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Abstract: In order to explore the feasibility of rapid non-destructive detection of cotton leaf chloro-
phyll content during the growth stage, this study utilized hyperspectral technology combined with a
feature variable selection method to conduct quantitative detection research. Through correlation
spectroscopy (COS), a total of 882 representative samples from the seedling stage, bud stage, and
flowering and boll stage were used for feature wavelength screening, resulting in 213 selected feature
wavelengths. Based on all wavelengths and selected feature wavelengths, a backpropagation neural
network (BPNN), a backpropagation neural network optimized by genetic algorithm (GA-BPNN),
a backpropagation neural network optimized by particle swarm optimization (PSO-BPNN), and a
backpropagation neural network optimized by sparrow search algorithm (SSA-BPNN) prediction
models were established for cotton leaf chlorophyll content, and model performance comparisons
were conducted. The research results indicate that the GA-BPNN, PSO-BPNN, and SSA-BPNN
models established based on all wavelengths and selected feature wavelengths outperform the BPNN
model in terms of performance. Among them, the SSA-BPNN model (referred to as COS-SSA-BPNN
model) established using 213 feature wavelengths extracted through correlation analysis showed the
best performance. Its determination coefficient and root-mean-square error for the prediction set
were 0.920 and 3.26% respectively, with a relative analysis error of 3.524. In addition, the innovative
introduction of orthogonal experiments validated the performance of the model, and the results
indicated that the optimal solution for achieving the best model performance was the SSA-BPNN
model built with 213 feature wavelengths extracted using the COS method. These findings indi-
cate that the combination of hyperspectral data with the COS-SSA-BPNN model can effectively
achieve quantitative detection of cotton leaf chlorophyll content. The results of this study provide
technical support and reference for the development of low-cost cotton leaf chlorophyll content
detection systems.

Keywords: chlorophyll; cotton; hyperspectral; improved neural networks; non-destructive testing;
orthogonal experiment

1. Introduction

Chlorophyll is a fundamental component in plant organs, and its content is an im-
portant physicochemical parameter that reflects crop growth. Accurate and efficient quan-
titative estimation of cotton leaf chlorophyll content (CLCC) is of great significance for
yield prediction and field management decision making [1–3]. Traditional chlorophyll
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content detection usually involves field sampling and indoor testing, which is not only time-
consuming and laborious, but also destructive and lagging [4]. The use of hyperspectral
technology for the determination of plant physicochemical parameters, such as chlorophyll,
has gradually become an important tool for evaluating crop physicochemical parameters,
due to its advantages of low consumption and rapid and non-damaging detection, among
others [5–8].

Over time, neural networks have gained significant popularity in spectral qualitative
analysis and quantitative prediction due to their advantages in learning, fault tolerance,
real-time processing, and fitting non-linear problems [9–14]. A backpropagation neural
network (BPNN), as one of the representative algorithms in machine learning, is a multi-
layer forward neural network that utilizes a backpropagation learning algorithm and
has shown good performance in non-linear pattern recognition and classification [15–17].
Combining the color values (R, G, B, H, S, and I) of grape skin, using BPNN to predict
grape ripeness has proven to be a great method for predicting grape ripeness [18]. Some
scholars have constructed winter wheat chlorophyll retrieval models based on BPNN and
regression analysis and compared actual measured values with model estimated values.
The results showed that the inversion model based on BPNN demonstrated significantly
higher accuracy than the regression analysis model [19]. Some scholars have also used
partial least squares regression, principal component regression, and BPNN to establish
models for estimating chlorophyll content in corn leaves, and the results also showed
that the BPNN network model had the best prediction effect [20]. Although the BPNN
model can achieve good detection performance, it still has some limitations, such as slow
convergence speed, susceptibility to local optima, and overfitting problems, as mentioned
in previous studies [21–23]. To address the limitations of the BPNN model, Li et al. [24]
optimized the BPNN model using a genetic algorithm to establish an ecosystem health as-
sessment model for 16 regions in Yunnan Province. Furthermore, it has been demonstrated
that the optimized model based on high-spectral data for predicting the gelatinization
characteristics of millet using the backpropagation neural network optimized by particle
swarm optimization (PSO-BPNN) approach exhibits higher expressive capacity than the
BPNN model [25].

While there has been a substantial amount of research on using machine learning
methods for crop nutrient and related parameter detection using hyperspectral technology,
the studies have primarily focused on rice [26,27], maize [20,28,29], and wheat [5,6,22].
There is relatively less literature available on cotton as the subject of study.

In order to investigate the impact of spectral band selection and modeling methods on
the quantitative prediction of chlorophyll content, this study utilized hyperspectral data
preprocessing using the Savitzky–Golay five-point quadratic smoothing method. Feature
wavelength selection was performed using correlation spectroscopy (COS). DH10 cotton
plants at the seedling, bud, and flowering stages were quantitatively assessed for mixed-leaf
chlorophyll content using BPNN, backpropagation neural network optimized by genetic
algorithm (GA-BPNN), PSO-BPNN, and backpropagation neural network optimized by
sparrow search algorithm (SSA-BPNN). By collecting hyperspectral imaging information of
cotton leaves at different growth stages using hyperspectral instruments under laboratory
conditions, representative spectral data are obtained to establish a quantitative relation-
ship between spectra and chlorophyll content. Comparing the performance of BPNN,
GA-BPNN, PSO-BPNN, and SSA-BPNN models, the optimal detection model for cotton
leaf chlorophyll content is selected, and its feasibility is further explored using orthogonal
experiments. The rapid detection model for chlorophyll content in DH10 cotton established
in this study provides a reference for the detection of chlorophyll content in other cotton
varieties. This study innovatively applied orthogonal experiments in quantitative detection
research, providing a new perspective on enhancing model reliability and improving mod-
eling efficiency through the combination selection of models using orthogonal experiments.
At the same time, it offers the corresponding technical support and theoretical basis for the
development of low-cost cotton chlorophyll content rapid detection systems.
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2. Materials and Methods
2.1. Sampling Site

In this paper, samples were collected from the second company experimental base of
Shihezi University in Shihezi, Xinjiang Uygur Autonomous Region (86.08◦ E, 44.31◦ N),
which is located in a temperate continental climate with large temperature differences and
sufficient sunshine hours (annual sunshine hours reach 2500–3500 h), and the sampling
area is shown in Figure 1.
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2.2. Data—Acquisition and Pre-Processing
2.2.1. Field Sample Collection

The study was conducted on DH10-type cotton with a planting area of 18.84 m × 40 m
(Figure 1), and cotton leaf samples were collected in the field at three time points: June 13
(seedling stage), July 10 (bud stage), and August 5 (flowering and boll stage).

Based on field surveys and relevant literature, a combination of “five-point sampling”
and “random sampling” methods was utilized for selecting field cotton plants. Cotton
plants were randomly selected and labeled at sampling points. Starting from the top leaves
of each cotton plant, the third main leaf of the third branch was plucked. This position
typically exhibits good development and represents the sample well. After labeling, the
leaves were sealed in bags and stored in a portable refrigeration unit to preserve the
samples. After excluding samples that were damaged due to improper storage, a total of
882 samples were obtained, with 259, 308, and 315 samples collected during the seedling
stage, bud stage, and flowering and boll stage, respectively.

2.2.2. Hyperspectral Image Acquisition

Hyperspectral images of cotton leaves were acquired in the laboratory using a hyper-
spectral imaging system (ISUZU OPTICS Co., Ltd., Suzhou, China). The hyperspectral
imaging system (Figure 2) mainly consists of an imaging spectrometer, a 150 W light source
providing parallel light, a precision delivery unit set (Zhuo Li Hanguang, SC300-1A, Beijing,
China), a 14-bit thermoelectrically cooled electron-multiplying charge-coupled device (EM-
CCD), and a camera (Andor Luca EMCCD DL-604M, Andor Technology plc., N. Ireland).
The spectral range and the respective rates were 400–1000 nm and 2.8 nm. The number
of wavelengths was 846. The system uses line scan to acquire hyperspectral information
of the sample. To eliminate baseline drift, the light source and camera are turned on and
preheated for 30 min before hyperspectral image data acquisition. The parameters of the
hyperspectral image acquisition system were set as follows: the angle between the light
source and the vertical plane was 45◦, the exposure time T = 0.016 s, the distance between
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the sample and the lens was 28 cm, and the image acquisition speed V = 1.35 mm/s. During
the test, the blade was placed at the center of the carrier table.
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2.2.3. Hyperspectral Image Correction

Due to the spatial light intensity conversion in the halogen lamp and the dark current
in the CCD camera that may affect spectra with low reflectance, black–white correction of
the instrument and black–white calibration of the hyperspectral image are required before
collecting hyperspectral data [30–32]. Under the same system conditions as the sample
collection, a white calibration image W was obtained by scanning a white calibration
board with a diffuse reflection efficiency of 99%, and a black calibration image B was
obtained by closing the camera shutter. This completes the calibration of the hyperspectral
image. The collected absolute image I is transformed into a relative image E using the
following formula:

E =
I − B

W − B
(1)

2.2.4. Hyperspectral Information Extraction

The corrected sample images were analyzed using image segmentation techniques
to select the regions of interest (ROIs) for each sample and extract representative spectral
information from them [33]. The representative sample’s original image is shown in
Figure 3a. Due to the distinct color contrast between the leaf portion and the main stem
portion in the hyperspectral image of the leaf, a support vector machine (SVM) was utilized
to select the RGB values of pixels as features for image segmentation. The segmented
sample image is shown in Figure 3b, which serves as the sample region of interest (ROI)
(Figure 3c). Original pixel dimensions for the spectral image are 83,776 × 80,304, but the
ROI is the extracted complete leaf area after image segmentation using SVM for each leaf.
The size of each leaf’s pixels is not fixed. The average spectrum of all pixels within the ROI
is extracted as the representative spectral information of the sample (Figure 3d).

From Figure 3d, it can be observed that within the visible light wavelength range, the
500–600 nm region represents a high reflectance area, with a peak appearing around 550 nm.
The 400–500 nm and 600–700 nm regions show low reflectance. Reflectance shows a steep
increasing trend from 700 to 760 nm. In the near-infrared wavelength range, 760–1000 nm
represents a strong reflectance region, and the curve appears almost horizontal.



Agronomy 2023, 13, 2120 5 of 17Agronomy 2023, 13, 2120 5 of 17 
 

 

 
Figure 3. Hyperspectral images of cotton leaves and average spectra of ROI in three stages. (a). 
Original image sample; (b). Pure blade part image of the sample; (c). Region of Interest (ROI) of the 
sample; (d). The average spectrum of all pixels: Different colored lines represent different sample 
spectral curves. 

From Figure 3d, it can be observed that within the visible light wavelength range, the 
500–600 nm region represents a high reflectance area, with a peak appearing around 550 
nm. The 400–500 nm and 600–700 nm regions show low reflectance. Reflectance shows a 
steep increasing trend from 700 to 760 nm. In the near-infrared wavelength range, 760–
1000 nm represents a strong reflectance region, and the curve appears almost horizontal. 

2.2.5. Hyperspectral Data Processing 
Due to the limitations of the instrument itself, it may introduce some unfavorable 

factors, such as noise and dark current. Additionally, it is also influenced to some extent 
by its own non-quality-related information. For example, phenomena such as baseline 
drift in the spectral curve, multicollinearity, and noise issues contribute to the presence of 
redundant information in this data. Redundant information not only affects the response 
time of the model, but can also potentially impact its performance. Therefore, in order to 
maintain the integrity of the image and avoid the influence of these unfavorable factors 
on the acquired sample spectral curves, it is necessary to process the raw spectral infor-
mation. This study utilized the Saviĵky–Golay five-point quadratic smoothing method 
for preprocessing the spectral data. Building upon this method, the correlation between 
spectral parameters and coĴon leaf chlorophyll content was investigated, leading to the 
selection of characteristic wavelength bands. 

2.2.6. CLCC Determination 
After completing the hyperspectral data collection for all samples, CLCC was meas-

ured using the spectrophotometric method. A total of 0.5 g of coĴon leaves was taken, the 
veins were removed, and the leaves were crushed and placed in a mortar. Quarĵ sand 
and calcium carbonate powder were added with an 80% acetone solution with a volume 
fraction of 2–3 mL, and ground until the tissue turned white. Then, 10 mL of acetone so-
lution was added and ground into a uniform pulp and left to stand in the dark at room 
temperature (25 °C) for 10 min. After filtration, the mortar and pestle were repeatedly 
rinsed to ensure all leaf pigments entered the volumetric flask. Finally, the solution was 
made up to 50 mL using a 95% ethanol solution, and the total mass concentration of chlo-
rophyll in the extract (mg/L) was measured using the TPX04 nutrient detector at an ab-
sorbance of 652 nm [34], which is calculated as follows: 

Figure 3. Hyperspectral images of cotton leaves and average spectra of ROI in three stages. (a).
Original image sample; (b). Pure blade part image of the sample; (c). Region of Interest (ROI) of the
sample; (d). The average spectrum of all pixels: Different colored lines represent different sample
spectral curves.

2.2.5. Hyperspectral Data Processing

Due to the limitations of the instrument itself, it may introduce some unfavorable fac-
tors, such as noise and dark current. Additionally, it is also influenced to some extent by its
own non-quality-related information. For example, phenomena such as baseline drift in the
spectral curve, multicollinearity, and noise issues contribute to the presence of redundant
information in this data. Redundant information not only affects the response time of the
model, but can also potentially impact its performance. Therefore, in order to maintain the
integrity of the image and avoid the influence of these unfavorable factors on the acquired
sample spectral curves, it is necessary to process the raw spectral information. This study
utilized the Savitzky–Golay five-point quadratic smoothing method for preprocessing the
spectral data. Building upon this method, the correlation between spectral parameters and
cotton leaf chlorophyll content was investigated, leading to the selection of characteristic
wavelength bands.

2.2.6. CLCC Determination

After completing the hyperspectral data collection for all samples, CLCC was measured
using the spectrophotometric method. A total of 0.5 g of cotton leaves was taken, the veins
were removed, and the leaves were crushed and placed in a mortar. Quartz sand and
calcium carbonate powder were added with an 80% acetone solution with a volume fraction
of 2–3 mL, and ground until the tissue turned white. Then, 10 mL of acetone solution was
added and ground into a uniform pulp and left to stand in the dark at room temperature
(25 ◦C) for 10 min. After filtration, the mortar and pestle were repeatedly rinsed to ensure
all leaf pigments entered the volumetric flask. Finally, the solution was made up to 50 mL
using a 95% ethanol solution, and the total mass concentration of chlorophyll in the extract
(mg/L) was measured using the TPX04 nutrient detector at an absorbance of 652 nm [34],
which is calculated as follows:

Ca+b =
A652 × 1000

34.5
(2)

where 34.5 is the absorbance coefficient of chlorophyll a and b at a wavelength of 652 nm.
In turn, CLCC (mg/g) was measured as

CLCC =
Ca+b × V
M × 1000

(3)
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In Equation (2), Ca+b represents the total mass concentration of chlorophyll (mg/L);
V denotes the total volume of the extraction solution (mL); M refers to the fresh mass of
the leaf sample (g). The statistical data of chlorophyll content for a total of 882 cotton leaf
samples at the seedling stage, bud stage, and boll stage of DH10 cotton are presented in
Table 1.

Table 1. Chlorophyll leaf content of cotton samples during the growth period.

CLCC/(mg·g−1) DH10 Cotton Leaf Samples during the
Growth Period

Maximum 1.74
Median 1.28

Minimum 1.03
Average 1.36

The distribution of cotton chlorophyll content is illustrated in Figure 4. The average
chlorophyll content gradually converges towards the median, indicating a normal distribu-
tion of the content. These data distribution characteristics of chlorophyll content may be
beneficial for training the CLCC prediction model.
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2.3. Model Construction and Accuracy Evaluation Standards
2.3.1. Model Construction

In this study, BPNN, GA-BPNN, PSO-BPNN, and SSA-BPNN were used to construct
cotton leaf chlorophyll content prediction models. A total of 882 samples from the three
periods were mixed, and based on a random selection principle, 93% of the samples
were used as training samples for model building, while the remaining 7% were used
for prediction.

The BPNN algorithm is a forward-propagation, backpropagation algorithm. During
the forward-propagation process, input samples pass through the input layer, hidden
layer, and finally reach the output layer. When there is a significant error between the
output and the actual results, the backward propagation process is initiated. During the
backpropagation process, the error signal is propagated back along the original path of
connection, and the weights and thresholds of neurons in each layer are modified to reduce
the error [9–17]. The above forward and backward propagations are repeated until the
requirements are met, completing the training of the network model. In this study, when
modeling based on the BPNN algorithm, the main parameter settings were as follows: the
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number of nodes in the input and output layers was 1; the number of nodes in the hidden
layer was 9; and the iteration count, learning rate, and target were set as 200, 0.01, and
10−6, respectively.

The GA is a parallel, random search optimization method that was proposed in
1962 by Professor Holland from the University of Michigan, USA [35]. It is derived from
simulating the genetic mechanisms of the natural world and the theory of biological
evolution. It incorporates the principles of natural selection and survival of the fittest into
the encoded population formed for parameter optimization. It selects, crosses over, and
mutates individuals based on the chosen fitness function, ensuring that individuals with
higher fitness values are preserved, while those with lower fitness values are eliminated.
The new population inherits information from the previous generation, while also being
superior to it. This process continues in a repetitive cycle until the conditions are met.
The basic elements of a genetic algorithm include chromosome encoding methods, fitness
function, genetic operations, and running parameters. It possesses characteristics such
as high-level heuristic search and parallel computing. When using the GA algorithm to
optimize the BPNN model, the main parameter settings are as follows: 50 iterations, a
population size of 10, a crossover probability of 0.4, and a mutation probability of 0.2.

The PSO algorithm is a population-based intelligent optimization algorithm. It is
inspired by the collective behavior of biological populations and applied to solve optimiza-
tion problems. Each particle in the algorithm represents a potential solution to the problem,
and each particle corresponds to a fitness value determined by the fitness function. The
velocity of a particle determines the direction and distance of its movement. The velocity is
dynamically adjusted based on the particle’s own movement experience and that of other
particles, allowing individuals to search for optimization within the feasible solution space.
When using the PSO algorithm to optimize the BPNN model, the main parameter settings
are as follows: the acceleration coefficient is set to 1.494, the population size is 20, each
particle has a dimension of 2, the population is updated 100 times, and the velocity of the
particles is set between −1.0 and 1.0.

The SSA is a novel swarm intelligence optimization algorithm introduced in 2020 [36].
It is primarily inspired by the foraging behavior and anti-predator behavior of sparrows:
individuals in the population monitor the behavior of other individuals in the group.
Attackers within the population compete with high-intake companions for food resources
to enhance their predation rate. Additionally, when the sparrow population becomes aware
of danger, they exhibit anti-predator behavior. When using the SSA algorithm to optimize
the BPNN model, the main parameter settings are as follows: the safety value is set to
0.6, the proportion of discoverers in the population is 0.7, and the rest are joiners. The
proportion of sparrows sensing danger is 0.2. The initial population size is 30, each particle
has a dimension of 2, and the population is updated 50 times.

2.3.2. Model Accuracy Evaluation Criteria

The accuracy evaluation parameters of the CLCC prediction model established in this
article include the root-mean-square error of calibration (RMSEC), the root-mean-square
error of prediction (RMSEP), the coefficient of determination on the training set (R2

c ), the
coefficient of determination on the prediction set (R2), and the relative prediction deviation
(RPD). When the R2 value is higher and the RMSEP value is lower, the regression effect of
the model is better. The formula for calculating RPD is as follows:

RPD =

√√√√√√√
n
∑

i=1
(yi − y)2

n
∑

i=1
(yi − ŷi)

2
(4)

where yi is the actual value of the ith sample, ŷi is the predicted value of the ith sample, y
is the actual mean value, and n is the number of samples. When RPD > 2.0, the model is
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considered to be good at prediction. When 1.4 < RPD ≤ 2.0, then the model can make a
rough prediction of chlorophyll content, but the prediction accuracy needs to be improved.
When RPD ≤ 1.4, the model is considered to have poor accuracy and does not have
prediction ability.

3. Results
3.1. Feature Wavelength Screening

The correlation coefficient curve between smooth spectral reflectance and cotton
chlorophyll content within the wavelength range of 400–1000 nm is shown in Figure 5.
The results indicate a negative correlation in the wavelength range of 412–424 nm, with a
prominent dip in the correlation coefficient curve occurring around 416 nm. The correlation
coefficient at the bottom of the dip is −0.25. There is a positive correlation in the wavelength
ranges of 400–411 nm and 422–1000 nm. The correlation coefficient reaches its maximum at
900 nm, with a value of 0.44. Using a significance test with a threshold of p = 0.01, a total of
213 feature wavelengths were found to exhibit highly significant positive correlations in
the ranges of 404–406 nm, 522–667 nm, and 697–1000 nm.
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3.2. Evaluation of CLCC Prediction Model during the Growth Period
3.2.1. Results and Analysis of BPNN Model

A BPNN model was established using 213 selected feature wavelengths obtained
through Savitzky–Golay quadratic smoothing method applied to all wavelengths and
filtered based on correlation analysis. The model was used to predict CLCC. Based on
the model’s performance, an optimal model suitable for chlorophyll content detection in
cotton was derived. The model evaluation results are shown in Table 2. From Table 2, it
can be observed that compared to using all wavelengths, the BPNN model established
using feature wavelengths has fewer input variables and shows improved performance.
Among them, the number of feature wavelengths selected based on correlation analysis is
213, accounting for 25.18% of the total number of wavelengths. The R2

c of the training set
and the R2 of the prediction set for the constructed BPNN model both increased by 9.40%
and 6.60%, respectively. Additionally, the RPD increased from 1.285 to 1.443, indicating
an improvement in the predictive performance of the model. It indicates that utilizing
the hyperspectral data in conjunction with the COS-BPNN model can effectively achieve
quantitative detection of cotton leaf chlorophyll content.
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Table 2. BPNN model evaluation results of cotton leaf samples with different quantities and
wavelengths.

Feature Extraction
Methods

Number of
Wavelengths

Calibration Set Validation Set
RPD

RMSEC/% R2
c RMSEP/% R2

Original Spectrum 846 2.91 0.611 2.84 0.655 1.285
COS 213 3.20 0.705 3.05 0.721 1.443

3.2.2. Results and Analysis of the GA-BPNN Model

The evaluation results of the GA-BPNN model for CLCC, established using all wave-
lengths and feature wavelengths, are shown in Table 3. The RPD values of the GA-BPNN
models for CLCC, based on different numbers of wavelengths, are all greater than 1.4 and
close to 2.0. This indicates that the model’s predictive performance is improved compared
to the BPNN model. Among them, the model built using the 213 feature wavelengths
selected by the COS method has superior performance. The calibration set’s R2

c and RMSEC
are 0.790 and 2.60%, respectively, while the prediction set’s R2 and RMSEP are 0.814 and
2.58%, respectively. The GA-BPNN model built showed an improvement of 5.10% and
6.70% in the calibration set’s R2

c and the prediction set’s R2, respectively. The RPD increased
from 1.798 to 2.188, indicating an enhancement of the model’s predictive performance. This
indicates that using the hyperspectral combined COS-GA-BPNN model can effectively
achieve quantitative detection of CLCC.

Table 3. GA-BPNN model evaluation results of cotton leaf samples with different quantities and
wavelengths.

Feature Extraction
Methods

Number of
Wavelengths

Calibration Set Validation Set
RPD Prediction

Time/sRMSEC/% R2
c RMSEP/% R2

Original Spectrum 846 2.67 0.739 2.64 0.747 1.798 297.63
COS 213 2.60 0.790 2.58 0.814 2.188 169.52

To validate the efficiency of the model, the prediction time of the GA-BPNN model
was also statistically analyzed (Table 3). As the number of feature wavelengths decreases,
the model’s prediction time shortens. The running time of the GA-BPNN model built using
the feature wavelengths selected by the COS method is 56.96% of the model built using all
wavelengths, indicating a significant improvement in prediction model efficiency.

3.2.3. Results and Analysis of the PSO-BPNN Model

The evaluation results of the PSO-BPNN model for cotton chlorophyll content, es-
tablished using all wavelengths and feature wavelengths, are shown in Table 4. The RPD
values of the PSO-BPNN models for cotton leaf chlorophyll content, constructed using dif-
ferent numbers of wavelengths, are all greater than 2.0, indicating the excellent predictive
performance of the models. Among them, the PSO-BPNN model established based on the
full spectral range has calibration set R2

c and RMSEC values of 0.804 and 2.25%, respectively.
The prediction set R2 and RMSEP values are 0.820 and 2.13%, respectively, with an RPD of
2.432. The PSO-BPNN model established based on 213 feature wavelengths selected by
the COS method has calibration set R2

c and RMSEC values of 0.882 and 2.28%, respectively.
The prediction set R2 and RMSEP values are 0.885 and 2.58%, respectively, with an RPD of
2.784. Compared to the PSO-BPNN model, the COS-PSO-BPNN model shows significant
improvement in predictive performance. The calibration set R2

c and prediction set R2 have
increased by 7.80% and 6.50% respectively. Additionally, the RPD value has increased from
2.432 to 2.784, indicating a substantial enhancement of the model predictive ability. As
the number of feature wavelengths decreases, the prediction time of the model is reduced.
The runtime of the PSO-BPNN model established using feature wavelengths selected by
the COS method is 48.09% of the model built using all wavelengths. Compared to the
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model built using all wavelengths, there is a significant improvement in the efficiency of
the predictive model.

Table 4. PSO-BPNN model evaluation results of cotton leaf samples with different quantities and
wavelengths.

Feature Extraction
Methods

Number of
Wavelengths

Calibration Set Validation Set
RPD Prediction

Time/sRMSEC/% R2
c RMSEP/% R2

Original Spectrum 846 2.25 0.804 2.13 0.820 2.432 226.51
COS 213 2.28 0.882 2.58 0.885 2.784 108.92

3.2.4. Results and Analysis of the SSA-BPNN Model

The evaluation results of the SSA-BPNN model, using all wavelengths and selected
feature wavelengths, are presented in Table 5. All models exhibited RPD values greater
than 3.0 and determination coefficients greater than 0.9. Based on different numbers of
wavelengths, the performance of the cotton chlorophyll content SSA-BPNN model was
significantly superior to the BPNN model. Among them, the SSA-BPNN model established
based on the full wavelength range showed a calibration set R2

c value of 0.914 and an
RMSEC value of 4.08%, while the prediction set had an R2 value of 0.909 and an RMSEP
value of 3.62%. The RPD value was 3.233. The SSA-BPNN model established using the
COS method to select 213 feature wavelengths had a calibration set R2

c value of 0.930 and
an RMSEC value of 3.18%, while the prediction set had an R2 value of 0.920 and an RMSEP
value of 3.26%. The RPD value increased to 3.524. Compared to the COS-PSO-BPNN
and PSO-BPNN models, the calibration set R2

c and prediction set R2 increased by 1.60%
and 1.10%, respectively, and the RPD value improved from 3.233 to 3.524. The model’s
predictive performance has been enhanced to some extent. The runtime of the SSA-BPNN
model, built using the COS method to select feature wavelengths, was 34.27% of the model
built using all wavelengths. Compared to the model built using all wavelengths, the
prediction model efficiency was significantly improved.

Table 5. SSA-BPNN model evaluation results of cotton leaf samples with different quantities and
wavelengths.

Feature Extraction
Methods

Number of
Wavelengths

Calibration Set Validation Set
RPD Prediction

Time/sRMSEC R2
c RMSEP R2

Original Spectrum 846 4.08 0.914 3.62 0.909 3.233 189.79
COS 213 3.18 0.930 3.26 0.920 3.524 65.04

3.2.5. Model Comparison

Comparing the results from Tables 2–5, the predictive model performance for cotton
leaf chlorophyll content, based on feature wavelengths selected using the COS method, was
superior to the model established using the full spectrum of wavelengths. The BPNN model
established using all wavelengths had R2

c and RPD values of 0.611 and 1.285, respectively,
for the calibration set. The GA-BPNN model established using all wavelengths had R2

c and
RPD values of 0.739 and 1.798, respectively, for the calibration set. The PSO-BPNN model
established using all wavelengths had R2

c and RPD values of 0.804 and 2.432, respectively,
for the calibration set. The SSA-BPNN model established using all wavelengths had R2

c
and RPD values of 0.914 and 3.233, respectively, for the calibration set. Among them, the
SSA-BPNN showed the most significant improvement, with R2

c and RPD values for the
calibration set increasing by 0.303 and 1.948, respectively, compared to the BPNN model.

The results indicate that, when modeling based on all wavelengths, the SSA-BPNN
model outperforms the BPNN, GA-BPNN, and PSO-BPNN models in terms of performance.
The BPNN model established based on feature wavelengths selected using the COS method
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had R2, RMSEP, and RPD values of 0.721, 3.05%, and 1.443, respectively, for the prediction
set. The GA-BPNN model established using feature wavelengths selected with the COS
method had R2, RMSEP, and RPD values of 0.814, 2.58%, and 2.188, respectively, for the
prediction set. The PSO-BPNN model established using feature wavelengths selected with
the COS method had R2, RMSEP, and RPD values of 0.885, 2.58%, and 2.784, respectively,
for the prediction set. The SSA-BPNN model established using feature wavelengths se-
lected with the COS method had R2, RMSEP, and RPD values of 0.920, 3.26%, and 3.524,
respectively, for the prediction set. The results indicate that, after selecting feature wave-
lengths using the COS method, the regression performance of the SSA-BPNN model is
significantly better than the BPNN model. The RPD of the GA-BPNN and PSO-BPNN
models, optimized using the GA and PSO algorithms, respectively, increased from 1.443 to
2.188 and 2.784, respectively. This indicates that compared to the BPNN model, both the
GA-BPNN and PSO-BPNN models exhibit improved regression performance, as well.

The schematic diagram of the fitted prediction models is shown in Figure 6. The
coefficient of determination (R2

f ) and the residual sum of squares (RSS) express the degree
of model fit. A higher coefficient of determination and a lower value of residual sum of
squares indicate a better fit of the model. As shown in Figure 6, the COS-SSA-BPNN model
has the highest R2

f value of 0.911 and the lowest RSS value of 0.066, indicating a good fit of
this model. The COS-SSA-BPNN model also has a narrower 95% confidence interval for
prediction errors and a more concentrated distribution of data points, suggesting stronger
overall data consistency, stability, and representativeness. This implies higher reliability of
sample parameters and stronger predictive ability for the COS-SSA-BPNN model.
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By analyzing the model evaluation criteria (R2
c , R2, RMSEC, RMSEP, and RPD) and

polynomial fitting situation for each model, it can be concluded that the SSA-BPNN
model, built using feature wavelengths selected with the COS method, performs the best.
Furthermore, this model has the shortest prediction time and highest efficiency. Therefore,
it can be concluded that the combination of hyperspectral data and the COS-SSA-BPNN
model is effective for quantitative detection of chlorophyll content in cotton leaves.

3.3. Orthogonal Experiment Verification
3.3.1. Orthogonal Experiment Design Plan

An orthogonal experiment with two factors, modeling wavelength quantity and
modeling method, was designed using a two-factor four-level orthogonal design. The
experiment followed an L8(42) orthogonal table design, with each experimental group
repeated seven times and averaged, resulting in a total of eight experimental groups.
Verify the optimal results of the CLCC prediction model, as described in Section 3.2. The
experimental factors and levels are shown in Table 6, and the orthogonal experimental plan
is presented in Table 7.

Table 6. Orthogonal experiment factor level table for chlorophyll content prediction.

Level 1 2 3 4

Data processing method Original spectrum/A1 COS/A2 — —
Modeling methods BPNN/B1 GA-BPNN/B2 PSO-BPNN /B3 SSA-BPNN/B4

Table 7. Experimental scheme.

Serial Number Data Processing Method Modeling Methods

1 A1 B1
2 A1 B2
3 A1 B3
4 A1 B4
5 A2 B1
6 A2 B2
7 A2 B3
8 A2 B4

3.3.2. Experimental Results and Analysis

The orthogonal experiment results of DH10 CLCC are shown in Table 8. In this study,
the prediction set R2, RMSEP, and RPD were selected as reference indicators to describe
the prediction effectiveness of the model for CLCC.

Table 8. Experimental results.

Group Name
Indicator Name

A B R2 RMSEP RPD

1 1 1 0.655 2.84 1.285
2 1 2 0.747 2.64 1.798
3 1 3 0.820 2.13 2.432
4 1 4 0.909 3.62 3.233
5 2 1 0.721 3.05 1.443
6 2 2 0.814 2.58 2.188
7 2 3 0.885 2.58 2.784
8 2 4 0.920 3.26 3.524

The optimal solution is the combination of preferable levels for each factor within the
tested range. Higher values of R2 and RPD indicate better performance, while a lower
value of RMSEP is preferred. Table 9 presents the analysis of the experimental results.



Agronomy 2023, 13, 2120 13 of 17

Table 9. Analysis of test results.

Index A B

R2

K1 3.131 1.376
K2 3.340 1.561
K3 — 1.705
K4 — 1.829
R 0.209 0.453

Optimization A2B4

RMSEP

K1 11.23 5.89
K2 11.47 5.22
K3 — 4.71
K4 — 6.88
R 0.24 2.17

Optimization A1B3

RPD

K1 8.748 2.728
K2 9.939 3.986
K3 — 5.216
K4 — 6.757
R 1.191 4.029

Optimization A2B4

In this study, a visual analysis was conducted on each individual indicator to determine
the optimal level combination for each indicator. Then, considering the practical application
requirements, a comprehensive comparison analysis was performed using a comprehensive
balance method to evaluate and determine the optimal solution. Ki represents the sum of
the corresponding experimental results when the level number of any column (A, B) is i
(i = 1, 2, 3, 4). R represents the range, which is calculated as R = max {K1, K2, K3, K4}–min
{K1, K2, K3, K4} for any given column. Analyzing R2, the maximum values of Ki for factors
A and B occur at K2 = 3.340 and K4 = 1.829, respectively. The optimal combination for this
indicator is A2B4. Analyzing RMSEP, the minimum values of Ki for factors A and B occur
at K1 = 11.23 and K3 = 4.71, respectively. The optimal combination for this indicator is
A1B3. Analyzing RPD, the maximum values of Ki for factors A and B occur at K2 = 9.939
and K4 = 6.757, respectively. The optimal combination for this indicator is A2B4. The
RMSEP values for all eight experiments are less than 5%, and the measured chlorophyll
content is 1.36 mg/g. This corresponds to 0.068 mg/g for the eight experimental groups,
which has a relatively small impact on practical applications. Therefore, priority should be
given to considering the R2 and RPD values of the model. Taking practical considerations
into account, the optimal solution is determined to be A2B4, which is consistent with
the analysis results in Section 3.2. The results indicate that the COS-SSA-BPNN model is
effective at detecting chlorophyll content in cotton leaves.

4. Discussion

In this study, the spectral information based on the visible and near-infrared (VNIR)
wavelength range (400–1000 nm) was combined with machine learning techniques (BPNN,
GA-BPNN, PSO-BPNN, SSA-BPNN). This successful integration allowed for the accurate
determination of chlorophyll content in different growth stages of cotton. The model
established using SSA-BPNN demonstrated the best predictive performance for cotton
chlorophyll content.

Generally speaking, the reflectance spectrum of green plants is primarily influenced
by leaf pigments within the visible light range, resulting in strong absorption and low
reflectance. The negative correlation between CLCC and the spectrum within the visible
light range indicates that higher chlorophyll content leads to lower spectral reflectance and
stronger absorption. However, the samples used in this study come from three different
growth stages, which introduces certain differences in the relationship between chlorophyll
content and spectral information. Furthermore, the reflectance spectrum beyond visible
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light is mainly influenced by cell structure and leaf water content. Although there are
specific wavelength bands where CLCC and the spectrum demonstrate a highly signifi-
cant correlation, it cannot be excluded that other factors may influence the relationship,
presenting as numerical correlations.

In this study, due to the large amount of data, the detection performance of the
BPNN model was relatively poorer, potentially indicating better performance for relatively
smaller datasets, as confirmed by the research of Wei and Sun [18,19]. However, models
optimized using algorithms demonstrated more significant predictive advantages, and
similar phenomena can be found in the literature [21–25].

In Tables 2–5, there is an observed phenomenon where the RMSEC and RMSEP values
increase, despite an increase in R2

c and R2. However, the variation in RPD values follows
the expected pattern. This may be attributed to the wide time span between the data points,
which corresponds to the seedling stage (13 June), bud stage (10 July), and flowering stage
(5 August), leading to variations in chlorophyll content. It is yet to be further investigated
whether this phenomenon is a result of the automatic selection of sample data for the
calibration and prediction sets during the modeling process, causing differences in the data.

Studies by researchers have shown that feature band selection can contribute to the
improvement of predictive model performance [7,20,24,36]. Based on the preprocessing in
this study, feature band selection was conducted using correlation analysis [18], and the
selected spectra with a strong correlation were found to be more beneficial for predicting
chlorophyll content [37,38]. The results of orthogonal experiments were consistent with the
results obtained through individual comparative analysis of model predictions.

Section 3.3 innovatively applies orthogonal experiments to quantitative detection
research, which is consistent with the results obtained in Section 3.2 through comparative
methods. By validating the model performance, it also confirms the feasibility of this
approach. In this study, eight models need to be established, and when preprocessing
methods, modeling algorithms, or research targets increase, more models will be required,
consuming a significant amount of time for model optimization. Taking the example of a
three-factor, three-level design, we would need to establish 27 sets of models. However,
using this approach, only nine sets of models need to be built based on the modeling
scheme. This may be a novel research approach that can reduce modeling options and
improve work efficiency. But, further investigation is needed to determine whether it can
be applied to other detection studies.

The SSA-BPNN model established in this study can be used for quantitative estimation
of chlorophyll content during the growth stages of DH10 cotton. However, the structure and
parameters of the SSA-BPNN model were designed based on a specific cotton variety from
Xinjiang. Further research is needed to determine whether the model can be successfully
applied to the estimation of chlorophyll content in different varieties of cotton.

5. Conclusions

In this study, on the basis of high-spectral technology, machine learning techniques
(BPNN, GA-BPNN, PSO-BPNN, and SSA-BPNN) were successfully employed in conjunc-
tion with the VNIR spectral range (400–1000 nm) to determine the chlorophyll content at
different growth stages of cotton. Additionally, orthogonal experiments were introduced to
validate the performance of the models, providing a new approach for studying quantita-
tive detection models under the influence of multiple factors. The main conclusions are
as follows:

(1) Spectral information of samples of cotton leaf chlorophyll content was obtained based
on visible near-infrared hyperspectral imaging technology. The spectral data were
preprocessed using the Savitzky–Golay quadratic smoothing method. The model
performance of cotton leaf chlorophyll content prediction was compared between the
model built with all wavelengths and the one built with feature wavelengths selected
through correlation analysis. It was determined that the model built with the selected
feature wavelengths exhibited better performance.
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(2) The performance of the SSA-BPNN, GA-BPNN, and PSO-BPNN models built with
all 846 wavelengths and 213 feature wavelengths extracted using COS were superior
to the BPNN model. Among them, the SSA-BPNN model built with the 213 feature
wavelengths extracted using the COS method exhibited the best performance and
highest efficiency. Its RPD was 3.524, and the determination coefficients for the calibra-
tion set and prediction set were 0.930 and 0.920, respectively. The root-mean-square
errors were 3.18% and 3.26% for the calibration set and prediction set, respectively.

(3) An orthogonal experiment was conducted to validate the optimal results, and the
results indicated that the optimal solution was A2B4, which corresponded to the
SSA-BPNN model built with the 213 feature wavelengths extracted using the COS
method. This finding was consistent with the optimal results obtained in this study.

This study demonstrates that the combination of hyperspectral imaging and the COS-
SSA-BPNN model can effectively achieve quantitative detection of cotton leaf chlorophyll
content. The rapid detection model for chlorophyll content in DH10 cotton established in
this study provides a reference for the detection of chlorophyll content in other cotton vari-
eties. At the same time, it offers the corresponding technical support and theoretical basis
for the development of low-cost cotton leaf chlorophyll content rapid detection systems.
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