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Abstract: Crop nutrient biochemical information (mainly including chlorophyll class and nutrient
elements mainly nitrogen, phosphorus and potassium) is an important basis for revealing crop growth
and development patterns and their relationship with the environment. Hyperspectral technology has
been rapidly developed and applied in crop nutrient biochemical information monitoring research.
This paper firstly describes the theoretical basis of hyperspectral technology for monitoring crop
nutrients and biochemical information. Then, the research progress of hyperspectral technology in
monitoring nutrient and biochemical information of crops in different growth periods or different
growth environments is outlined. Meanwhile, the shortcomings of the current technology in these
research directions and the future research trends are discussed. Finally, the modeling methods for
building crop nutrient biochemical information monitoring models by applying hyperspectral data
are systematically outlined. And the effects of different spectral pre-processing methods, spectral
effective information extraction methods and modeling algorithms on the accuracy of monitoring
models are analyzed. On this basis, the challenges and prospects of hyperspectral technology
in monitoring crop nutrient biochemical information are presented, aiming to provide relevant
theoretical basis and technical reference for the research related to monitoring and inversion of crop
physiological parameters based on hyperspectral technology.

Keywords: hyperspectral technology; crop nutrient; biochemical information; monitoring model;
feature extraction

1. Introduction

The nutrient biochemical information of a crop mainly includes pigments (chlorophyll,
carotenoids, anthocyanins, etc.) and nutrients based on nitrogen, phosphorus and potas-
sium elements [1]. Nitrogen, phosphorus and potassium are the three essential nutrients
for plant growth and development, and each performs certain physiological functions in
the crop. Among them, the level of nitrogen content is closely related to the photosynthetic
efficiency and intensity of plants; phosphorus improves the adaptability of crops to the
external environment by regulating the metabolic process in crops; potassium is the most
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abundant cation in plant cells, which has the functions of regulating water metabolism, en-
zyme activator, improving resistance and promoting photosynthesis for plants; chlorophyll
and other pigments are the most important elements for the growth of crops [2]. Chloro-
phylls and other pigments are important indicators of photosynthetic efficiency, growth
and nutrient status and pest and disease stress. When crops lack certain nutrients or have
abnormal pigment content, it will definitely affect their external morphological structure
and internal physiological functions, resulting in incomplete growth and development of
crops, thus reducing the quality as well as yield of crops. Therefore, rapid and quantitative
monitoring of nutrient and biochemical information of crops can determine the real-time
critical fertility period of crops, analyze crop growth information and provide data basis
for precise fertilization and pest and disease monitoring of farm crops.

In order to learn the nutritional status of crops and determine the content of pigments
or nutrients in crops, traditional methods analyze seedling or leaf samples of crops after
destructive treatment using chemical analysis, including Kjeldahl nitrogen [3], vanadium-
molybdenum yellow [4] for phosphorus, flame photometry [5] for potassium, ethanol
leaching [6] for chlorophyll, etc. Although the accuracy of crop elemental content deter-
mination by chemical analysis is high, it is time-consuming, cumbersome and requires
destructive treatment of crop samples, which cannot allow rapid and convenient detection
of crops grown in large areas [7,8]. Spectral imaging technology is a nondestructive, fast
and real-time technique [9], which make it highly applicable for determining biochemical
information of crop nutrients and indirectly monitoring crop growth and stress. Among
them, hyperspectral technology has continuous waveband and large amount of recorded
data compared with other spectral methods, which can better establish the correlation
between spectral data and biochemical information of crop nutrients, and thus obtain
monitoring models with higher accuracy. In recent years, with the continuous progress of
remote sensing and computer technology, hyperspectral technology has been applied in
agriculture [10,11], environmental monitoring [12], mineral monitoring [13] and marine re-
mote sensing [14]. In the field of agriculture, hyperspectral-based biochemical information
monitoring and inversion models of crop nutrients can quickly and accurately respond to
the growth and nutritional status of crops. Therefore, the application of composite tech-
nology to analyze hyperspectral profiles of crops and construct biochemical information
inversion models of crop nutrients has become a hot research topic.

This paper reviews the research results related to the monitoring of crop nutrient
biochemical information based on hyperspectral technology. Firstly, the technical features
of hyperspectral technology in this field are introduced, including hyperspectral data
with high spectral resolution and number of bands, and the ability to obtain crop spectral
reflectance information. Then, the research situation that hyperspectral technology can
construct a model for monitoring nutrient biochemical information of crops under different
growth conditions is described. The effects of choosing different pre-processing methods,
feature band extraction methods, spectral indices and modeling methods on the accuracy
of the constructed hyperspectral monitoring models of crop nutrients and biochemical
information are analyzed. Finally, this paper aims to provide a theoretical basis and
technical reference for future research related to the monitoring and inversion of crop
physiological parameters based on hyperspectral technology.

2. Hyperspectral Technology to Construct a Model for Monitoring Biochemical
Information of Crop Nutrients
2.1. Reflectance Spectral Properties of Plants

The absorption, reflection and transmission of electromagnetic waves of different
wavelengths (or frequencies) vary from substance to substance, and this response property
to different wavelengths of the spectrum is called spectral characteristics. In addition to the
influence of the morphological structure of the crop itself, the spectral characteristics of the
crop leaves are also closely related to the crop’s growth environment and its own growth
conditions. Soil moisture content, soil nutrients and the degree of pests and diseases
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suffered by the crop will affect the growth and development of the crop, making the
biochemical composition of the crop different, and the reflectance spectrum of the crop with
chlorophyll content, nutrient content, water content and other biochemical components will
show different patterns in different bands. Numerous studies have shown that the spectral
reflectance characteristics of crops are closely related to their morphological structure,
pigment content and nutrient content [15–17], so it is feasible to monitor the nutrient
and biochemical information of crops using hyperspectral techniques. Figure 1 shows a
schematic diagram of the reflectance spectral properties of plant leaves [18,19].
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Figure 1. Schematic diagram of reflectance spectral characteristics of plant leaves.

2.2. Hyperspectral Operation Platform of Biochemical Information Monitoring Model of
Crop Nutrients

Hyperspectral data can be divided into imaging hyperspectral three-dimensional data
and non-imaging hyperspectral two-dimensional data [20]. Meanwhile, the hyperspectral
data acquisition equipment styles are diversified, and the common ones are handheld
hyperspectral acquisition equipment, airborne imaging hyperspectral cameras, etc. Figure 2
shows the operation schematic of different hyperspectral acquisition equipment.

Compared to multispectral data, hyperspectral data have many more continuous
bands and can use more spectral information, allowing for a greater variety of vegetation
indices and modelling methods. In addition, the spectral pre-processing method is more
robust to the noise interference in the continuous band [21]. The biochemical information
monitoring models of crop nutrients based on hyperspectral technology better reflect the
correlation between spectral data and biochemical information of crop nutrients, so the
monitoring model has better prediction accuracy [22]. Since the physiological characteristics
and biochemical components of the crop determine its spectral response, the required
experimental studies can be carried out by means of controlled variable methods. By using
a UAV with a hyperspectral camera or other spectral data collection device to collect spectral
information from the leaves or other tissues of the crop canopy, and then applying relevant
machine learning algorithms to construct regression models, it is possible to monitor the
nutrient and biochemical information of the crops in different growth states and acquire
real-time crop growth conditions.
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3. Application of Hyperspectral Technique in the Detection of the Biochemical
Information of Crop Nutrients
3.1. Hyperspectral Monitoring of the Biochemical Information of Crop Nutrients at Different
Growth Stages of Crops
3.1.1. Single Growth Stage

Crops have different levels of nutrient biochemical information and demand of nu-
trients at different growth stages. By using hyperspectral technology to collect spectral
data of crops at a certain growth stage and then constructing a monitoring model using
appropriate data analysis methods, we can quickly and accurately detect nutrient bio-
chemical information of crops during important growth periods, thus obtaining feedback
on possible nutrient stresses of crops during growth periods and providing reference for
crop nutrient applications. Ryu et al. [23] used airborne hyperspectral remote sensing
technology to collect spectral data and nitrogen content of rice during the heading stage for
three consecutive years. They established a hyperspectral prediction model for nitrogen
content of rice during the heading stage. Zhou et al. [24] used the FieldSpec geopolitical
spectrometer produced by ASD to collect leaf spectral data of three different varieties of
maize at the six-leaf stage. The correlation between leaf nitrogen content and spectral
reflectance of three maize varieties (combinations) was studied by setting different levels of
nitrogen supply, and the sensitive wavebands for estimating leaf nitrogen content in six-leaf
maize were clarified. An et al. [25] collected the spectral data of leaves of Red Fuji apple
trees by using the American ASD FieldSpec 3 spectrometer (Analytical Spectral Devices,
Inc., Boulder, CO, USA), and established the hyperspectral estimation model of nitrogen
content in leaves of the apple trees at the end of fall growth period. Jiang et al. [26] used
PSR-350 portable hyperspectrometer (Yamaha, Shizuoka, Japan) to collect the spectral data
of winter wheat canopy during the flowering period. By analyzing the correlation between
its spectral reflectance and chlorophyll content, a regression analysis of spectral index and
chlorophyll content was constructed by selecting the sensitive waveband of winter wheat
during the flowering period. The best inversion model for the chlorophyll content of winter
wheat canopy during the flowering period was obtained.

Furthermore, the nutrient level of fruit tree petals during flowering stage reflects
the plant’s nutritional status and predict the flowering quantity and yield of fruit trees.
Potassium content in fruit tree petals can better reflect their nutritional level. Rapid
diagnosis and scientific regulation of potassium nutrition in fruit trees is an important
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aspect of quality and productive management of fruit trees. Liu et al. [27] characterized
the potassium nutrition of citrus flowers using hyperspectral technology. Considering the
flower organs of Hovenia orange rootstock ‘Caracalla red-fleshed navel orange’ as test
material, the effective information on extraction method, characteristic spectra, and optimal
prediction model was established for the estimation of citrus flower potassium content,
laying the foundation for the real-time detection of citrus flower potassium nutrition.
Zhu et al. [7] used the canopy hyperspectrum of apple blossom measured using the
ASD FieldSpec 3 and laboratory-measured potassium content to correlate the canopy
hyperspectral reflectance and its 11 transformed forms with potassium content in the
Qixia experimental site. They used the highest correlation coefficient as the independent
variable to establish a model for potassium content estimation using a fuzzy identification
algorithm.

3.1.2. Multiple Growth Stages

In fact, the nutritional components of crops also change during their growth and
development [28]. Considering citrus as an example, Figure 3 shows the correlation between
the spectral data of citrus leaves at different stages and their chlorophyll content [29]. High-
spectral monitoring models with high nutrient biochemical information content for a single
growth period do not have predictive effects on the nutrient status of crops throughout their
entire growth cycle. Therefore, it is of great significance to detect the nutrient biochemical
information of crops in multiple growth periods and conduct cross-growth period nutrient
biochemical information prediction research. To achieve this goal, researchers have used
various hyperspectral techniques. Li et al. [30] collected high-spectral data of winter wheat
canopies at different growth stages using the American ASD FieldSpec spectrometer, and
established a relationship between the high-spectral data and leaf nitrogen content based
on the N-PROSAIL model. The results showed that this method can estimate the nutritional
status of winter wheat well. Li et al. [31] estimated the leaf nitrogen content of lychee in
spring, summer, autumn and winter based on the canopy spectral reflectance, and obtained
the best estimation model for leaf nitrogen content in different growth periods through
comparative analysis. Huang et al. [32] collected reflection spectra data of citrus during
the fruit-picking period and the shoot growth stage, and established a phosphorus content
prediction model based on 234 sample data by combining with Partial Least Squares
(PLS) and Support Vector Regression (SVR) methods. Yang et al. [33] used the portable
spectrometer SVC HR-768 to determine the spectral reflectance and total nitrogen content
of pear leaves at the fruit-setting period, fruit expansion period and fruit ripening period,
and then constructed a leaf total nitrogen content estimation model for different growth
periods of Korla pear. The fitting effect of the estimation model during the fruit-setting
period is better, and the prediction accuracy is higher as well. Zhu et al. [34] selected super
hybrid early rice as the research object, and used the FieldSpec3 spectrometer produced
by the American ASD company to obtain 120 groups of high-spectral data, chlorophyll
and leaf nitrogen content of rice leaves at the tillering, booting, full heading, filling and
mature period of the rice. They used Partial Least Squares Analysis (PLSR), Random Forest
algorithm (RF) and Support Vector Regression (SVR) methods to construct cross-period
prediction models for leaf nitrogen content and chlorophyll of early rice leaves.
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Currently, research on monitoring and predicting the biochemical information of crop
nutrients using hyperspectral techniques is mainly focused on establishing a correlation
between the spectral data of crops and their biochemical information during a single growth
stage. However, such models are not very versatile and cannot be applied to the entire
growth stage of the crops. Additionally, constructing a model for monitoring biochemical
information of crop nutrients requires a large amount of hyperspectral data, which is
limited by the long time span and the difficulty in controlling environmental variables.
As a result, there are few studies on monitoring models for the biochemical information
content of crop nutrients across multiple growth periods or the entire growth period.

3.2. Monitoring the Biochemical Information of Crop Nutrients under Environmental Stress

Crops are often subjected to various environmental stresses, such as drought stress,
salt stress, heavy metal stress, low or high temperature stress, etc. Different environmental
stresses have different effects on the biochemical information of crop nutrients, thereby
altering the spectral reflectance of crops. Yuan et al. [35] found that from the jointing
stage to the maturity stage, the chlorophyll content of summer maize leaves decreases
with the increasing degree of water stress. Peng et al. [36] discovered that different salt
concentrations (0.200 and 400 mmol/L NaCl) significantly reduce the chlorophyll content
of alkali bulrush, but increase the values of chlorophyll A and chlorophyll B. Sun et al. [37]
found through experiments that different water conditions in wheat fields have a significant
impact on the growth and development process of winter wheat, and the significant
difference in plant nitrogen content is also an important manifestation. Guan et al. [38,39]
found that with the increase in cadmium mass fraction and the extension of stress time, the
total chlorophyll mass fraction shows a trend of first increasing and then decreasing.

Therefore, it is crucial for agriculture to identify the type of stress that crops are sub-
jected to quickly and accurately, in order to improve the growth environment of crops
in a targeted manner. Hyperspectral remote sensing technology can make full use of the
spectral characteristics of objects, monitor the biochemical information of crop nutrients
under different environmental stresses and construct a monitoring model for the biochem-
ical information of crop nutrients under environmental stress, providing a reference for
monitoring the degree of environmental stress on crops. Ma et al. [40] set up a field water
and fertilizer experiment with irrigation and nitrogen gradients, and used the ASD HH2
portable spectrometer to measure the spectral reflectance of cotton canopy during the
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cotton growth period, and simultaneously measured the nitrogen content and equivalent
water thickness of the cotton canopy. NDSI (570, 500) was selected as the optimal spectral
index for modeling, and a high-spectral monitoring model of nitrogen content in cotton
canopy was constructed, with a predicted RRMSE of 0.18. Xie et al. [41] studied the effect of
water stress on the high-spectral reflectance of winter wheat canopy, and found that impor-
tant information on chlorophyll density of winter wheat after water stress was present at
wavelengths of 427 nm, 434 nm, 749 nm and 814 nm. Feature extraction was carried out on
the original spectrum through Correlation Analysis (CA), Partial Least Squares Regression
analysis (PLSR) and Successive Projection Algorithm (SPA), and a high-spectral estimation
model of chlorophyll density was established. Yao et al. [42] constructed estimation models
based on red edge, sensitive bands and spectral indices, and analyzed the correlation
between the spectral reflectance of winter wheat under high CO2 concentration and chloro-
phyll content. The chlorophyll content of winter wheat under high CO2 concentration
could be better estimated based on sensitive spectral bands and Difference Vegetation Index
(DVI).

Currently, the spectral monitoring of environmental stress in crops relies on a binary
model, which only determines whether the crop is under stress, without taking into account
the degree of stress. To improve the monitoring of environmental stress in crops, a model
can be developed to monitor the biochemical information of crop nutrients under stress,
which can determine the degree of stress based on the changes in spectral reflectance. Al-
though most research on monitoring environmental stresses in crops focuses on monitoring
soil, temperature and other factors that impact crop survival, there is less emphasis on direct
monitoring of crop nutrients and biochemical information. In the future, the monitoring
of environmental factors and biological parameters can be linked to improve the accuracy
of identification and better apply to the actual agricultural production environment. This
will provide a more effective monitoring tool for crop production and help improve the
efficiency and quality of agricultural production.

3.3. Monitoring the Biochemical Information of Crop Nutrients under Pest and Disease Stress

Due to the differences in pathogen species, pest feeding habits and climatic conditions
and the various interaction between different crop pests and their host crops, different
physiological responses and changes in biochemical information of nutrients in the host
crops occur, which manifest as damaged leaf structure, decreased pigment content and
decreased nitrogen content. Xu et al. [43] found that black pine and horsetail pine would
be infected after natural infestation by pine wood nematodes, and their chlorophyll content
gradually decreased with the deepening of the disease. Jiang et al. [44] showed that the
total nitrogen content gradually decreased with increasing stripe rust stress in winter wheat,
and showed a highly significant correlation with the first-order differential spectra in the
430–518, 534–608, 660–762 nm and 783–893 nm regions. Tian et al. [45] found that the
anthocyanin content of apple leaves increased with increasing severity of mosaic disease,
and the spectral reflectance of the diseased area of leaves increased significantly throughout
the visible region. There was also a red-edge blue shift phenomenon. Chen et al. [46]
found that after cotton was infested with yellow wilt pathogen, the pathogen proliferated
or induced a large amount of toxins in the plant, which resulted in blocked water transport
within the plant, damaged internal leaf structure and corresponding changes in biochemical
components (e.g., chlorophyll, water, etc.). The changes vary with different onset times
and degrees of severity. Figure 4 shows the correlation coefficients between leaf spectra
and chlorophyll content of bamboo leaves in different insect-infested moso bamboo. In
the future, this information can be used to establish more accurate crop pest monitoring
models and provide more effective control measures for agricultural production.
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After being attacked by fungi, bacteria or pests, crops undergo a series of changes in
their nutrient biochemical information. On one hand, the pathogens or pests attack the plant
tissues to acquire nutrients, leading to a decrease in nutrient content in the crops. On the
other hand, the affected crops may adjust their nutrient allocation strategy by directing more
nutrients to the invaded areas, enhancing their ability to resist pathogens or pests. However,
this can result in insufficient nutrient supply to other parts or tissues of the crops, affecting
their normal growth and development. When crops are under the stress of disease and
pest attacks, their spectral characteristics usually show an increase in visible and shortwave
infrared spectral reflectance, while the near-infrared spectral reflectance decreases [47]. This
change differs significantly from the typical spectral characteristics of green vegetation. It is
important to note that the extent of stress imposed by pests and diseases on crops can vary
depending on factors such as crop species, growth stage and environmental conditions.
Therefore, the spectral characteristics displayed by these changes may also differ. For
instance, when crops are affected by powdery mildew, significant changes occur in their
nitrogen and chlorophyll content, which are reflected in the spectral information. During
the early growth stage of the crops, there is an increase in hyperspectral reflectance in
the visible and infrared regions, while a decrease in reflectance is observed in the visible
region during the mature stage. When crops are affected by aphids or moth, significant
changes occur in the pigment content in their leaves, which are reflected in the spectral
information. This is manifested as an increase in reflectance in the visible region and a
decrease in reflectance in the near-infrared region. These changes are more pronounced
during the reproductive stage of the crops. Under specific conditions, hyperspectral
technology can analyze the changes in the biochemical information of crop nutrients
after disease and pest attacks, and even directly locate a specific characteristic band. By
constructing a monitoring model for the biochemical information of crop nutrients under
disease and pest stress, the relationship equation between hyperspectral data and crop
nutrient biochemical information under disease and pest stress can be fitted. This allows
for the indirect analysis of the types of diseases and pests affecting crops and the degree of
stress they are under. Based on the hyperspectral and chlorophyll content data of jujube
leaves under different truncated leaf mite damage levels, Gao et al. [48] analyzed the
hyperspectral characteristics of jujube leaves under different truncated leaf mite damage
levels and constructed a hyperspectral linear regression estimation model of chlorophyll
content of jujube leaves under different truncated leaf mite damage levels based on first-
order differential spectroscopy, and the best fit of the estimation model was achieved at
truncated leaf mite damage level 0 with R2 = 0.810. Li et al. [49] applied hyperspectral
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imaging to detect the pigment content of citrus red spider-infested leaves and developed a
model to predict leaf pigment content based on the best reflectance ratios of 667/522 and
667/647 nm in the characteristic wavebands. He et al. [50] obtained wavelet coefficients
at different scales by continuous wavelet transform of wheat canopy spectra infected
with stripe rust, and the selected wavelet coefficient features can be used as independent
variables for building an inverse model to quantitatively estimate the chlorophyll content
of wheat canopy under stripe rust disease stress. Kong et al. [51] constructed a kernel
ridge based on the logarithm of the inverse of the original spectrum (log(1/R)), thereby
constructing a kernel ridge regression (KRR) model for predicting phosphorus content of
soybean leaves inoculated with bushy mycorrhizae.

Research on crop pests and diseases has focused more on the classification and identi-
fication of crops using hyperspectral techniques and not on the monitoring of crop nutrient
biochemical information under epidemic pest and disease stress. However, prevention
and early detection are the keys to crop pest control; therefore, modeling and real-time
monitoring of crop nutrient biochemical information under pest and disease stress using
hyperspectral techniques provide a new way for early detection of crop pests and diseases.
When measuring hyperspectral data and nutrient biochemical information of crops under
pest and disease stress, it can be used as a basis for predicting possible pest and disease
stress in crops on the one hand, and clarifying the growth characteristics and damage level
of crops under pest and disease stress on the other hand. However, there are few relevant
research results and the accuracy of the model for analyzing the degree of pest and disease
stress is relatively low; therefore, the research on the monitoring model of nutrient and
biochemical information of crop pests and diseases still needs to be further developed.

4. Construction of Hyperspectral Biochemical Information Monitoring Model of
Crop Nutrients

Hyperspectral remote sensing has strong advantages in building crop nutrient and
biochemical information monitoring models because of its many wavebands, high spectral
resolution and the ability to quantitatively analyze the fine spectral differences of features,
but hyperspectral remote sensing brings great challenges to data processing and analysis
due to the large amount of raw data information, many wavebands and high redundancy
of information [52]. The choice of modeling raw spectral data, spectral data pre-processing
methods, spectral data feature extraction methods, spectral indices and modeling anal-
ysis methods are of great significance to the construction of crop nutrient biochemical
information monitoring models, which directly affect the model accuracy. Figure 5 is a
schematic diagram of the technical framework of the hyperspectral monitoring model for
crop nutrients and biochemical information.



Agronomy 2023, 13, 2163 10 of 25Agronomy 2023, 13, x FOR PEER REVIEW  10  of  25 
 

 

 

Figure 5. The technical framework of hyperspectral monitoring model for biochemical information 

of crop nutrients. 

4.1. Effect of Different Spectral Data Preprocessing Methods on the Accuracy of the Biochemical 

Information Hyperspectral Monitoring Model of Crop Nutrients 

Common preprocessing methods for spectral data include normalization, Standard 

Normal Variate (SNV) transformation, Multiple Scatter Correction (MSC), Fourier Trans-

form (FT), Savitzky–Golay (SG), Detrending (DT), Mean Centering, Integer-order Differ-

entiation, Fractional-order Differentiation, baseline  correction, Wavelet Transform,  etc. 

Reasonably  applying  preprocessing methods  can  effectively  eliminate  spectral  redun-

dancy, noise and other interference factors such as environment, while highlighting the 

absorption features of the spectrum. Raw spectral data usually need to be preprocessed 

before being used as input for models, in order to achieve higher prediction accuracy and 

reduce the workload of parameter adjustment during model tuning. Chen et al. [53] used 

genetic algorithm combined with Partial Least Squares (PLS) to select leaf chlorophyll fea-

tures in the chlorophyll spectral region based on the reflectance of rapeseed canopy, with 

logarithmic and first-order derivative transformations. They found that different spectral 

preprocessing methods  improved  the predictive ability of  the model. Zhang et al.  [54] 

constructed a hyperspectral monitoring model for nitrogen content in apple leaves, and 

used wavelet packet analysis to decompose the spectral information, obtaining low-fre-

quency full-spectrum signals and denoised full-spectrum signals. They achieved different 

levels of denoising effects. Table 1 lists some spectral preprocessing methods used in the 

construction of crop nutrient and biochemical information monitoring models, as well as 

their effects on the models. 

   

Figure 5. The technical framework of hyperspectral monitoring model for biochemical information
of crop nutrients.

4.1. Effect of Different Spectral Data Preprocessing Methods on the Accuracy of the Biochemical
Information Hyperspectral Monitoring Model of Crop Nutrients

Common preprocessing methods for spectral data include normalization, Standard
Normal Variate (SNV) transformation, Multiple Scatter Correction (MSC), Fourier Trans-
form (FT), Savitzky–Golay (SG), Detrending (DT), Mean Centering, Integer-order Differ-
entiation, Fractional-order Differentiation, baseline correction, Wavelet Transform, etc.
Reasonably applying preprocessing methods can effectively eliminate spectral redundancy,
noise and other interference factors such as environment, while highlighting the absorption
features of the spectrum. Raw spectral data usually need to be preprocessed before being
used as input for models, in order to achieve higher prediction accuracy and reduce the
workload of parameter adjustment during model tuning. Chen et al. [53] used genetic algo-
rithm combined with Partial Least Squares (PLS) to select leaf chlorophyll features in the
chlorophyll spectral region based on the reflectance of rapeseed canopy, with logarithmic
and first-order derivative transformations. They found that different spectral preprocessing
methods improved the predictive ability of the model. Zhang et al. [54] constructed a hy-
perspectral monitoring model for nitrogen content in apple leaves, and used wavelet packet
analysis to decompose the spectral information, obtaining low-frequency full-spectrum
signals and denoised full-spectrum signals. They achieved different levels of denoising
effects. Table 1 lists some spectral preprocessing methods used in the construction of crop
nutrient and biochemical information monitoring models, as well as their effects on the
models.
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Table 1. Part of the pretreatment methods to construct crop nutrient biochemical monitoring models
and their effects on the models.

Types of Applied
Crops

Biochemical
Information of

Nutrient

Preprocessing
Methods Impact of the Model Citation

Apple Chlorophyll and
Carotenoids Fractional Derivative

It provides assistance in extracting
sensitive spectral bands by
highlighting the number of

absorption peaks and reflection
peaks.

[55]

Potato Nitrogen
Reverse

Transformation, First
Derivative

Reduce background noise in
hyperspectral data. [56]

Potato Chlorophyll Standard Normal
Variable

It reduces scattering noise and
enhances the correlation between

spectral data and chlorophyll
concentration.

[57]

Winter wheat Nitrogen Continuum Removal
It effectively separates and

highlights the spectral peak and
valley features.

[58]

Winter wheat Nitrogen Fractional Derivative It enhances the correlation between
the red edge band and chlorophyll. [59]

Winter wheat Chlorophyll Fractional Derivative,
Continuum Removal

It removes spectral information
noise and enhances the

responsiveness of crop nitrogen and
chlorophyll.

[60]

Corn Chlorophyll and
Carotenoids

Unknown Variable
Elimination

It reduces the noise in hyperspectral
data and eliminates redundant

spectral variables.
[61]

Corn Anthocyanin Fractional Derivative

It effectively reduces the impact of
noise on the target signal, highlights

spectral feature information and
amplifies the details of the original

spectral curve.

[62]

Cotton Nitrogen Fractional Derivative It improves spectral resolution and
provides rich absorption features. [63]

Using preprocessing combined with machine learning to process spectral data can
effectively eliminate the environmental effects during data acquisition. However, the results
of different preprocessing methods combined with machine learning algorithms cannot
be predicted in advance, and repeated experiments are necessary to obtain a combination
of algorithms with higher accuracy. Deng et al. [64] selected chlorophyll content in apple
leaves as the research object to explore the effects of four different spectral preprocessing
methods, i.e., wavelet packet denoising reflectance spectra, reflectance first-order difference
spectra, wavelet packet denoising followed by first-order difference spectra and first-
order difference followed by wavelet packet denoising spectra, on apple leaf spectral
characteristics and chlorophyll content modeling. Results showed that the chlorophyll
content prediction model of apple leaves with preprocessing method of first difference
followed by wavelet packet denoising algorithm had higher peak signal-to-noise ratio and
lower mean square error and maximum error. Rei et al. [65] studied chlorophyll content of
mustard leaves and compared the accuracy of chlorophyll monitoring model constructed
by five preprocessing methods of first-order derivative reflectance, continuum removal,
trend elimination, multiple scattering correction and standard normal transform combined
with different machine learning algorithms. With the combination of trend elimination
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pre-processing and extreme learning machine, the machine learning algorithm was found
to be the most effective method in estimating chlorophyll content. Li et al. [66] determined
the phosphorus content and canopy spectral reflectance of oilseed rape leaves at different
fertility stages, and applied log(1/R), continuum removal (CR) and first-order differential
spectral transforms (FDT) to the original spectra, respectively. Results showed that the
FDT-PLS model based on sensitive bands was significantly better than other spectral
transformations. Based on the hyperspectrum and measured chlorophyll content of winter
wheat canopy, Li et al. [67] applied the original spectrum, Fractional-order Differential
spectrum, wavelet energy coefficients obtained from the original spectrum by continuous
wavelet transform and measured chlorophyll content for Correlation Analysis, and selected
the Fractional-order Differential spectrum and wavelet energy coefficients with better
correlation. Stepwise regression analysis, support vector machine, artificial neural network
and other methods were then used to construct a model for estimating chlorophyll content
of winter wheat. The optimal algorithmic combination model of chlorophyll content of
winter wheat based on hyperspectrum for different growth periods was finally obtained.

Spectra without preprocessing can lead to errors in quantitative analysis and incor-
rect component predictions, making spectral preprocessing a potentially beneficial tool
for improving the estimation accuracy of nutrient biochemical information monitoring
models [68]. Spectral data preprocessing plays a crucial role in building nutrient biochemi-
cal information models, setting the foundation for later stages such as obtaining spectral
characteristic bands and selecting modeling methods. Therefore, more attention should be
given to spectral data preprocessing in experimental design. Currently, model construction
based on hyperspectral data usually involves using separate preprocessing methods and
comparing their effects on model accuracy. Fewer studies are based on models constructed
by applying multiple preprocessing methods simultaneously. First, the combined effects
of different preprocessing methods on the original spectral data are unclear, as there may
be interactions between preprocessing methods that lead to different prediction results
compared to using the methods individually. Second, a clear and interpretable model is
essential for understanding and explaining results. When multiple preprocessing methods
are applied simultaneously, the model may become more complex and harder to interpret.
Furthermore, over-optimizing preprocessing methods can lead to overfitting, where the
model performs well on training data but poorly on new data. Despite these challenges,
the combined application of multiple preprocessing methods still has the potential to en-
hance model prediction performance. Future research can explore this approach, aiming to
obtain preprocessing methods that effectively improve model prediction capabilities while
minimizing negative impacts.

4.2. Effect of Different Feature Extraction Methods on the Precision of the Biochemical Information
of Crop Nutrient Monitoring Model Based on Hyperspectral Techniques

Application of hyperspectral techniques for quantitative analysis of biochemical in-
formation of crop nutrients has a large number of samples, numerous bands and high
correlation of adjacent bands, which also results in a high redundancy of information in the
whole spectral data and adverse effect on the accuracy of monitoring models. Therefore,
there is a need to find suitable methods to reduce the analysis indexes while being able
to extract sensitive bands from the original bands that contain most of the information
needed to predict nutrient biochemical information for the purpose of comprehensive
analysis of the original spectral data, which is also an important working basis for further
research on monitoring models of crop biochemical parameters. There are two main types
of methods to extract effective information from hyperspectral data, one is to obtain the
characteristic bands and their combinations by mathematical and statistical analysis or
applying intelligent preference algorithms, and the other is to obtain effective information
distinguished from the original spectral data by constructing spectral indices.
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4.2.1. Selection of Appropriate Spectral Feature Band Extraction Method Can Effectively
Improve the Accuracy of the Model

The feature band selection method based on mathematical statistics is commonly used
in processing hyperspectral data. It helps to select feature bands that are highly correlated
with the target variable or have significant differences, thus improving the predictive perfor-
mance and interpretability of the model. Common feature band selection methods based on
mathematical statistics include Successive Projection Algorithm (SPA), Correlation Coeffi-
cient method (CC), Competitive Adaptive Reweighted Sampling (CARS), Gaussian Process
Regression (GPR), etc. Liu et al. [69] obtained the hyperspectral data and chlorophyll
content of soybean leaves at flowering and podding stage. The selected wavelengths were
extracted by continuous projection method, Competitive Adaptive Reweighted Sampling
method and Correlation Coefficient method. The PLS modeling of the selected prepro-
cessing method and the characteristic wavelength variables were compared and analyzed.
Results showed that the inversion of the selected variables were significantly improved
compared with those of the full-wavelength variables. Wang et al. [70] obtained hyperspec-
tral reflectance data and corresponding leaf nitrogen content data at two scales, leaf and
canopy, for rice at different fertility stages. Then, Correlation Analysis of single-band raw
spectra and first-order derivative spectra and Gaussian Process Regression (GPR) were
applied to screen nitrogen sensitive bands at leaf and canopy scales during the whole
fertility period of rice. Results show that the sensitive bands screened by GPR conform
to the patterns of nitrogen content and spectral changes in rice. Yang et al. [71] compared
the accuracy of Monte Carlo-uninformative variable elimination, Random Frog hopping,
Competitive Adaptive Reweighting Sampling and Moving Window Partial Least Squares
Method of band selection, and proposed a sensitive band selection method combining Com-
petitive Adaptive Reweighting Sampling and Correlation Coefficient method. A nonlinear
regression model was established with the screened 30 bands of data. The experimental
results show that both the prediction accuracy and modeling accuracy are significantly
improved compared with BP neural network model and Support Vector Regression model.
Although feature band selection methods based on mathematical statistics can improve the
predictive performance of models to some extent, they still have limitations in practical
applications. Many feature extraction methods based on mathematical statistics assume
a linear relationship between features and the target variable. However, when the rela-
tionship between features and the target variable is nonlinear, these methods may fail to
capture this relationship effectively. Additionally, feature extraction methods based on
mathematical statistics are highly dependent on data preprocessing, which means that
the combination of these methods with different preprocessing algorithms can have a
significant impact on the model.

Feature band selection methods based on intelligent optimization algorithms have
certain advantages, which help improve the effectiveness of feature extraction when deal-
ing with complex datasets. Common feature band selection methods based on intelligent
optimization algorithms include Principal Component Analysis (PCA), Genetic Algorithm
(GA), Ant Colony Algorithm (ACA), etc. Intelligent optimization algorithms typically pos-
sess strong global search capability, adaptability and generalization ability, enabling them
to search for optimal solutions throughout the entire search space. They also dynamically
adjust search strategies based on problem characteristics, thus enhancing the efficiency of
the model. Guo et al. [72] used PCA analysis to compress and extract the main informa-
tion from the raw spectral data of rubber seedling leaves, and the obtained 20 principal
components could explain 99.993% of the information of the original 2151 wavelengths
(350–2500 nm). Cao et al. [73] used three dimensionality reduction methods, such as SPA,
LASSO and EN, combined with three regression methods, such as MLR, MSR and PLSR, to
construct nine maize leaf nitrogen inversion models, and the EN-PLSR model had the best
prediction performance for estimating maize leaf nitrogen content under comprehensive
comparison. Sun et al. [74] used rice canopy spectral data as the research object, and applied
PCA to reduce the dimensionality of the original spectral data. The obtained principal
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components were used as input variables to construct high-spectral estimation models for
leaf SPAD values using stepwise multiple linear regression analysis and Support Vector
Regression. They found that the combination of PCA and support vector machine models
could better predict leaf SPAD values compared to models based on Correlation Coefficient
methods. In comparison to feature band selection methods based on mathematical statisti-
cal analysis, intelligent optimization algorithms have advantages in terms of global search
capability, adaptability, parallel computing capability, avoiding overfitting, and handling
multi-objective problems. However, such methods also have limitations, such as high
computational complexity and slow convergence speed. Table 2 lists some spectral feature
extraction methods used in constructing crop nutrient biochemical monitoring models and
their effects on the models.

Table 2. The spectral feature extraction method and its influence on the model of crop nutrient
biochemical monitoring model were partially constructed.

Types of Applied
Crops

Biochemical
Information of

Nutrient

Feature Extraction
Methods Impact of the Model Citation

Cotton Nitrogen Successive Projection
Algorithm

The collinearity between
wavelength variables was

eliminated, and the sensitive feature
bands of leaf nitrogen content were
highly correlated with leaf nitrogen

content

[75]

Lettuce Phosphorus

Successive Projection
Algorithm,

Principal Component
Analysis

The dimension of spectral data is
reduced, the complexity of the

model is reduced and the prediction
ability of the model is improved

[76]

Winter wheat Nitrogen Discrete Wavelet
Transform

On the basis of maintaining the
quality of original spectral

information and reducing the spatial
dimension of canopy spectral data,

the feature extraction of
hyperspectral canopy spectra is

completed

[77]

Winter wheat Chlorophyll Continuous Wavelet
Transform

The characteristic information of
chlorophyll content in winter wheat

canopy was captured effectively,
which improved the prediction

accuracy of the model

[78]

Corn Chlorophyll

Competitive Adaptive
Reweighted Sampling,
Successive Projection

Algorithm and
CARS_SPA

It can effectively extract sensitive
hyperspectral features, reduce the
number of hyperspectral features
and improve the multicollinearity

problem

[50]

Rice Nitrogen Principal Component
Analysis

By lowering the data dimension, the
resulting principal component

contains almost equal information to
the original dataset

[79]

Apple Anthocyanin

Variable Importance in
Projection

(VIP)-PLSR-Akaike
Information Criterion

The estimation accuracy and
conciseness of the model are

guaranteed effectively
[80]

The combination of mathematical statistics and intelligent optimization algorithms
can improve the accuracy, robustness and efficiency of spectral feature extraction, as well
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as expand the feature space to adapt to different types of hyperspectral data. Liu et al. [81]
focused on winter wheat at different growth stages. They preprocessed the spectral data
using wavelet denoising and multiple scattering correction, applied PCA to reduce the
dimensionality of the data, and then used correlation coefficient analysis to select the
optimal combinations of principal components for different growth stages. Multivariate
regression models were built to estimate chlorophyll content at different growth stages.
Results showed better predictive performance and generalization ability for all models. Liu
et al. [61] combined CWT with CARS to estimate nitrogen concentration in potatoes. The
results show that CARS can retain the coefficients with the least information redundancy,
while eliminating the invalid information with large interference in the wavelet coefficients
processed by continuous wavelet transform, thus improving the stability and accuracy of
the model. Although the combination of mathematical statistics and intelligent optimiza-
tion algorithms theoretically improves the accuracy and effectiveness of spectral feature
extraction, there are limited practical examples of this composite approach. On one hand,
the combination of these two types of algorithms requires careful design and adjustment to
ensure their collaboration and exploitation of respective advantages, which may increase
the difficulty of algorithm design and implementation and restrict the practical application
of this method. On the other hand, this composite approach may lead to a significant
increase in computational complexity, slower convergence speed and poorer stability of
the model. Slow or unstable convergence speed during the search for optimal feature com-
binations can affect the practical application of the method. Despite these challenges, the
combination of mathematical statistics and intelligent optimization algorithms for spectral
feature acquisition still holds certain research value. In practical applications, suitable
feature selection methods can be chosen based on specific problems and scenarios, and
existing optimization techniques and tools can be employed to overcome these challenges.

4.2.2. Appropriate Spectral Index Is Helpful to Improve the Prediction Accuracy of
the Model

Spectral index is a powerful spectral parameter that is obtained by applying a specific
algorithm to one or more spectral bands [82]. Compared to single-band spectral infor-
mation, spectral indices have higher sensitivity and can effectively reduce or eliminate
noise caused by environmental backgrounds such as soil and water. They are an indis-
pensable tool in spectral data analysis. Spectral indices can be used to construct qualitative
or quantitative monitoring models and have been extensively applied in research areas
such as monitoring crop growth indicators [83], pest and disease stress [84,85] and growth
conditions [86]. Spectral indices can effectively extract useful information from hyper-
spectral data. Compared to models based on raw spectral data or specific spectral bands,
spectral indices amplify the connection between spectral reflectance and crop nutrient and
biochemical information, resulting in models constructed based on spectral indices having
better predictive performance. Common spectral indices applied to construct crop nutrient
biochemical information monitoring models are Ratio Vegetation Index (RVI), Difference
Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI), Triangular Veg-
etation Index (TVI), Modified Chlorophyll Uptake Rate Index (MCARI), Modified Ratio
Vegetation Index (MSR), Modified Chlorophyll Absorption in Reflectance Index/Optimized
Soil-adjusted Vegetation Index (MCARI/OSAVI), Soil-adjusted Spectral Index (SASI), Meris
Terrestrial Chlorophyll Index (MTCI), etc. Table 1 lists some of the commonly used spectral
indices for constructing crop nutrient biochemical information monitoring models. To
explore the hyperspectral band combinations that are sensitive to the chlorophyll content
of winter wheat canopy, and to compare the estimation effect of different spectral indices
on the chlorophyll content of wheat canopy, Luo et al. [87] selected four spectral indices to
construct a model for monitoring the chlorophyll content of wheat canopy based on the
original spectrum and the first-order derivative spectrum. Pan et al. [88] compared the
correlation between six vegetation indices and apple canopy chlorophyll content, and con-
structed spectral indices for all two-band combinations in the sensitive wavelength region.
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Models developed based on these spectral indices achieved a high level of significance. Xu
et al. [89] selected strawberry as the test material to measure the chlorophyll content of
strawberry leaves and the spectral reflectance of crown height, and studied the correlation
between them. Results showed that the correlation between chlorophyll content and the
vegetation index DVI, MSAVI, PVI, RDVI, SAVI and TSAVI reached a very significant level.
It can be used as characteristic parameter to predict chlorophyll content (Table 3).

Table 3. Common vegetation indexes in the process of building monitoring model for biochemical.

Name of Spectral
Index Composition of Band Types of Applied

Crops
Biochemical Information of

Nutrient Citation

RVI (R574, R695) phosphorus [90]
DSI (R648, R738) Rice nitrogen [91]
SR (R537, R553) nitrogen [92]

NEW-NDRE (R550, R790, R720) Wheat nitrogen [93]
NDVI (R689, R697) chlorophyll [94]

SAVI (R800, R670) chlorophyll [95]
TGI (R480, R550, R670) Corn chlorophyll [96]
RSI (R1811, R1842) nitrogen [97]

TVI (R731, R713) Soybean nitrogen [98]

MTCI (R750, R710, R680) chlorophyll [99]
GNDVI (R750, R550) Cotton nitrogen [100]

PRI (R531, R570) carotenoids [101]

The differences in correlation between spectral indices and different crop varieties,
growth stages, stress conditions and the types of inferred biochemical information are
primarily influenced by the combined effects of variations in plant physiological charac-
teristics, changes in growth stages, impacts of stress conditions and the different types of
inferred biochemical information. To enhance the accuracy and reliability of monitoring
models, it is crucial to select spectral indices that exhibit a high correlation with the specific
target object features and attributes. Diao et al. [102] found that the greenness vegetation
index (Green NDVI), soil-adjusted ratio vegetation index (SARVI), ratio vegetation index
(RVI) and Difference Vegetation Index (DVI) showed highly significant correlation with
the nitrogen fertilizer bias productivity PF-Pn of wheat at tillering and flowering, pulling,
tasseling and maturity stages, respectively. Lu et al. [103] experimentally found that the
normalized difference spectral index spectral index (NDSI (R1705, R1385)), Ratio Spectral
Index (RSI (R1385, R1705)) and Difference Spectral Index (DSI (R1705, R1385)) were well
correlated with the Leaf Potassium Content of rice through experiments (R2 up to 0.68).
In their research on the high-spectral inversion model for rice phosphorus content, Ban
et al. [104] found that the Leaf Phosphorus Content of rice was highly correlated with three
newly constructed spectral indices: NDSI (R498, R606), RSI (R498, R606) and DSI (R498,
R586), with correlation coefficients of 0.913, 0.915 and 0.938, respectively.

Spectral indices with higher correlation have better interpretability in specific applica-
tion scenarios, enabling them to more accurately reflect the spectral variations of the target
object and effectively enhance the inference performance of monitoring models. Therefore,
in the process of constructing crop nutrient biochemical information monitoring models
based on spectral indices, it is necessary to select suitable spectral indices for monitoring
and inference based on specific circumstances. Inoue et al. [105] found that spectral indices
based on NDSI (R825, R735) or RSI (R825, R735) had high prediction accuracy when model-
ing and monitoring nitrogen content in rice. Qi et al. [15] found that the optimal spectral
indices for determining chlorophyll content in peanut leaves were NDSI (R520, R528), RSI
(R748, R561), DSI (R758, R602) and SASI (R753, R624), and all the determined coefficient
values for the models based on NDSI, RSI, DSI and SASI were greater than 0.65, while the
root mean square error values were all less than 2.04.
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To improve the prediction accuracy of inversion models of crop nutrient biochemical
information, many scholars have proposed many new spectral indices based on the opti-
mization of published spectral indices to reduce background signals or noise, to resolve
overlapping spectral features and to enhance the relationship between spectral data and
crop nutrient biochemical information [106]. Liang et al. [107] designed two new spectral
indices based on the first-order derivatives of reflectance spectra FD-NDNI and FD-SRNI
for estimating the nitrogen content of wheat, and the comparative analysis showed that the
accuracy of the models constructed based on FD-NDNI and FD-SRNI was better than that
of the commonly used indices such as MNDVI (705) and NDNI. Yu et al. [108] simplified
the spectral index NAOC based on integral operations and obtained optimized spectral
indices based on dual-band simplification operations. They used the original reflectance
spectra R and mathematically transformed spectra LgR, R 1

2 and 1/R as the basis for cal-
culating spectral indices, and established three rice leaf SPAD inversion models using
PLSR, SVM and BP neural networks, respectively. The determination coefficients of these
models were all greater than 0.79, and the standardized root mean square error values
were less than 5.4%. In order to explore and evaluate the effects of different vegetation
indices on winter wheat canopy chlorophyll content (CCC) estimation, Zhang et al. [59]
optimized the published and revised indices using a combination of Original Spectra (OS)
and first-order differential (FD) processed random bands. They found that Three-band
Vegetation Index could resolve the limitation of the number of bands on target information
extraction, alleviate the saturation problem of Two-band Vegetation Index and improve the
monitoring accuracy of winter wheat chlorophyll content. Overall, the emergence of new
spectral indices provides a new approach and methodology for spectral analysis and the
study of models for estimating crop nutrient biochemical information. These new indices
offer more precise and comprehensive spectral feature information.

4.3. Construction of Biochemical Information Monitoring Model of Crop Nutrient Based on
Machine Learning Algorithm

Machine learning algorithms are powerful tools for handling hyperspectral remote
sensing data. Predicting crop nutrient biochemical information based on hyperspectral data
is a regression problem, and common machine learning algorithms include decision tree
algorithms, regression algorithms, ensemble algorithms, clustering algorithms and artificial
neural networks. These algorithms have been widely used in constructing monitoring
models for crop nutrient biochemical information based on hyperspectral data. Prior to
applying machine learning algorithms, preprocessing and extraction of relevant spectral
information from hyperspectral data are necessary to ensure the reliability of the models.
The preprocessed and spectrally informative hyperspectral data is used as input, while the
desired crop nutrient biochemical information is used as output. By fitting a regression
model using machine learning algorithms, monitoring of crop nutrient biochemical infor-
mation can be achieved. These models can generally be classified as linear or nonlinear
models. When applying machine learning algorithms for regression modeling of crop
nutrient biochemical information, it is important to consider model selection and tuning,
handling overfitting and underfitting and model evaluation and interpretation, in order to
improve model accuracy.

Linear regression models have lower computational complexity and are better able to
reflect causal relationships and relative importance between variables. They also possess
strong robustness. Commonly used algorithms for constructing linear data models for
crop nutrient biochemical information include Partial Least Squares Regression (PLSR),
Multiple Linear Regression (MLR), Stepwise Regression Analysis (SRA) and Multivariate
Stepwise Regression (MSR). Li et al. [109] used hyperspectral data of potato leaves under
different nitrogen treatment conditions, selected raw spectra and their transformed data
in the wavelength range of 430–910 nm and used PLSR to construct a nitrogen content
prediction model of potato leaves based on the nitrogen content data of leaves sampled
simultaneously in the field. The results showed that the Partial Least Squares regression
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modeling method was able to model the nitrogen content of potato leaves under the
condition that the independent variables had several multiples. Ye et al. [110] used PLSR
and MLR to construct a model to estimate the nitrogen content of apple leaves based on
the Raw Hyperspectral Reflectance and first-order derivative reflectance of apple leaves.
The MLR model based on raw reflectance was better than the PLS model and the MLR
model based on first-order derivative reflectance. Kai Li et al. [111] used MSR to construct
a hyperspectral estimation model for chlorophyll content of moso bamboo under insect
damage stress. It was found that the MSR could further compress the feature wavelength
extracted by the continuous projection algorithm. And the envelope removal and envelope
removal first-order derivative MSR models established by combining the continuous
projection algorithm with the SPXY sample division method can effectively estimate the
chlorophyll content of bamboo leaves. However, linear regression models also have some
limitations. For example, when there is multicollinearity among multiple independent
variables, the linear regression model may become unstable. Additionally, linear regression
models are limited to capturing linear relationships between variables and cannot capture
more complex nonlinear relationships or interactions. Although linear regression models
may not perform as well as other complex machine learning algorithms in certain situations,
they are still a useful and reliable modeling tool for handling linearly related data and
problems.

Hyperspectral data are spectral data of continuous wavelengths, and there is a high
correlation between adjacent wavelength data. Therefore, the linear model can better solve
the problem of multiple covariance that hyperspectral data are usually prone to, thus
improve the accuracy and stability of the model. In addition, the relationship between
hyperspectral data and crop nutrient biochemical information contains both linear and
nonlinear models. Nonlinear models have limited ability to predict linear components in
the models. However, a large number of studies have shown that compared with linear
models, nonlinear models can further exploit the hidden valid information between spectral
data and crop nutrient biochemical information, thus improving the prediction accuracy of
the models.

Spectral data typically contains rich information and can capture the reflection or
absorption characteristics of crop biochemical components, indicating that there is a direct
linear relationship between their concentrations and spectral responses. However, due to
the complex nonlinear relationships that may exist between nutrient absorption, transporta-
tion, metabolism, crop physiological processes and environmental factors, crop nutrient
biochemical information may also exhibit nonlinear characteristics. Nonlinear models have
more flexible assumptions about data distribution and can capture interactions between
independent variables. Compared to linear models, nonlinear models are better able to
explore the relationship between spectral data and crop nutrient biochemical information,
providing more accurate and detailed predictions [112]. In a hyperspectral inversion study
of chlorophyll content of apple leaves, Liu et al. [113] found that Support Vector Regres-
sion had better prediction ability for chlorophyll content of apple leaves compared with
polynomial regression. In a hyperspectral-based inversion study of chlorophyll content
of winter wheat, Wang et al. [114] found that the prediction accuracy of both nonlinear
models constructed by the Gradient Boosted Regression Tree Algorithm and BP neural
network were higher than that of the Multiple Linear Prediction model constructed by the
ridge regression algorithm. Among them, the Gradient Boosted Regression Tree Algorithm
has a greater advantage in predicting chlorophyll content of winter wheat at all fertility
stages. Guo et al. [115] selected leaf phosphorus content sensitive bands based on the
Correlation Analysis of leaf phosphorus content and spectral variables. This sensitive band
was used as the input variable to predict the leaf phosphorus content by combining MLR,
PLSR and BP neural network models. The results showed that the model for predicting leaf
phosphorus content of rubber seedlings constructed by combining sensitive bands with
BP neural network had the highest prediction accuracy. And it was significantly better
than other linear models constructed by using various spectral forms as input variables.
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In addition to the algorithms mentioned above, common algorithms applied to construct
nonlinear data models for crop nutrient biochemical information include Random Forest
Regression [58], Gaussian Process Regression [116], K-value proximity [117] and radial
basis function neural networks [118]. Although nonlinear regression models have strong
predictive capabilities, they also pose challenges and limitations. For example, parameter
estimation in nonlinear models can be more difficult and prone to getting stuck in local
optima. Additionally, overly complex nonlinear models can introduce overfitting issues.
Therefore, when using nonlinear regression models, it is important to carefully choose the
model form, address overfitting problems and perform appropriate model evaluation and
validation.

Both linear regression models and nonlinear regression models have limitations in
real-world applications. The ideal solution is to integrate both types of models, capturing
both linear and nonlinear relationships in the data, increasing the flexibility of the model
and potentially improving the model’s fitting capability and prediction accuracy. It is
feasible to integrate linear regression models and nonlinear regression models, and one
approach is to use a generalized linear model that combines both linear and nonlinear
components. Another approach is to use the predictions of a nonlinear regression model
as input for a linear regression model. The specific methods and steps for integrating
linear regression models and nonlinear regression models may vary depending on the
specific problem and data. When selecting the appropriate approach, it is necessary to
consider the practical situation and data characteristics, and perform appropriate model
evaluation and validation. Liu et al. [119] collected rice canopy hyperspectral data and
chlorophyll content data and developed a hybrid prediction model (GPR-P), which was
based on Gaussian Process Regression and PLSR to compensate and predict the chlorophyll
content of rice. Moreover, it made full use of the respective advantages of linear and
nonlinear models to further improve the prediction accuracy and stability of the model.
Integrating linear regression models with nonlinear regression models can improve the
model’s fitting capability and prediction accuracy. However, it also comes with limitations
such as increased complexity, increased data requirements, risk of overfitting, difficulties in
parameter selection and reduced interpretability. Currently, most models for crop nutrient
biochemical information based on hyperspectral monitoring rely on single data models,
and there is limited research on combining two different types of data models. Further
development by researchers is needed.

5. Challenges and Prospects of Hyperspectral Technology in Monitoring Biochemical
Information of Crop Nutrients

The application of hyperspectral techniques for monitoring crop nutrient biochem-
ical information has an important position in the field of hyperspectral remote sensing
agriculture. There are still challenges that require fast and efficient solutions to expand
the application of hyperspectral technology for monitoring crop nutrient biochemical
information.

1. There are few products for spectral monitoring of crop nutrient biochemical informa-
tion for agricultural production. The purpose of the research is to obtain the nutrient
biochemical information of the target crop, select the combination of characteristic
spectral bands or characteristic spectral bands that contribute most to the monitoring
model and make a relatively low-cost multispectral device or sensor for application in
agricultural production. Although most of the realized models have good predictive
capability, they are still less able to be translated into products for application in
agricultural production practices. This is mainly because different varieties, differ-
ent growth conditions, different growth periods and different nutrient biochemical
information of the same crop correspond to different spectral sensitive bands, and
the models are not very universal. At the same time, different crops have different
growth environments, and the shapes and adaptability of the spectral sensors need to
be designed to match. Therefore, the application of hyperspectral technology to study
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the crop nutrient biochemical information monitoring models into corresponding
spectral sensors is very promising commercially.

2. A database of spectral models for monitoring nutrient and biochemical information
of different crops has not yet been established. Due to the complexity of crop species
and different growing conditions, the equipment for collecting hyperspectral data of
crops also varies, and the models established by different researchers for monitoring
nutrient and biochemical information are less universally applicable. On the one hand,
it is conducive to the exchange of data among researchers studying the same crop
species or the same nutrient biochemical information, so as to filter out the spectral
fingers with good generality; on the other hand, it can provide research ideas for
scholars studying different crop species or different nutrient biochemical information.

3. At present, the hyperspectral monitoring model of crop nutrient and biochemical
information is not dynamic and real-time. Most of the spectral data used to construct
the monitoring models are static statistics. And the monitoring models constructed
by the inversion of single nutrient and biochemical information lack consideration of
the linkage between crop nutrient and biochemical information and the interaction
mechanism between crop and environment. Therefore, in the subsequent research, the
spectral prediction model can be combined with the crop growth mechanism model
or remote sensing model to build a more efficient and universal dynamic monitoring
model, so as to make accurate judgments on the trends of nutrient and biochemical
information and the crop growth in each growth cycle.

6. Conclusions

Building nutrient biochemical information monitoring models based on hyperspectral
data can establish the relationship between hyperspectral data, nutrient biochemical infor-
mation and other plant phenotypes quickly and effectively. This approach is also a research
hotspot in the field of precision agriculture. This paper provides an overview and review of
academic research on building nutrient biochemical information monitoring models based
on hyperspectral data. The main contributions of this paper are as follows: (1) sorting out
the main application scenarios of building crop nutrient biochemical information monitor-
ing models based on hyperspectral data in recent years; (2) systematically explaining the
advantages, disadvantages and applicability of the methods used in each stage of model
construction; and (3) presenting the current challenges and potential future developments.
Through this clearer and more comprehensive overview, we aim to provide a reference
for future research on building crop nutrient biochemical information monitoring models
based on hyperspectral data.

In recent years, numerous researchers in the agricultural field have built hyperspectral
remote sensing systems and applied them in monitoring models for crop nutrient bio-
chemical information. Currently, these models have been effectively applied in monitoring
nutrient biochemical information of crops at different growth stages or under different
growth conditions. However, most of the research focuses on a specific growth period of
crops, only providing feedback on the crop’s growth status at the time of data collection,
without demonstrating future growth prediction. Therefore, future research can focus
on monitoring nutrient biochemical information across multiple growth stages of crops,
thus enhancing the validation of crop growth prediction and improving the reliability of
the models. Additionally, although most studies achieve high model prediction accuracy,
there is limited discussion on the applicability of the models in the same crop research.
Generality is an important evaluation criterion for models and should also be considered
as a significant factor during model construction.

In the various stages of model construction, a large number of traditional machine
learning algorithms have been combined. Generally, traditional machine learning tech-
niques exhibit good performance, but the setting of their parameters greatly affects regres-
sion accuracy, requiring significant effort in parameter tuning. Currently, researchers have
made improvements in classification and recognition algorithms while using different data
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mining techniques to identify, classify and quantitatively analyze the spectral features of
crop nutrient biochemical information. The achieved research results demonstrate that
hyperspectral technology has good predictive capabilities in identifying and monitoring
the nutrient biochemical content of crops, revealing the potential of applying hyperspectral
technology combined with computer algorithms for analyzing crop phenotypic information.
However, as mentioned above, although the monitoring models exhibit excellent predictive
abilities after parameter tuning, they are mostly limited to specific application scenarios.
Therefore, it is necessary to further increase the dataset of nutrient biochemical information
for crops of the same type in different growth environments, enabling the development of
models with stronger generalization and dynamic prediction capabilities. Additionally, the
development of modeling methods based on multiple algorithm fusion is also crucial, as it
may provide an important solution for enhancing model stability, generality and accuracy.
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