0 + Zn10 | 2.13 ± 0.13 BC | 1.99 ± 0.09 BC | 11.37 ± 0.17 E | 11.33 ± 0.15 F | 34.18 ± 0.55 D | 34.16 ± 0.55 D |
B1 + Zn0 | 1.85 ± 0.09 D | 1.73 ± 0.15 D | 14.12 ± 0.15 D | 14.08 ± 0.15 E | 29.66 ± 0.45 H | 29.63 ± 0.34 H |
B1 + Zn8 | 2.02 ± 0.17 CD | 2.01 ± 0.08 BC | 14.24 ± 0.17 D | 14.21 ± 0.18 E | 33.53 ± 0.25 E | 33.51 ± 0.52 E |
B1 + Zn10 | 2.07 ± 0.19 BC | 1.92 ± 0.19 CD | 14.57 ± 0.22 C | 14.53 ± 0.25 D | 35.58 ± 1.22 C | 35.56 ± 0.44 C |
B2 + Zn0 | 2.26 ± 0.23 B | 2.17 ± 0.12 B | 17.09 ± 0.14 B | 17.04 ± 0.10 C | 30.13 ± 0.48 G | 30.08 ± 0.38 G |
B2 + Zn8 | 2.88 ± 0.24 A | 2.44 ± 0.14 A | 17.22 ± 0.13 B | 17.19 ± 0.23 B | 37.46 ± 1.21 B | 37.43 ± 1.14 B |
B2 + Zn10 | 2.10 ± 0.17 BC | 2.03 ± 0.15 C | 17.46 ± 0.11 A | 17.42 ± 0.11 A | 39.42 ± 1.15 A | 39.39 ± 1.11 A |
LSD0.05 | 0.20 | 0.19 | 0.13 | 0.10 | 0.11 | 0.12 |
Treatments | Oil Yield (t ha−1) | Stearic Acid (mg g−1) | Palmitic Acid (mg g−1) | Oleic Acid (mg g−1) | ||||
---|---|---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | |
Control | 0.54 ± 0.07 D | 0.55 ± 0.02 H | 4.53 ± 0.45 G | 4.51 ± 0.32 G | 12.24 ± 0.67 H | 12.23 ± 0.91 H | 152.93 ± 5.78 E | 150.93 ± 15.65 E |
B0 + Zn8 | 0.67 ± 0.06 C | 0.58 ± 0.02 G | 5.11 ± 0.42 F | 5.09 ± 0.39 F | 13.46 ± 0.30 G | 13.43 ± 0.32 G | 181.88 ± 4.58 D | 179.88 ± 11.45 D |
B0 + Zn10 | 0.76 ± 0.09 B | 0.69 ± 0.07 E | 5.24 ± 0.38 F | 5.22 ± 0.44 F | 13.83 ± 0.19 F | 13.81 ± 0.14 F | 184.08 ± 5.66 D | 181.86 ± 12.60 D |
B1 + Zn0 | 0.72 ± 0.07 BC | 0.78 ± 0.11 B | 5.76 ± 0.31 E | 5.74 ± 0.22 E | 14.43 ± 0.21 D | 14.41 ± 0.10 D | 195.09 ± 11.23 CD | 193.09 ± 10.91 CD |
B1 + Zn8 | 0.77 ± 0.09 B | 0.79 ± 0.12 B | 5.92 ± 0.23 DE | 5.89 ± 0.24 DE | 14.66 ± 0.29 C | 14.63 ± 0.09 C | 196.75 ± 13.61 CD | 195.75 ± 9.87 CD |
B1 + Zn10 | 0.66 ± 0.05 C | 0.64 ± 0.04 F | 6.13 ± 0.15 C | 6.11 ± 0.14 C | 14.13 ± 0.14 E | 14.11 ± 0.15 E | 191.86 ± 9.90 CD | 190.86 ± 11.56 CD |
B2 + Zn0 | 0.77 ± 0.04 B | 0.76 ± 0.02 C | 6.33 ± 0.19 B | 6.31 ± 0.18 B | 15.48 ± 0.16 A | 15.46 ± 0.22 A | 215.15 ± 12.23 AB | 213.15 ± 14.56AB |
B2 + Zn8 | 1.18 ± 0.08 A | 1.19 ± 0.07 A | 6.54 ± 0.17 A | 6.52 ± 0.20 A | 15.63 ± 0.17 A | 15.61 ± 0.32 A | 229.24 ± 10.65 A | 227.24 ± 10.71 A |
B2 + Zn10 | 0.73 ± 0.07 BC | 0.72 ± 0.02 D | 6.03 ± 0.14 CD | 6.02 ± 0.12 CD | 15.15 ± 0.23 B | 15.13 ± 0.18 B | 203.04 ± 13.67 BC | 201.04 ± 12.44 BC |
LSD0.05 | 0.07 | 0.01 | 0.19 | 0.20 | 0.17 | 0.19 | 16.45 | 17.40 |
Treatments | Linoleic Acid (mg g−1) | Linolenic Acid (mg g−1) | Erucic Acid (mg g−1) | |||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | |
Control | 40.64 ± 2.24 G | 39.62 ± 3.12 F | 16.33 ± 3.35 D | 15.33 ± 2.12 D | 0.87 ± 0.03 A | 0.85 ± 0.08 A |
B0 + Zn8 | 45.39 ± 1.12 F | 44.37 ± 1.01 E | 22.36 ± 1.12 C | 21.36 ± 1.06 C | 0.74 ± 0.14 ABC | 0.72 ± 0.10 AB |
B0 + Zn10 | 46.50 ± 1.15 EF | 45.50 ± 1.90 DE | 22.77 ± 1.07 C | 22.71 ± 2.21 BC | 0.82 ± 0.11 AB | 0.80 ± 0.06 A |
B1 + Zn0 | 49.51 ± 1.05 CD | 47.51 ± 2.12 CD | 23.38 ± 0.45 C | 22.38 ± 2.09 BC | 0.64 ± 0.15 BCD | 0.63 ± 0.13 BC |
B1 + Zn8 | 50.39 ± 2.12 BCD | 49.39 ± 2.02 BC | 24.63 ± 2.45 ABC | 23.63 ± 2.11 ABC | 0.53 ± 0.13 CD | 0.51 ± 0.11 C |
B1 + Zn10 | 48.29 ± 1.98 DE | 46.29 ± 2.33 DE | 23.06 ± 0.34C | 22.06 ± 0.91 C | 0.69 ± 0.11 BCD | 0.67 ± 0.07 BC |
B2 + Zn0 | 52.39 ± 2.45 AB | 51.39 ± 2.11 AB | 26.33 ± 1.50 A | 25.33 ± 1.05 A | 0.49 ± 0.02 E | 0.47 ± 0.03 D |
B2 + Zn8 | 54.75 ± 1.65 A | 52.75 ± 1.01 A | 26.69 ± 1.91 A | 25.69 ± 1.11 A | 0.33 ± 0.10 E | 0.31 ± 0.07 D |
B2 + Zn10 | 51.83 ± 1.16 BC | 50.83 ± 0.94 AB | 25.63 ± 1.08 AB | 24.63 ± 1.19 AB | 0.40 ± 0.09 E | 0.38 ± 0.08 D |
LSD0.05 | 2.49 | 2.52 | 2.53 | 2.51 | 0.22 | 0.24 |
Treatments | Protein Concentration (mg g−1 FW) | Soluble Sugar Concentration (mg g−1 FW) | Chlorophyll Concentration (SPAD Value) | Photosynthesis Rate (µmol CO2 m−2 s−1) | ||||
---|---|---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | 2020–2021 | 2021–2022 | |
Control | 20.19 ± 0.53 F | 20.17 ± 0.90 F | 20.19 ± 1.03 F | 20.17 ± 0.88 F | 34.65 ± 1.41 G | 34.61 ± 1.12 G | 8.51 ± 0.31 C | 8.49 ± 0.78 C |
B0 + Zn8 | 21.62 ± 0.88 E | 21.59 ± 0.67 E | 21.62 ± 0.43 E | 21.59 ± 0.41 E | 36.58 ± 1.14 F | 36.55 ± 1.64 F | 9.48 ± 1.03 BC | 9.46 ± 0.98 BC |
B0 + Zn10 | 21.86 ± 0.73 E | 21.83 ± 0.55 E | 21.86 ± 0.33 E | 21.83 ± 0.52 E | 38.92 ± 1.01 DE | 38.88 ± 1.21 DE | 9.88 ± 0.90 BC | 9.84 ± 0.78 BC |
B1 + Zn0 | 22.36 ± 0.21 CD | 22.33 ± 0.15 CD | 22.36 ± 0.19 CD | 22.33 ± 0.19 CD | 39.60 ± 1.71 DE | 39.58 ± 1.49 DE | 10.18 ± 0.23 B | 10.15 ± 0.31 B |
B1 + Zn8 | 22.51 ± 0.18 C | 22.49 ± 0.11 C | 22.51 ± 0.17 C | 22.49 ± 0.24 C | 40.37 ± 1.14 D | 40.34 ± 1.12 D | 10.62 ± 0.45 B | 10.60 ± 0.41 B |
B1 + Zn10 | 22.20 ± 0.61 D | 22.18 ± 0.13 D | 22.20 ± 0.24 D | 22.18 ± 0.19 D | 38.25 ± 2.31 EF | 38.21 ± 1.01 DE | 9.64 ± 0.97 BC | 9.62 ± 0.89 BC |
B2 + Zn0 | 24.10 ± 0.22 AB | 24.07 ± 0.22 AB | 24.10 ± 0.25 AB | 24.07 ± 0.22 AB | 45.36 ± 1.43 B | 45.33 ± 1.93 B | 13.62 ± 1.12 A | 13.58 ± 1.45 A |
B2 + Zn8 | 24.16 ± 0.11 A | 24.13 ± 0.09 A | 24.16 ± 0.17 A | 24.13 ± 0.11 A | 48.25 ± 2.12 A | 48.20 ± 1.10 A | 14.18 ± 0.94 A | 14.16 ± 1.33 A |
B2 + Zn10 | 23.89 ± 0.20 B | 23.86 ± 0.11 B | 23.89 ± 0.20 B | 23.86 ± 0.08 B | 43.27 ± 1.78 C | 43.25 ± 1.22 C | 12.84 ± 1.78 A | 12.81 ± 1.83 A |
LSD0.05 | 0.26 | 0.27 | 0.26 | 0.27 | 1.81 | 1.80 | 1.75 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safdar, M.E.; Qamar, R.; Javed, A.; Nadeem, M.A.; Javeed, H.M.R.; Farooq, S.; Głowacka, A.; Michałek, S.; Alwahibi, M.S.; Elshikh, M.S.; et al. Combined Application of Boron and Zinc Improves Seed and Oil Yields and Oil Quality of Oilseed Rape (Brassica napus L.). Agronomy 2023, 13, 2020. https://doi.org/10.3390/agronomy13082020
Safdar ME, Qamar R, Javed A, Nadeem MA, Javeed HMR, Farooq S, Głowacka A, Michałek S, Alwahibi MS, Elshikh MS, et al. Combined Application of Boron and Zinc Improves Seed and Oil Yields and Oil Quality of Oilseed Rape (Brassica napus L.). Agronomy. 2023; 13(8):2020. https://doi.org/10.3390/agronomy13082020
Chicago/Turabian StyleSafdar, Muhammad Ehsan, Rafi Qamar, Amara Javed, Muhammad Ather Nadeem, Hafiz Muhammad Rashad Javeed, Shahid Farooq, Aleksandra Głowacka, Sławomir Michałek, Mona S. Alwahibi, Mohamed S. Elshikh, and et al. 2023. "Combined Application of Boron and Zinc Improves Seed and Oil Yields and Oil Quality of Oilseed Rape (Brassica napus L.)" Agronomy 13, no. 8: 2020. https://doi.org/10.3390/agronomy13082020
APA StyleSafdar, M. E., Qamar, R., Javed, A., Nadeem, M. A., Javeed, H. M. R., Farooq, S., Głowacka, A., Michałek, S., Alwahibi, M. S., Elshikh, M. S., & Ahmed, M. A. A. (2023). Combined Application of Boron and Zinc Improves Seed and Oil Yields and Oil Quality of Oilseed Rape (Brassica napus L.). Agronomy, 13(8), 2020. https://doi.org/10.3390/agronomy13082020