Detection of Fundamental Quality Traits of Winter Jujube Based on Computer Vision and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Image Processing
2.3. Physical and Chemical Index Detection
2.3.1. Total Soluble Solids and Titratable Acidity
2.3.2. Puncture Force
2.4. Classification Training
2.5. Model Training Configuration
2.6. Model Evaluation Criterion
3. Results
3.1. Total Soluble Solids, Titratable Acidity and Puncture Force
3.2. Data Augmentation
3.3. Classification Models
3.3.1. Model Training
3.3.2. Feature Extraction
3.3.3. Classification Results and Comparison
4. Discussion
4.1. Postharvest Fruit Fundamental Quality Analysis
4.2. Model Detection Five Classifications Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rebeaud, S.G.; Cioli, L.; Cotter, P.Y.; Christen, D. Cultivar, maturity at harvest and postharvest treatments influence softening of apricots. Postharvest Biol. Technol. 2023, 195, 112134. [Google Scholar] [CrossRef]
- Cetin, B.E.; Saracoglu, O. Effects of Different Maturity Stages and Fruit Parts on Quality Traits of Plum (Prunus domestica) Fruits. Erwerbs-Obstbau 2022, 9, 1069–1077. [Google Scholar] [CrossRef]
- Perez, V.O.; Perez, L.G.M.; Fernandez-Alduenda, M.R.; Barreto, C.I.A.; Agudelo, C.P.G.; Restrepo, E.C.M. Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy 2023, 13, 341. [Google Scholar] [CrossRef]
- Sheng, J.P.; Shen, L. Chinese jujube (Ziziphus jujuba Mill.) and Indian jujube (Ziziphus mauritiana Lam.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Delhi, India, 2011; pp. 299–326. [Google Scholar]
- Zhu, X.Y.; Shen, D.Y.; Wang, R.P.; Zheng, Y.L.; Su, S.C.; Chen, F.J. Maturity Grading and Identification of Camellia oleifera Fruit Based on Unsupervised Image Clustering. Foods 2022, 11, 3800. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.M.R.; Hakim, A. Classification and Grading of Harvested Mangoes Using Convolutional Neural Network. Int. J. Fruit Sci. 2022, 22, 95–109. [Google Scholar] [CrossRef]
- Ma, L.K.; Liang, C.R.; Cui, Y.; Du, H.Y.; Liu, H.F.; Zhu, L.X.; Yu, Y.S.; Lu, C.Q.; Benjakul, S.; Brennan, C.; et al. Prediction of banana maturity based on the sweetness and color values of different segments during ripening. Curr. Res. Food Sci. 2022, 5, 1808–1817. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 22. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, S.; Gupta, D.; Gulzar, Y.; Juneja, S.; Alwan, A.A.; Nauman, A. An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images. Sustainability 2023, 15, 1695. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2021, arXiv:1512.03385. [Google Scholar] [CrossRef]
- Wightman, R.; Touvron, H.; Jégou, H. ResNet strikes back: An improved training procedure in timm. arXiv 2021, arXiv:2110.00476. [Google Scholar] [CrossRef]
- Duta, I.C.; Liu, L.; Zhu, F.; Shao, L. Improved Residual Networks for Image and Video Recognition. arXiv 2020, arXiv:2004.04989. [Google Scholar] [CrossRef]
- Dhiman, P.; Kaur, A.; Balasaraswathi, V.R.; Gulzar, Y.; Alwan, A.A.; Hamid, Y. Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review. Sustainability 2023, 15, 9643. [Google Scholar] [CrossRef]
- Mamat, N.; Othman, M.F.; Abdulghafor, R.; Alwan, A.A.; Gulzar, Y. Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach. Sustainability 2023, 15, 901. [Google Scholar] [CrossRef]
- Gulzar, Y. Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability 2023, 15, 1906. [Google Scholar] [CrossRef]
- Osako, Y.; Yamane, H.; Lin, S.Y.; Chen, P.A.; Tao, R. Cultivar discrimination of litchi fruit images using deep learning. Sci. Hortic. 2020, 269, 109360. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Liu, H.M.; Liu, J.; Xu, W.Y.; Huang, M.Z.; Gou, N.N.; Wang, C.; Bai, H.K.; Jia, G.J.; et al. Construction of Apricot Variety Search Engine Based on Deep Learning. Hortic. Plant J. 2023, in press. [Google Scholar] [CrossRef]
- Suzuki, M.; Masuda, K.; Asakuma, H.; Takeshita, K.; Baba, K.; Kubo, Y.; Ushijima, K.; Uchida, S.; Akagi, T. Deep Learning Predicts Rapid Over-softening and Shelf Life in Persimmon Fruits. Horticult. J. 2022, 91, 408–415. [Google Scholar] [CrossRef]
- Unal, Z.; Aktas, H. Classification of hazelnut kernels with deep learning. Postharvest Biol. Technol. 2023, 197, 112225. [Google Scholar] [CrossRef]
- Kong, X.B.; Xu, M.; Hao, W.L.; Han, L.X.; Liu, X.L.; Li, Q.J.; Hao, B.Q.; Zhang, S.J.; Li, X.M.; Liu, Y.H.; et al. Development of a texture evaluation system for winter jujube (Ziziphus jujuba ‘Dongzao’). J. Integr. Agric. 2022, 21, 3658–3668. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Xu, Y.J.; Wen, J.; Yu, Y.S. Prunus mume polyphenols maintains the quality and nutrient values of winter jujube (Zizyphus jujuba Mill.) fruits during storage. CyTA-J. Food 2021, 19, 552–559. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Zhu, X.; Hou, Y.Y.; Wang, X.Y.; Li, X.H. Effects of nitric oxide fumigation treatment on retarding cell wall degradation and delaying softening of winter jujube (Ziziphus jujuba Mill. cv. Dongzao) fruit during storage. Postharvest Biol. Technol. 2019, 156, 110954. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, J.; Zhao, N.; Wang, C.; Lv, S.; Ren, F.; Wang, X. Design on the Winter Jujubes Harvesting and Sorting Device. Appl. Sci. 2019, 9, 5546. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.H.; Zhao, M.F.; Luo, J.; Wang, G.H.; Wang, D.C. Design of a winter-jujube grading robot based on machine vision. Comput. Electron. Agric. 2021, 186, 106170. [Google Scholar] [CrossRef]
- Al-Saif, A.M.; Abdel-Sattar, M.; Aboukarima, A.M.; Eshra, D.H. Identification of Indian jujube varieties cultivated in Saudi Arabia using an artificial neural network. Saudi J. Biol. Sci. 2021, 28, 5765–5772. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.S.; Zhou, L.; Zhao, Y.Y.; Bao, Y.D.; Zhang, C.; He, Y. Detection of Subtle Bruises on Winter Jujube Using Hyperspectral Imaging With Pixel-Wise Deep Learning Method. IEEE Access 2019, 7, 64494–64505. [Google Scholar] [CrossRef]
- Kou, X.H.; He, Y.L.; Li, Y.F.; Chen, X.Y.; Feng, Y.C.; Xue, Z.H. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef]
- Huang, J.; Chen, X.; He, A.B.; Ma, Z.B.; Gong, T.Q.; Xu, K.N.; Chen, R.H. Integrative Morphological, Physiological, Proteomics Analyses of Jujube Fruit Development Provide Insights Into Fruit Quality Domestication From Wild Jujube to Cultivated Jujube. Front. Plant Sci. 2021, 12, 773825. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.F.; Lou, H.Q.; Zheng, H.; Hu, Y.; Li, Y. Nondestructive Evaluation of Quality Changes and the Optimum Time for Harvesting During Jujube (Zizyphus jujuba Mill. cv. Changhong) Fruits Development. Food Bioprocess Technol. 2012, 5, 2586–2595. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Zhu, X.; Hou, Y.Y.; Pan, Y.F.; Shi, L.; Li, X.H. Effects of harvest maturity stage on postharvest quality of winter jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit during cold storage. Sci. Hortic. 2021, 277, 109778. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.H.; Wang, Z.T.; Zhang, R.T.; Liu, P.; Liu, M.J.; Liu, Z.G.; Zhao, Z.H.; Wang, L.L.; Chen, X.; et al. The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. Hortic. Res.-Engl. 2021, 8, 14. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Du, J.T.; Zhu, D.J.; Li, X.; Li, X.G. Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant Ziziphus jujuba cv. Tailihong. J. Agric. Food Chem. 2020, 68, 15186–15198. [Google Scholar] [CrossRef]
- Qi, Y.L.; Yang, Z.; Sun, W.H.; Lou, M.; Lian, J.; Zhao, W.W.; Deng, X.Y.; Ma, Y.D. A Comprehensive Overview of Image Enhancement Techniques. Arch. Comput. Method Eng. 2022, 29, 583–607. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.S.; Ban, Z.J.; Jiang, N.; Yang, M.Y.; Li, L. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chem. 2021, 341, 128268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, Z.B.; Liu, L.L.; Wang, L.Y.; Li, X.H.; Ban, Z.J.; Chen, C.K.; Zhu, Y. Partial compression increases acidity, but decreases phenolics in jujube fruit: Evidence from targeted metabolomics. Food Res. Int. 2023, 164, 112388. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.L.; Wu, Z.B.; Wang, L.Y.; Ban, Z.J. S-nitrosylation of superoxide dismutase and catalase involved in promotion of fruit resistance to chilling stress: A case study on Ziziphus jujube Mill. Postharvest Biol. Technol. 2023, 197, 112210. [Google Scholar] [CrossRef]
- Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooij, M.; Faber, N.; Polder, G.; Wehrens, R. Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning. Front. Plant Sci. 2020, 11, 571299. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Wang, C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009, 112, 676–684. [Google Scholar] [CrossRef]
- Sang, Y.Y.; Yang, W.T.; Liu, Y.X.; Zhang, W.D.; Guo, T.T.; Shen, P.; Tang, Y.S.; Guo, M.R.; Chen, G.G. Influences of low temperature on the postharvest quality and antioxidant capacity of winter jujube (Zizyphus jujuba Mill. cv. Dongzao). LWT-Food Sci. Technol. 2022, 154, 112876. [Google Scholar] [CrossRef]
- Wang, X.; Wang, K.; Lian, S.G. A survey on face data augmentation for the training of deep neural networks. Neural Comput. Appl. 2020, 32, 15503–15531. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Ragavendran, U. Interpretation of intelligence in CNN-pooling processes: A methodological survey. Neural Comput. Appl. 2020, 32, 879–898. [Google Scholar] [CrossRef]
- Chang, H.Y.; Vickers, Z.M.; Tong, C.B.S. The use of a combination of instrumental methods to assess change in sensory crispness during storage of a “Honeycrisp” apple breeding family. J. Texture Stud. 2018, 49, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Singh, S.K.; Tiwari, A.K. Pre-trained deep learning-based classification of jujube fruits according to their maturity level. Neural Comput. Appl. 2022, 34, 13925–13935. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, H.; Xu, X.; Ju, J.; Gu, Y. Quality grading of jujubes using composite convolutional neural networks in combination with RGB color space segmentation and deep convolutional generative adversarial networks. J. Food Process Eng. 2020, 44, e13620. [Google Scholar] [CrossRef]
Green Fruits | White Ripe Fruits | Semi-Red Fruits | Fully Red Fruits | Softened Fruits | |
---|---|---|---|---|---|
training set | 700 | 700 | 700 | 700 | 700 |
validation set | 200 | 200 | 200 | 200 | 200 |
test set | 100 | 100 | 100 | 100 | 100 |
Pre-Test Speed | Test Speed | Post-Test Speed | Distance | Time | Trigger Force |
---|---|---|---|---|---|
1.00 mm/s | 5.00 mm/s | 5.00 mm/s | 5.000 mm | 5.00 s | 5.0 g |
Grade | Green Fruits | White Ripe Fruits | Semi-Red Fruits | Fully Red Fruits | Softened Fruits |
---|---|---|---|---|---|
Output | 0 | 1 | 2 | 3 | 4 |
Epoch | Initial Learning Rate | Batch Size | Optimizer |
---|---|---|---|
80 | 1 × 10−3 | 16 | Adam |
Grade | TSS/% * | TA/% | TSS/TA | Puncture Force/g |
---|---|---|---|---|
green fruits (1st classification) | 16.97 ± 0.61 d ** | 0.75 ± 0.03 b | 22.63 ± 0.39 c | 292.50 ± 22.75 b |
white ripe fruits (2nd classification) | 20.13 ± 0.82 c | 0.79 ± 0.02 ab | 25.48 ± 1.54 b | 315.24 ± 43.63 b |
semi-red fruits (3rd classification) | 21.47 ± 0.12 b | 0.83 ± 0.01 a | 25.87 ± 0.35 b | 318.87 ± 50.70 b |
fully red fruits (4th classification) | 24.23 ± 0.05 a | 0.83 ± 0.03 a | 29.19 ± 1.09 a | 352.93 ± 42.43 a |
softened fruits (5th classification) | NA | NA | NA | NA |
Method | Classification | Precision/% | Recall/% | F1-score/% | Accuracy/% |
---|---|---|---|---|---|
VGG16 | Avg | 67.40 | 77.30 | 72.01 | 77.30 |
Inception net | Avg | 89.66 | 89.65 | 89.65 | 89.65 |
ResNet-50 | 0 | 100 | 92.00 | 95.83 | 90.20 |
1 | 91.44 | 85.50 | 88.37 | ||
2 | 84.63 | 89.50 | 87.00 | ||
3 | 82.01 | 98.00 | 89.29 | ||
4 | 96.35 | 85.75 | 90.74 | ||
Avg | 90.89 | 90.15 | 90.25 | ||
iResNet-50 | 0 | 100 | 96.00 | 97.96 | 96.75 |
1 | 95.93 | 94.50 | 95.21 | ||
2 | 90.09 | 100 | 94.79 | ||
3 | 99.73 | 93.50 | 96.51 | ||
4 | 99.01 | 99.75 | 99.83 | ||
Avg | 96.95 | 96.75 | 96.77 | ||
Improved iResNet-50 | 0 | 100 | 99.75 | 99.87 | 98.35 |
1 | 99.74 | 96.25 | 97.96 | ||
2 | 94.51 | 99.00 | 96.70 | ||
3 | 97.76 | 98.00 | 97.88 | ||
4 | 100 | 98.75 | 99.37 | ||
Avg | 98.40 | 98.35 | 98.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Z.; Fang, C.; Liu, L.; Wu, Z.; Chen, C.; Zhu, Y. Detection of Fundamental Quality Traits of Winter Jujube Based on Computer Vision and Deep Learning. Agronomy 2023, 13, 2095. https://doi.org/10.3390/agronomy13082095
Ban Z, Fang C, Liu L, Wu Z, Chen C, Zhu Y. Detection of Fundamental Quality Traits of Winter Jujube Based on Computer Vision and Deep Learning. Agronomy. 2023; 13(8):2095. https://doi.org/10.3390/agronomy13082095
Chicago/Turabian StyleBan, Zhaojun, Chenyu Fang, Lingling Liu, Zhengbao Wu, Cunkun Chen, and Yi Zhu. 2023. "Detection of Fundamental Quality Traits of Winter Jujube Based on Computer Vision and Deep Learning" Agronomy 13, no. 8: 2095. https://doi.org/10.3390/agronomy13082095
APA StyleBan, Z., Fang, C., Liu, L., Wu, Z., Chen, C., & Zhu, Y. (2023). Detection of Fundamental Quality Traits of Winter Jujube Based on Computer Vision and Deep Learning. Agronomy, 13(8), 2095. https://doi.org/10.3390/agronomy13082095