Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chenopodium quinoa Germplasm
2.2. Chemicals
2.3. Extraction of Free Phenolic Compounds from Quinoa Seeds
2.4. Extraction of Bound Phenolic Compounds from Quinoa Seeds
2.5. Identification and Quantification of Phenolic Compounds by Liquid Chromatography-Diode Array Detection-Tandem Mass Spectrometry (LC-DAD-MS/MS) Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Detection of Phenolic Compounds by HPLC-DAD-MS/MS
3.2. Assessment of the Free Phenolic Fraction in C. quinoa Seeds
3.3. Assessment of Bound Phenolic Fraction in C. quinoa Seeds
3.4. Phenolic Profile of C. quinoa Seeds
3.5. Principal Component Analysis and Hierarchical Clustering
3.6. Variance Explained by a Genetic Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E.A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Gómez, M.J.; Matías Prieto, J.; Cruz Sobrado, V.; Calvo Magro, P. Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. J. Food Compos. Anal. 2021, 99, 103876. [Google Scholar] [CrossRef]
- Adolf, V.I.; Shabala, S.; Andersen, M.N.; Razzaghi, F.; Jacobsen, S.E. Varietal differences of quinoa's tolerance to saline conditions. Plant Soil 2012, 357, 117–129. [Google Scholar] [CrossRef]
- Jacobsen, S.E.; Mujica, A.; Jensen, C.R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 2003, 19, 99–109. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellstrom, J.K.; Pihlava, J.M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kaniwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Benavente-Garcia, O.; Castillo, J. Update on uses and properties of Citrus flavonolds: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology; Hasanuzzaman, M., Nahar, K., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 125–140. [Google Scholar] [CrossRef]
- Bartwal, A.; Mall, R.; Lohani, P.; Guru, S.K.; Arora, S. Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. J. Plant Growth Regul. 2013, 32, 216–232. [Google Scholar] [CrossRef]
- Chomel, M.; Guittonny-Larcheveque, M.; Fernandez, C.; Gallet, C.; DesRochers, A.; Pare, D.; Jackson, B.G.; Baldy, V. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. J. Ecol. 2016, 104, 1527–1541. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Nair, M.G.; Hammerschmidt, R.; Safir, G.R. SIGNIFICANCE OF PHENOLIC-COMPOUNDS IN PLANT-SOIL-MICROBIAL SYSTEMS. CRC Crit. Rev. Plant Sci. 1991, 10, 63–121. [Google Scholar] [CrossRef]
- Niveyro, S.L.; Mortensen, A.G.; Fomsgaard, I.S.; Salvo, A. Differences among five amaranth varieties (Amaranthus spp.) regarding secondary metabolites and foliar herbivory by chewing insects in the field. Arthropod Plant Interact. 2013, 7, 235–245. [Google Scholar] [CrossRef]
- Murphy, K.M.; Matanguihan, J.B. Quinoa: Improvement and Sustainable Production; John Wiley & Sons: New York, NY, USA, 2015; pp. XI–XIII. [Google Scholar] [CrossRef]
- Steffensen, S.K.; Pedersen, H.A.; Labouriau, R.; Mortensen, A.G.; Laursen, B.; de Troiani, R.M.; Noellemeyer, E.J.; Janovska, D.; Stavelikova, H.; Taberner, A.; et al. Variation of Polyphenols and Betaines in Aerial Parts of Young, Field-Grown Amaranthus Genotypes. J. Agric. Food Chem. 2011, 59, 12073–12082. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Molecular Modes of Action of Defensive Secondary Metabolites. In Functions and Biotechnology of Plant Secondary Metabolites, 2nd ed.; Wink, M., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2010; Volume 39, pp. 21–161. [Google Scholar] [CrossRef]
- Wink, M. Importance of plant secondary metabolites for protection against insects and microbial infections. In Naturally Occurring Bioactive Compounds; Rai, M., Carpinella, M.C., Eds.; Elsevier: Amsterdam, the Netherlands, 2006; Volume 3, pp. 251–268. [Google Scholar]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Gomez-Caravaca, A.M.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Caboni, M.F. Simultaneous Determination of Phenolic Compounds and Saponins in Quinoa (Chenopodium quinoa Willd) by a Liquid Chromatography-Diode Array Detection-Electrospray Ionization-Time-of-Flight Mass Spectrometry Methodology. J. Agric. Food Chem. 2011, 59, 10815–10825. [Google Scholar] [CrossRef]
- Nsimba, R.Y.; Kikuzaki, H.; Konishi, Y. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 2008, 106, 760–766. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.H.; Zhang, B.; Chen, P.X.; Liu, R.H.; Tsao, R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Pasko, P.; Barton, H.; Zagrodzki, P.; Gorinstein, S.; Folta, M.; Zachwieja, Z. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Gorinstein, S.; Vargas, O.J.M.; Jaramillo, N.O.; Salas, I.A.; Ayala, A.L.M.; Arancibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F. Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods 2021, 10, 351. [Google Scholar] [CrossRef]
- Hur, J.; Nguyen, T.T.H.; Park, N.; Kim, J.; Kim, D. Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. Amb Express 2018, 8, 143. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P. Detection and quantification of phenolic compounds in olive oil by high resolution H-1 nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2009, 633, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.Q.; Sheng, S.Q.; Li, D.J.; Lavoie, E.J.; Karwe, M.V.; Rosen, R.T.; Ho, C.T. Antioxidative flavonoid glycosides from quinoa seeds (Chenopodium quinoa Willd). J. Food Lipids 2001, 8, 37–44. [Google Scholar] [CrossRef]
- del Hierro, J.N.; Reglero, G.; Martin, D. Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods 2020, 9, 1159. [Google Scholar] [CrossRef]
- Liu, M.J.; Zhu, K.L.; Yao, Y.; Chen, Y.H.; Guo, H.M.; Ren, G.X.; Yang, X.S.; Li, J.C. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem. 2020, 97, 703–713. [Google Scholar] [CrossRef]
- Sampaio, S.L.; Fernandes, A.; Pereira, C.; Calhelha, R.C.; Sokovic, M.; Santos-Buelga, C.; Barros, L.; Ferreira, I. Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoaBRS Piabiru. Food Funct. 2020, 11, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Stikic, R.I.; Milincic, D.D.; Kostic, A.Z.; Jovanovic, Z.B.; Gasic, U.M.; Tesic, Z.L.; Djordjevic, N.Z.; Savic, S.K.; Czekus, B.G.; Pesic, M.B. Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chem. 2020, 97, 626–633. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Schneider, R.G. Quinoa flavonoids and their bioaccessibility during in vitro gastrointestinal digestion. J.Cereal Sci. 2020, 95, 103070. [Google Scholar] [CrossRef]
- Antognoni, F.; Potente, G.; Biondi, S.; Mandrioli, R.; Marincich, L.; Ruiz, K.B. Free and Conjugated Phenolic Profiles and Antioxidant Activity in Quinoa Seeds and Their Relationship with Genotype and Environment. Plants-Basel 2021, 10, 1046. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, C.; Fini, A.; Sebastiani, F.; Gori, A.; Tattini, M. Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant-Environment Interactions. Front. Plant Sci. 2018, 9, 1042. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Bioactivities and Antiradical Properties of Millet Grains and Hulls. J. Agric. Food Chem. 2011, 59, 9563–9571. [Google Scholar] [CrossRef]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental Conditions and Agronomical Factors Influencing the Levels of Phytochemicals in Brassica Vegetables Responsible for Nutritional and Sensorial Properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Marin, A.; Ferreres, F.; Barbera, G.G.; Gil, M.I. Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season. J. Agric. Food Chem. 2015, 63, 1673–1681. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Hoppula, K.I.; Nestby, R.; Verheul, M.J.; Karjalainen, R.O. Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria x ananassa Duch.) fruits. J. Agric. Food Chem. 2006, 54, 2614–2620. [Google Scholar] [CrossRef]
- Reimer, J.J.; Thiele, B.; Biermann, R.T.; Junker-Frohn, L.V.; Wiese-Klinkenberg, A.; Usadel, B.; Wormit, A. Tomato leaves under stress: A comparison of stress response to mild abiotic stress between a cultivated and a wild tomato species. Plant Mol. Biol. 2021, 107, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.; Thiele, B.; Zurita-Silva, A.; Usadel, B.; Fiorani, F. Determination and Metabolite Profiling of Mixtures of Triterpenoid Saponins from Seeds of Chilean Quinoa (Chenopodium quinoa) Germplasm. Agronomy 2021, 11, 1867–1885. [Google Scholar] [CrossRef]
- Dumschott, K.; Wuyts, N.; Alfaro, C.; Castillo, D.; Fiorani, F.; Zurita-Silva, A. Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa. Plants 2022, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef]
- Price, K.R.; Colquhoun, I.J.; Barnes, K.A.; Rhodes, M.J.C. Composition and content of flavonol glycosides in green beans and their fate during processing. J. Agric. Food Chem. 1998, 46, 4898–4903. [Google Scholar] [CrossRef]
- Abad-Garcia, B.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. Practical guidelines for characterization of O-diglycosyl flavonoid isomers by triple quadrupole MS and their applications for identification of some fruit juices flavonoids. J. Mass Spectrom. 2009, 44, 1017–1025. [Google Scholar] [CrossRef]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonoid glycosides and antioxidant capacity of varous blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004, 84, 1771–1782. [Google Scholar] [CrossRef]
- Grayer, R.J.; Kite, G.C.; Veitch, N.C.; Eckert, M.R.; Marin, P.D.; Senanayake, P.; Paton, A.J. Leaf flavonoid glycosides as chemosystematic characters in Ocimum. Biochem. Syst. Ecol. 2002, 30, 327–342. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Lebelo, S.L. UHPLC-QToF-MS characterization of bioactive metabolites from Quercus robur L. grown in South Africa for antioxidant and antidiabetic properties. Arab. J. Chem. 2021, 14, 383–431. [Google Scholar] [CrossRef]
- Shui, G.H.; Peng, L.L. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromatogr. A 2004, 1048, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ersan, S.; Ustundag, O.G.; Carle, R.; Schweiggert, R.M. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Iafelice, G.; Lavini, A.; Pulvento, C.; Caboni, M.F.; Marconi, E. Phenolic Compounds and Saponins in Quinoa Samples (Chenopodium quinoa Willd.) Grown under Different Saline and Nonsaline Irrigation Regimens. J. Agric. Food Chem. 2012, 60, 4620–4627. [Google Scholar] [CrossRef]
- Wirtschaftsuniversität Wien. Agricolae: Statistical Procedures for Agricultural Research. 2020. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 7 April 2021).
- Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 April 2020).
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Package ‘lme4’: Linear Mixed-Effects Models Using 'Eigen' and S4. 2016. Available online: https://github.com/lme4/lme4/ (accessed on 16 April 2016).
- Djoukeng, J.D.; Arbona, V.; Argamasilla, R.; Gomez-Cadenas, A. Flavonoid Profiling in Leaves of Citrus Genotypes under Different Environmental Situations. J. Agric. Food Chem. 2008, 56, 11087–11097. [Google Scholar] [CrossRef]
- Domon, B.; Costello, C.E. A SYSTEMATIC NOMENCLATURE FOR CARBOHYDRATE FRAGMENTATIONS IN FAB-MS MS SPECTRA OF GLYCOCONJUGATES. Glycoconj. J. 1988, 5, 397–409. [Google Scholar] [CrossRef]
- Han, Y.M.; Chi, J.W.; Zhang, M.W.; Zhang, R.F.; Fan, S.H.; Dong, L.H.; Huang, F.; Liu, L. Changes in saponins, phenolics and antioxidant activity of quinoa (Chenopodium quinoa willd) during milling process. LWT Food Sci. Technol. 2019, 114, 108381. [Google Scholar] [CrossRef]
- Renard, C.M.G.C.; Wende, G.; Booth, E.J. Cell wall phenolics and polysaccharides in different tissues of quinoa (Chenopodium quinoa Willd). J. Sci. Food Agric. 1999, 79, 2029–2034. [Google Scholar] [CrossRef]
- Borges, M.F.M.; Roleira, F.M.F.; Pinto, M.M.M. ISOCRATIC HPLC SEPARATION OF SCOPOLETIN AND CIS/TRANS ISOMERS OF FERULIC ACID AS WELL AS ISOSCOPOLETIN AND CIS-TRANS ISOMERS OF ISOFERULIC ACID. J. Liq. Chromatogr. 1991, 14, 2307–2316. [Google Scholar] [CrossRef]
- Iannucci, A.; Fragasso, M.; Platani, C.; Papa, R. Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front. Plant Sci. 2013, 4, 509. [Google Scholar] [CrossRef]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochem. 2007, 68, 2722–2735. [Google Scholar] [CrossRef] [PubMed]
- Vega-Galvez, A.; Zura, L.; Lutz, M.; Jagus, R.; Aguero, M.V.; Pasten, A.; Di Scala, K.; Uribe, E. ASSESSMENT OF DIETARY FIBER, ISOFLAVONES AND PHENOLIC COMPOUNDS WITH ANTIOXIDANT AND ANTIMICROBIAL PROPERTIES OF QUINOA (Chenopodium quinoa Willd.). Chil. J. Agric. Anim. Sci. 2018, 34, 57–67. [Google Scholar] [CrossRef]
- Sobota, A.; Swieca, M.; Gesinski, K.; Wirkijowska, A.; Bochnak, J. Yellow-coated quinoa (Chenopodium quinoa Willd)—physicochemical, nutritional, and antioxidant properties. J. Sci. Food Agric. 2020, 100, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Graf, B.L.; Rojo, L.E.; Delatorre-Herrera, J.; Poulev, A.; Calfio, C.; Raskin, I. Phytoecdysteroids and flavonoid glycosides among Chilean and commercial sources of Chenopodium quinoa: Variation and correlation to physico-chemical characteristics. J. Sci. Food Agric. 2016, 96, 633–643. [Google Scholar] [CrossRef]
- Santiago, R.; Barros-Rios, J.; Malvar, R.A. Impact of Cell Wall Composition on Maize Resistance to Pests and Diseases. Int. J. Mol. Sci. 2013, 14, 6960–6980. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, A.; Satyanarayana, K.V. Disease and pest resistance in grains of sorghum and millets. J. Cereal Sci. 2006, 44, 287–304. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Giacomazza, D.; Di Carlo, M. Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants. Nutrients 2015, 7, 5764–5782. [Google Scholar] [CrossRef]
- Heuschele, D.J.; Smith, K.P.; Annor, G.A. Variation in Lignin, Cell Wall-Bound p-Coumaric, and Ferulic Acid in the Nodes and Internodes of Cereals and Their Impact on Lodging. J. Agric. Food Chem. 2020, 68, 12569–12576. [Google Scholar] [CrossRef]
- Li, L.K.; Lietz, G.; Seal, C.J. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotaskova, E.; Druzbikova, H.; Mlcek, J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chem. 2016, 211, 339–346. [Google Scholar] [CrossRef]
- Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Gonzalez, M.C.; Condezo-Hoyos, L. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015, 183, 83–90. [Google Scholar] [CrossRef]
- Bruce, S.O.; Onyegbule, F.A. Biosynthesis of Natural Products. In Bioactive Compounds—Biosynthesis, Characterization and Applications; Queiroz Zepka, L., Casagrande do Nascimento, T., Jacob-Lopes, E., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef]
- Christensen, S.A.; Pratt, D.B.; Pratt, C.; Nelson, P.T.; Stevens, M.R.; Jellen, E.N.; Coleman, C.E.; Fairbanks, D.J.; Bonifacio, A.; Maughan, P.J. Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet. Resour. 2007, 5, 82–95. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Galvez, A.; Martinez, E.; Lopez, J.; Rodriguez, M.J.; Henriquez, K.; Fuentes, F. Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa willd.) genotypes cultivated in Chile. Cienc. Technol. Aliment. 2012, 32, 835–843. [Google Scholar] [CrossRef]
- Fuentes, F.F.; Martinez, E.A.; Hinrichsen, P.V.; Jellen, E.N.; Maughan, P.J. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conserv. Genet. 2009, 10, 369–377. [Google Scholar] [CrossRef]
- Mizuno, N.; Toyoshima, M.; Fujita, M.; Fukuda, S.; Kobayashi, Y.; Ueno, M.; Tanaka, K.; Tanaka, T.; Nishihara, E.; Mizukoshi, H.; et al. The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res. 2020, 27, dsaa022. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | tR [min] | Precursor Ion [M − H]− m/z | Product Ion (Quantifier/Qualifier) m/z | Cone [V] | Collision Energy (Quant./Qual.) [V] |
---|---|---|---|---|---|---|
1 | 4-Hydroxybenzoic acid | 2.33 | 137.0 | 93.6/65.0 | 46 | 20/26 |
2 | Vanillic acid | 2.61 | 167.0 | 152.0/108.0 | 22 | 14/18 |
3 | Syringic acid | 2.63 | 197.0 | 182.0/123.0 | 54 | 14/22 |
4A,B | Coumaric acid | 3.51/3.76 | 163.0 | 119.4/93.0 | 42 | 17/28 |
5A,B | Ferulic acid | 3.87/4.10 | 193.0 | 134.0/178.0 | 52 | 16/14 |
6A,B | Quer-Hex-(DHex-Pent) a | c | 741.0 | 300.1 d/271.0 | 94 | 36/62 |
7A–E | Quer-Hex-DHex a | c | 609.0 | 300.1 d/271.0 | 86 | 34/60 |
8A,B | Quer-Hex-Pent a | c | 595.0 | 300.1 d/271.0 | 74 | 30/52 |
9A,B | Quer-Hex a | c | 463.0 | 300.1 d/271.0 | 54 | 36/58 |
10 | Quer-HexA a | c | 477.0 | 301.1/151.0 | 80 | 20/36 |
11 | Quercetin | 6.21 | 301.0 | 151.0/179.0 | 76 | 20/18 |
I b | Cinnamic acid | 6.76 | 147.0 | 103.0/77.0 | 32 | 10/20 |
II b | Gallic acid | 1.18 | 169.0 | 97.0/69.0 | 24 | 18/22 |
III b | Caffeic acid | 2.49 | 179.0 | 79.0/107.0 | 20 | 24/22 |
IV b | Kaempferol | 7.57 | 285.0 | 151.0/93.0 | 82 | 18/30 |
No. | tR [min] | Flavonoid Glycoside a | m/z (% Base Peak Intensity) | CE [eV] | Lit. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[M + H]+ | [Y0]+ | [Y *]+ | [Y1]+ | [Y2]+ | [B1]+ | [B2]+ | ||||||
6A | 2.89 | Quer-Hex-DHex-Pent | Quer-7-O-Glc-Rha-Xyl | 742.76 (100) | 303.17 (82.5) | - | 465.06 (19.3) | 610.83 (5.1) | - | - | 15 | |
6B | 2.93 | Quer-3-O-Glc-Rha-Xyl | 742.82 (100) | 303.50 (10.6) | - | 465.12 (7.5) | - | - | - | 15 | [42] | |
7A | 3.11 | Quer-Hex-DHex or Quer-HexA-Pent | Quer-7-O-Glc (6→1)Rha | 611.23 (18.8) | 303.06 (100) | 449.10 (12.1) | 465.12 (30.7) | - | 147.38 (5.0) | 309.03 (11.1) | 10 | [43] |
7B | 3.16 | Quer-7-O-Glc (2→1)Rha | 611.10 (40.6) | 303.25 (100) | 449.10 (32.6) | 465.12 (65.0) | - | 146.92 (4.3) | - | 10 | [43] | |
7C | 3.29 | Quer-3-O-Glc (2→1)Rha | 611.17 (40.5) | 303.0 (100) | 449.17 (6.1) | 465.18 (30.3) | - | 147.38 (2.3) | 309.29 (0.7) | 10 | [43] | |
7D | 3.34 | Quer-3-O-GlcA(2→1)Xyl | 611.23 (17.2) | 303.06 (45.6) | 435.32 (2.7) | 479.29 (100) | - | - | - | 10 | [44] | |
7E | 3.38 | Quer-3-O-Glc (6→1)Rha b | 611.10 (41.8) | 303.25 (100) | 449.0 (3.1) | 465.18 (44.9) | - | - | - | 10 | [43] | |
8A | 3.23 | Quer-Hex-Pent | Quer-3-O-Gal(6→1)Xyl | 597.19 (27.1) | 303.19 (100) | 435.18 (4.3) | 465.18 (35.8) | - | 133.34 (3.3) | 295.11 (3.9) | 8 | [45] |
8B | 3.28 | Quer-3-O-Glc(6→1)Xyl | 597.25 (28.9) | 303.19 (100) | 435.12 (0.7) | 465.25 (20.3) | - | 133.34 (0.5) | 295.25 (0.8) | 8 | [46,47] | |
9A | 3.62 | Quer-Hex | Quer-3-O-Gal | 464.99 (88.2) | 303.22 (100) | - | - | - | - | - | 8 | [48] |
9B | 3.68 | Quer-3-O-Glc | 465.19 (27.3) | 303.22 (100) | - | - | - | - | - | 8 | [17,48,49] | |
10 | 3.74 | Quer-HexA | Quer-3-O-GlcA b | 479.15 (100) | 303.17 (99.5) | - | - | - | - | - | 8 | [17,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandya, A.; Thiele, B.; Köppchen, S.; Zurita-Silva, A.; Usadel, B.; Fiorani, F. Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm. Agronomy 2023, 13, 2170. https://doi.org/10.3390/agronomy13082170
Pandya A, Thiele B, Köppchen S, Zurita-Silva A, Usadel B, Fiorani F. Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm. Agronomy. 2023; 13(8):2170. https://doi.org/10.3390/agronomy13082170
Chicago/Turabian StylePandya, Archis, Björn Thiele, Stephan Köppchen, Andres Zurita-Silva, Björn Usadel, and Fabio Fiorani. 2023. "Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm" Agronomy 13, no. 8: 2170. https://doi.org/10.3390/agronomy13082170
APA StylePandya, A., Thiele, B., Köppchen, S., Zurita-Silva, A., Usadel, B., & Fiorani, F. (2023). Characterization of Bioactive Phenolic Compounds in Seeds of Chilean Quinoa (Chenopodium quinoa Willd.) Germplasm. Agronomy, 13(8), 2170. https://doi.org/10.3390/agronomy13082170