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Abstract: High oleic acid oilseed rape is a hot research area in the development of functional oilseed
rape. At present, the model of predicting the oleic acid content in rapeseed at the early growth stage
based on hyperspectral technology lacks a mechanistic explanation. In this study, based on the data
collected at the 5–6 leaf stage of oilseed rape, a one-dimensional linear regression prediction model of
the oleic acid content in leaves (x) and the oleic acid content in rapeseed (y) was constructed with the
regression equation y = 1.83x + 75.26, and the R2, RMSE, and RPD of the testing set were 0.96, 0.23%,
and 4.86, respectively. Then, a support vector regression prediction model of the spectral standard
normal transformed feature parameters and the oleic acid content in leaves was constructed, and the
R2, RMSE, and RPD of the testing set were 0.74, 0.21%, and 2.01, respectively. Finally, the sensitive
parameter transfer model for the prediction of “spectral standard normal transform feature—oleic
acid content in leaves—oleic acid content in rapeseed” was validated, and the R2, RMSE, and RPD
of the full sample test were 0.71, 0.54%, and 0.54, respectively. The results show that although the
accuracy of the prediction model after the introduction of the agronomic parameters was reduced
compared with the performance of direct prediction by using spectra, the oleic acid content in oilseed
rape leaves, as an important intermediate variable, could better explain the relationship between the
reflection spectrum of the leaf and the oleic acid content in rapeseed. This study provides a theoretical
basis and technical support for hyperspectral remote sensing technology in the quality prediction
of rapeseed.

Keywords: Brassica napus L.; oleic acid content; hyperspectral; model construction; grey correlation
analysis; integrated learning

1. Introduction

The difference in spectral characteristics of ground objects in different bands is the
premise of the qualitative recognition and quantitative inversion of remote sensing. Due
to the differences in crops in different nutrient conditions, growth environments, growth
stages, and their own genotype, the pigment content, cell structure, and water content of
their leaves will change, which will affect the absorption, reflection, and transmission of
light, and will eventually lead to different spectral curve characteristics. Therefore, the
spectral characteristics of crops can be used for crop-growth monitoring, yield estimation,
and quality prediction.

Hyperspectral technology has been extensively used in crop quality detection due to its
characteristics of multiple bands, strong continuity, and a large amount of information [1,2].
In recent years, many studies have been carried out on the application of spectral technology
for the determination of fatty acid components in oil crops. Li et al. [3], Wu et al. [4],
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and Gao et al. [5] applied the near-infrared spectroscopic method (NIRS) to achieve the
estimation of fatty acid fractions such as stearic, soft, oleic, linoleic, linolenic, and erucic
acids in rapeseed. Velasco [6], Li et el. [7], Cantarelli et al. [8], and Jiang et al. [9] realized
the rapid determination of oleic acid content in grains of oil crops such as rapeseeds,
peanuts, sunflowers, and oil-tea camellia by NIRS. Wein-stock et al. [10] used near-infrared
hyperspectral imaging technology to estimate the oleic acid content of single-grain corn,
and the RMSE predicted by the PCA-PLSR model was 14%. Parsaeian [11] combined digital
image technology with a multi-layer perceptual artificial neural network to estimate the
fatty acid content of 125 sesame grains with different genotypes, in which the estimated R2

and RMSE of oleic acid were 0.98 and 0.62%. Jin et al. [12] used hyperspectral technology
to predict oleic acid content in rapeseed with and without picking moss, and the R2 of the
models were 0.773 and 0.590, respectively, which proved the feasibility of hyperspectral
technology in predicting oleic acid content in rapeseed. In conclusion, a majority of studies
have used the NIR spectrometer to determine the fatty acid composition of population
grains or a single grain of oilseed crops, and the application of hyper spectroscopy to detect
the oleic acid content of oilseed rape (Brassica napus L.) is less researched.

Direct prediction of crop quality on a large scale by remote sensing can be realized
by establishing a link between crop spectral features and quality indicators. Although
this method is simple, easy to operate, and has high prediction accuracy, the mechanism
is poorly interpreted. In recent years, scholars have carried out a lot of research on how
to enhance the mechanistic interpretation of the remote sensing prediction of crop seed
quality [13–16]. However, at present, the main research objects are wheat, rice, and other
grain crops, and the quality index is the most prominent grain protein content. There are
few reports on the mechanism of the remote sensing prediction of the fatty acid quality of
oil crops such as oilseed rape.

By introducing crop agronomic parameters in the key growth period as intermediate
variables and then using data methods to establish the quantitative relationship between
them and remote sensing information and quality indicators, there is a good basis for
enhancing the interpretability of crop quality prediction by remote sensing. However, at
present, the main research objects are wheat, rice, and other grain crops, and the quality
index is the most prominent grain protein content. There are few reports on the mechanism
of the remote sensing prediction of the fatty acid quality of oil crops such as oilseed rape.
Therefore, this study focused on the correlation between the spectral reflectance of leaves,
leaf agronomic parameters, and the oleic acid content in rapeseed at the 5~6 leaf stages. Ac-
cording to the idea of “spectral characteristic band—oleic acid content in leaves—oleic acid
content in rapeseed”, sensitive agronomic parameters suitable for the spectral prediction of
oleic acid content were identified to enhance the explanation of the agronomic mechanism
of the model and to provide a theoretical basis and technical support for hyperspectral
remote sensing technology in the quality prediction of rapeseed (Brassica napus L.).

2. Materials and Methods
2.1. Experimental Design

This study was conducted for two consecutive years at the Yunyuan Base of Hunan
Agricultural University (28◦11′ N, 113◦4′ E) from September 2018 to May 2019 and from
September 2020 to May 2021. The experimental field implemented a rice–rapeseed rotation
system, with a humid subtropical monsoon climate. According to meteorological data,
from September 2018 to May 2019, the cumulative rainfall was 746.4 mm, with an average
temperature of 17.6 ◦C; from September 2020 to May 2021, the cumulative rainfall was
910.1 mm, with an average temperature of 17.4 ◦C. The experimental materials were stable
inbred lines of Brassica napus with high oleic acid. The origin of these high oleic acid
rapeseeds was in Changsha city, Hunan province. These materials were provided by the
Hunan Branch of the National Oil Improvement Center. There were 28 and 42 experimental
materials, respectively, and 70 materials were collected over two years.
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2.2. Data Collection
2.2.1. Leaf Spectral Reflectance

On 24 November 2018 and 13 November 2020, from 10:00 AM to 11:00 AM, spectral
reflectance of the leaves of oilseed rape was collected using the ASD FieldSpec 3 full-range
spectral radiometer (ASD Inc., Boulder, CO, USA), while the oilseed rape was in the 5 to
6 leaf stage. This instrument includes a hand-held blade probe with an active light source
that can be used to directly measure leaf spectral reflectance. The spectral wavelength runs
from 350 nm to 2500 nm, with a sampling interval of 1.4 nm between 350 and 1050 nm and
2 nm between 1000 and 2500 nm. The software ViewSpec Pro 6.2 calculates the spectral
reflectance for each wavelength using a differential algorithm. The wavelength resolution
is 3 nm@700 nm and 10 nm@1400 nm/2100 nm. In each plot, five oilseed rape plants with
uniform growth were chosen to capture spectral data from the major functioning leaves.
Given the homogeneous distribution of point sites, each leaf had two points measured. The
projected area of spectral measurement was approximately 114.52 mm2, with the specific
places being two symmetrical points on the upper portion of the leaf, avoiding the leaf vein
throughout the measurement. At the same time, the hand-held blade probe included a
standard whiteboard for corrections before each plot measurement. Since the “trilateral”
parameters in this study, which only require wavelengths from visible to near-infrared
and exclude the high-noise range of 350 to 400 nm, only spectral reflectance in the 400 to
1000 nm band range was included in the ensuing leaf spectral feature analysis. A total of
601 wavelengths were included.

2.2.2. Agronomic Parameters

SPAD value (relative chlorophyll content): The relative chlorophyll content of the
leaves was measured by an SPAD-502 chlorophyll analyser (Minolta Camera Co., Osaka,
Japan) while the data of the leaf hyperspectral reflectance were collected. During the mea-
surement, 5 points were uniformly measured on the functional blade where the spectrum
of the blade was collected, the principle of symmetrical distribution of the middle and
lower parts was followed, and the arithmetic average value was recorded, representing the
SPAD value of the functional blade.

The fatty acid content in leaves: Among the functional leaves whose spectra and SPAD
values were determined, 3 complete functional leaves (1 piece/plant) were cut from the
leaf stalk with scissors, wrapped in tin foil, and promptly put into the prepared liquid
nitrogen tank for fresh-keeping treatment. After field sampling of all the samples to be
measured, the fatty acid composition of leaves was analysed by Agilent GC-MS 7980B gas
chromatograph indoors. Fatty acid determination was performed according to the GB/T
17376-2008 standard. The determination indexes included oleic acid (OL), linoleic acid
(LI), and linolenic acid (LO), and the oleic acid desaturation rate (ODR) was calculated by
referring to the following formula:

ODR =
(LI + LO)

(OL + LI + LO)
(1)

Leaf physicochemical parameters: Fresh leaf samples from each of the above plots
were mixed and stored at −80 ◦C for reserve. The soluble sugar content (SS), soluble
protein content (SP), and chlorophyll content (Chl) of the samples from each high oleic
acid rape breeding plot were determined with reference to the Experimental Guide to
Plant Physiology.

Oleic acid content in rapeseed: The fatty acid composition of rapeseed was analysed
by Agilent GC-MS 7980B gas chromatography (Agilent Technologies Co., Santa Clara, CA,
USA). Fatty acid determination was performed according to the GB/T 17376-2008 standard.



Agronomy 2023, 13, 2233 4 of 16

2.3. Data Processing
2.3.1. Spectra Pretreatment

First, the arithmetic average of 10 spectral reflectance data points for each plot was
calculated, and then splice correction was performed using ViewSpec Pro 6.2, the spectral
data preprocessing software that comes with the Field Spec3 feature spectrometer, and
then the wavelength range of 400~1000 nm was selected. S−G smoothing (SG), standard
normal variate (SNV), multiple scattering correction (MSC), first-order derivative transform
(FD), and wavelet transform (WT) were performed on the cropped reflectance to determine
the best preprocessing strategy for improving the spectral data signal-to-noise ratio and
spectral estimate accuracy.

2.3.2. Association Analysis

Two association analysis methods, grey correlation analysis (GRA) and Pearson cor-
relation analysis, were used in this study. Among them, GRA, as a grey system analysis
method, applies to the study of the strength relationship between dependent variables
affected by other factors [17], that is, the degree of influence among various factors is
determined by the correlation degree. It is mainly used to identify the optimal estimated
agronomic parameters.

Due to the multiple and continuous bands of hyperspectral data, data redundancy is
prominent, so it is necessary to reduce and select features. The Pearson correlation analysis
can measure the correlation between two continuous variables numerically, that is, it can
calculate the correlation coefficient between them, and the results are directional. Therefore,
the Pearson correlation analysis method was used in this study to screen the characteristic
bands of the optimal spectral estimation of agronomic parameters.

2.3.3. Model Construction and Accuracy Evaluation

First, the grey correlation analysis and correlation analysis were used to screen the
agronomic parameters sensitive to oleic acid content in rapeseed, and the Pearson correla-
tion analysis was conducted between the spectral data after different pretreatments and the
sensitive agronomic parameters. Then, the spectral sensitive bands were extracted. Then, a
spectral estimation of sensitive agronomic parameters was realized based on MLR, RF, SVR,
KNN, RR, and the blended integrated learning model. Finally, with sensitive agronomic
parameters as intermediate variables, a transfer mode, “characteristic band—sensitive
agronomic parameter—oleic acid content in rapeseed”, was established to achieve the
indirect prediction of oleic acid content in rapeseed. Figure 1 shows the process. In the
process of modelling, the accuracy of the model was verified internally by using 5-fold
cross-validation and externally by independent samples. The coefficient of determination
(R2), root mean square error (RMSE), and residual prediction deviation (RPD) were used
to evaluate the prediction effect of the model. In this study, the programming language is
Python 3.8, the data analysis libraries are scikit-learn and catboost, and the visualization
libraries are matplotlib, seaborn, and plotnine.

R2 = 1− ∑m
i=1(ĉi − ci)

2

∑m
i=1(ci − ci)

2 (2)

RMSE =

√
∑n

i=1(ĉi − ci)
2

n
(3)

RPD =
SD

RMSEv
(4)

where n is the number of samples; ĉi and ci are the predicted and measured values of
oleic acid content, respectively; ci is the mean value of measured oleic acid content; SD is
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the standard deviation of the measured value of the test set; and RMSEv is the root mean
square error of the testing set.
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Figure 1. A map of the technical flowchart. chlorophyll content (Chl), linoleic acid (LI), linolenic acid
(LO), oleic acid desaturation rate (ODR), oleic acid (OL), soluble protein content (SP), SPAD value
(SPAD) and sugar content (SS).

3. Results
3.1. Statistical Characteristics of Agronomic Parameters and Oleic Acid Content in Grains

The leaf agronomic parameters of oilseed rape breeding material at the 5~6 leaf stage
and oleic acid content in rapeseed after a mature harvest were statistically analysed, and
the results are shown in Figure 2. As shown in Figure 2, except for ODR, the coefficient
of variation of the other seven parameters was large, especially that of SP and SS, whose
corresponding value ranges were 0.55~27.32 and 5.14~29.81, respectively. The values of
fatty acids such as oleic acid, linoleic acid, and linolenic acid were 3.41–6.59, 10.18–20.31,
and 35.91–49.63, respectively. The fatty acid contents of leaves were linolenic acid > linoleic
acid > oleic acid at the 5~6 leaf stage. The distribution characteristics of the SPAD value and
measured chlorophyll content were similar, indicating good consistency between them.
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Figure 2. Boxplot of agronomic parameters for the samples. Chlorophyll (Chl), linoleic acid (LI),
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3.2. Reflectance Spectral Characteristics of Leaves of Materials with Different Oleic Acid Contents

The original leaf spectral reflectance of 70 high oleic acid oilseed rape breeding materi-
als at the 5~6 leaf stage and after different pretreatments were analysed, and the results
are shown in Figure 3. Figure 3A shows that the spectral reflectance curve of oilseed rape
leaves had typical spectral characteristics of green plants, that is, it presented obvious
spectral characteristics such as a “blue valley”, “red valley”, “green peak”, “red edge steep
slope”, and “near-infrared platform”. However, due to the difference in oleic acid content,
the reflection intensity of oleic acid was different in certain spectral regions, such as the
green band and near-infrared band, which laid a foundation for the prediction of oleic acid
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content using spectral characteristics. In this study, S−G smoothing, SNV, FD, and other
methods were used to preprocess the original spectral data. As shown in Figure 3B,F, the
changes before and after pretreatment were not obvious, which was basically consistent
with the original spectral reflectance curve. As shown in Figure 3C,E, SNV and FD ampli-
fied the weak spectral information, making the spectral features more prominent. Figure 3D
shows that the MSC weakened the spectral characteristics, and the spectral reflectance
curves of leaves corresponding to breeding materials with different oleic acid contents after
transformation were highly overlapping.
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3.3. Correlation Analysis between Agronomic Parameters and Oleic Acid Content in Rapeseed

The eight agronomic parameters were subjected to a grey correlation analysis and
Pearson correlation analysis (n = 70) with the oleic acid content in rapeseed, and the
results are shown in Figure 4. From Figure 4a, the grey correlation coefficients of the
eight agronomic parameters with the oleic acid content in rapeseed were in the range of
0.705–0.963, among which the correlation coefficients of five parameters, including OL,
Chl, LI, the SPAD value, SP, and SS, were all greater than 0.8, indicating that these five
parameters had a good correlation with the oleic acid content in rapeseed, especially the
correlation between the oleic acid content in leaves and the oleic acid content in rapeseed,
which was the highest, with a grey correlation coefficient of 0.963. As shown in Figure 4b,
eight agronomic parameters also had a good correlation with the oleic acid content in
rapeseed, with their correlation coefficients ranging from 0.843 to 0.987. The correlation
coefficients between the eight agronomic parameters and the content of the oleic acid
in rapeseed were as follows: OL > ORD > Chl > LO > LI > SPAD value > SP > SS. The
correlation coefficient of the oleic acid content in leaves was the strongest, reaching 0.987.
In conclusion, although the correlation coefficients between the two correlation analysis
methods and the oleic acid content in rapeseed were slightly different, the correlation
between the oleic acid content in leaves was the strongest. Therefore, the oleic acid content
in leaves was selected as a sensitive agronomic parameter to predict the oleic acid content
in rapeseed for subsequent analyses.
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Figure 4. Correlation analysis of agronomic parameters in leaves with oleic acid content in rapeseed:
(a) grey correlation coefficient; (b) correlation coefficient. chlorophyll content (Chl), linoleic acid (LI),
linolenic acid (LO), oleic acid desaturation rate (ODR), oleic acid (OL), soluble protein content (SP),
relative chlorophyll content (SPAD), sugar content (SS) and grain oleic acid content (GOAC). The
deeper the green, the stronger the correlation.

3.4. Correlation Analysis between Spectral Reflectance and Oleic Acid Content in Leaves

A Pearson correlation analysis (n = 70) was performed between the original spectral
reflectance and the spectral reflectance obtained under different pretreatment methods
and the oleic acid content in leaves, and the results are shown in Table 1. As shown in
Figure 5, the region where p-values < 0.01 contains the most wavelengths in Figure 5c.
Therefore, it encompasses lots of valuable spectral information. In Figure 5a,b,f, the three
spectral reflectance curves were consistent with the curve of the correlation coefficient of
the oleic acid content in rapeseed, showing a trend of “decreasing-rising-decreasing”. It
also reflects a relatively small disparity in the spectral information content, and the region
with p-values < 0.01 contains relatively fewer wavelengths.
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Table 1. The Pearson correlation analysis results between pretreatment of spectral reflectance and
oleic acid content in leaves.

Data Set rmax
Wavelength

of rmax
rmin

Wavelength
of rmin

Number of
Wavelength
with p-Value

< 0.05

Number of
Wavelength
with p-Value

< 0.01

Original
spectrum 0.78 401 nm −0.38 822 nm 67 348

SG 0.78 401 nm −0.38 823 nm 65 348
SNV 0.94 996 nm 0.02 668 nm 13 560
MSC 0.75 401 nm −0.77 638 nm 62 383
FD 0.77 952 nm −0.67 500 nm 99 252
WT 0.77 401 nm −0.38 815 nm 76 346

S−G smoothing (SG), standard normal variate (SNV), multiple scattering correction (MSC), first-order derivative
transform (FD), and wavelet transform (WT).
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Figure 5. Correlation coefficients of spectral reflectance and oleic acid content in leaves under different
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In conclusion, implementing feature selection after spectral transformation was achieved
through the analysis method of judging the p-value in the Pearson correlation analysis.
Therefore, estimation models for the oleic acid content in leaves were constructed based on
the spectral reflectance obtained after the change in SNV.
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3.5. Construction and Verification of the Oleic Acid Content in Rapeseed Prediction Model Based
on the Oleic Acid Content in Leaves

The random stratified sampling method was used to divide the oleic acid content in
rapeseed into the training set and the testing set according to the ratio of 2:1. The results
are shown in Table 2. As shown in Table 2, in the training set, the oleic acid content in
rapeseed ranged from 80.94 to 87.52, with an average content of 84.38 ± 1.18. In the testing
set, the content of oleic acid in rapeseed ranged from 82.02 to 86.61, and the average content
was 84.70 ± 1.13. The oleic acid range of the testing set samples was within the oleic acid
content of the training set samples, indicating that the test set samples can be used for
the external verification of the model’s accuracy. The constructed prediction expression
of the oleic acid content in rapeseed was y = 1.83x + 75.26 (y is the oleic acid content in
rapeseed, and x is the oleic acid content in leaves). The training set’s R2, RMSE, and RPD
were 0.98, 0.17%, and 7.05, respectively. External independent samples were used to verify
the accuracy of the model, and the results are shown in Figure 6. As shown in Figure 6,
the testing set’s R2, RMSE, and RPD are 0.96, 0.23%, and 4.86, respectively. The good fit
between the observed and predicted values indicate that the model could achieve a better
estimation of the kernel oleic acid content.

Table 2. Classification of the training set and testing set for oleic acid content in rapeseed.

Sample Set n Max. Min. Mean SD CV

Training set 46 87.52 80.94 84.38 1.18 1.39
Testing set 24 86.61 82.02 84.70 1.13 1.34
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3.6. Construction and Verification of the Oleic Acid Content in the Leaf Estimation Model Based on
Spectral Characteristic Bands
3.6.1. Sample Division

The SPXY algorithm was used to divide the training set (including the training set and
the validation set) and the testing set, in which the ratio of the training set, the validation
set, and the testing set was 2:1:1. The training set is employed to train the model using a
5-fold cross validation approach, and the validation set is used for tuning hyperparameters,
while the testing set is solely utilized for evaluating the model. The sample division results
of the oleic acid content in leaves are shown in Table 3. The oleic acid content in leaves
in the training set ranged from 3.41 to 6.59, with an average content of 5.11 ± 0.72. In the
testing set, the oleic acid content in leaves ranged from 4.43 to 5.72, and the average content
was 4.98 ± 0.43. The oleic acid range of the testing set samples was within the oleic acid
content of the training set samples, indicating that the testing set samples can be used for
the external verification of the model’s accuracy. At the same time, the variation coefficients
of the training set and verification set were 14.0 and 8.64, respectively, which were both
large, indicating that different breeding materials with a high oleic acid content had a great
effect on the oleic acid content of oilseed rape at the 5~6 leaf stage and were suitable for
spectral estimation.

Table 3. Classification of the training set and testing set for oleic acid content in leaves.

Sample Set n Max. Min. Mean SD CV

Training set 52 6.59 3.41 5.11 0.72 14.0
Testing set 18 5.72 4.43 4.98 0.43 8.64

3.6.2. Independent Model

The 560 characteristic wavelengths that were significantly correlated with the oleic
acid content in leaves obtained from the above analysis were used to construct the spectral
estimation model of the oleic acid content in leaves. The MLR, RF, SVR, KNN, RR, and
CatBoost regression algorithms were used to construct independent prediction models,
and the results are shown in Figures 7 and 8, and these hyperparameter settings in Table 4.
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Table 4. Hyperparameter settings for machine learning algorithms.

Algorithm Hyperparameters

MLR Normalize = zscore, polynomial_degree = 3
RF n_estimators = 100, max_features = 4, max_depth = 3

SVR Kernel = rbf, C = 9.251, γ = scale
KNN K = 5, weights = uniform, leaf_size = 30, p = 2, metric = minkowski

RR k = 0.001
CatBoost n_estimators = 1000, learning_rate = 0.024, max_depth = 6

multiple linear regression (MLR), random forest (RF), support vector regression (SVR), k-nearest neighbors (KNN)
and ridge regression (RR).

Figure 7 is the residual diagram of each model sample. The horizontal coordinate
of each diagram is the model’s predicted value of the oleic acid content in leaves, and
the vertical coordinate is the predicted error of the oleic acid content in leaves, namely,
the residual. Since the residual diagram can intuitively grasp the error distribution of
each sample, it can be used to evaluate the quality of the model. Except for the K-nearest
neighbour regression model, the residuals of the other models were mostly randomly
distributed near the centreline and were relatively concentrated. The R2 of each model
training set was between 0.755 and 0.862, and the R2 of the internal cross-validation was
between 0.767 and 0.888. Eighteen external independent samples were used to test the
accuracy and stability of the model. The R2 of each model testing set was between 0.64 and
0.74, the RMSE was between 0.21% and 0.25%, and the RPD was between 1.71 and 2.01.
The K-nearest neighbour model had the worst performance. Although its RPD was greater
than 1.4, the R2 of the testing set was significantly lower than that of the training set and
the verification set, indicating that the model was overfitted and was not suitable for the
quantitative estimation of the oleic acid content in leaves. The SVR model showed the best
performance, and its RPD was greater than 2.0, indicating that the model had an excellent
predictive ability for the oleic acid content in leaves.
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3.6.3. Blending Model

Through the analysis of the prediction effect of the above six independent models on
the oleic acid content in leaves, it was found that the prediction effect of each independent
model was as follows: SVR > CatBoost > RF > RR > KNN > MLR. Therefore, the top two
and top three models were selected to construct the blended integrated learning model,
and the results are shown in Figure 9. From Figure 9a,c, it can be seen that the training
set’s R2 of the Blending Top 2 model was 0.804, and the internal cross-verification’s R2 was
0.855. The residual distribution of the Blending Top 2 model was relatively concentrated,
being roughly distributed between −0.10 and 0.10. The training set’s R2 of the Blending
Top 3 model was 0.860, the internal cross-validation’s R2 was 0.898, and the residual’s R2

was roughly distributed at approximately 0. This indicates that the predicted value of
the oleic acid content in the leaves of the model was close to the measured value, and the
prediction effect was good. To further evaluate the accuracy and robustness of the model,
18 external independent samples were used for external tests. As shown in Figure 9b,d,
the testing set’s R2 and the RMSE of the two integrated models were both 0.73 and 0.22%,
and the RPD was 1.99 and 1.96, respectively. Although the determination coefficients were
decreased compared with the training set, the RPD value was still close to 2.0, indicating
that both models can still achieve a better estimation of the oleic acid content in leaves.
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3.7. Construction and Verification of the Prediction Model Based on “Spectral Characteristic
Band—Leaf Oleic Acid Content—Oleic Acid Content in Rapeseed”

It can be seen from the above that the spectral estimation model of the oleic acid
content in leaves treated with SNV−SVR has the highest accuracy. Therefore, according
to the technical route of “spectral characteristic band—oleic acid content in leaves—oleic
acid content in seeds”, the prediction model of the oleic acid content in seeds based on
the hyperspectral characteristics of leaves at the 5~6 leaf stage of high oleic acid rapeseed
was constructed with the oleic acid content in leaves as the intermediate variable. The
output value of the spectral estimation model of the leaf oleic acid content was put into the
prediction model of the seed oleic acid content based on the leaf oleic acid content as the
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input value, and the model’s prediction result based on “spectral characteristic band—leaf
oleic acid content—seed oleic acid content” was finally obtained (Figure 10). As shown in
Figure 10, the predicted R2 was 0.71, the RMSE was 0.54%, and the RPD was 1.88 (greater
than 1.4). The measured values fit well with the predicted values, indicating that the seed
oleic acid content transfer model constructed based on the spectral estimation of the leaf
oleic acid content has a good prediction effect and can realize the quantitative estimation of
the seed oleic acid content.
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4. Discussion
4.1. Oleic Acid Content in Leaves Can Be Used as a Sensitive Parameter for Spectral Prediction of
Oleic Acid Content in Rapeseed

In this study, the grey correlation analysis and Pearson correlation analysis were used
to analyse the correlation between eight agronomic parameters and the oleic acid content
in rapeseed. Both methods showed that the correlation between the oleic acid content in
leaves and the oleic acid content in rapeseed was the highest. Therefore, the estimation
model of the oleic acid content in leaves was further constructed based on the spectral
characteristic band. It was concluded that the estimation model constructed by the SVR
algorithm had the best effect, and the testing set’s R2 was 0.74, the RMSE was 0.21%, and
the RPD was 2.01. Finally, with the oleic acid content in leaves as the link point, the spectral
prediction transfer model of the oleic acid content in rapeseed was further constructed,
and it was found that the prediction’s R2 was 0.71, the RMSE was 0.54%, and the RPD was
1.88, which could still achieve a good estimation of the oleic acid content in rapeseed. The
content of the oleic acid in leaves can be used as a sensitive agronomic parameter for the
prediction of the oleic acid spectra in rapeseed. This conclusion is similar to the research
results of Schierholt et al. [17] and Gao et al. [18]; that is, in breeding, materials with a
high oleic acid content in seeds can be predicted and screened by detecting the oleic acid
content in vegetative organs. However, this study only discussed the effect of the most
sensitive parameter as the intermediate variable in constructing the prediction model and
did not consider the case in which multiple agronomic parameters were used to estimate
the oleic acid content in rapeseed. Therefore, further research can be carried out in terms
of increasing the number of agronomic parameters in modelling. In addition, LiDAR or
synthetic aperture radar technology can be integrated to build a multisource heterogeneous
fusion model to compensate for the failure to obtain spectral data due to continuous rain at
the 5–6 leaf stage of rape in southern China.
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4.2. Mechanism of Spectral Response of Leaves of Materials with Different Oleic Acid Contents

In this study, spectral reflectance data of the 5~6 leaf stage of 70 high oleic acid
oilseed rape materials with different oleic acid contents, which, of the offspring induced
by radiation, were obtained, and the spectral signals were enhanced by different spectral
transformation forms. It was found that the spectral reflectance of materials with different
oleic acid contents was significantly different in the green band and near-infrared band,
indicating that the change in oleic acid content was the root cause of the spectral difference.
Therefore, it may be inferred that a gene controlling oleic acid synthesis and accumulation
is changed due to radiation mutagenesis, and then its spectral response is produced.
According to Miller et al. [19] and Kinney and Knowlton et al. [20], fad2 gene mutation
could reduce the content of linoleic acid and significantly increase the content of oleic
acid. At the same time, because the dominant precursor of woody organisms is linoleic
acid [21], the decrease in linoleic acid will lead to a decrease in woody organisms and then
affect the structure of the outer layer of wax embedded in the keratinized chimera [22],
resulting in a change in the light reflection on the surface and finally a change in spectral
reflectance. However, only the possibility of the spectral response of oleic acid was analysed
in this study, and no specific experiments were carried out to verify it. Therefore, the
microscopic mechanism of the spectral response of the oleic acid in oilseed rape remains to
be further explored.

4.3. The Effect of the Indirect Prediction Model Is Slightly Worse Than that of the Direct
Estimation Model

In this study, a one-dimensional linear direct estimation model for the oleic acid
content in rapeseed was constructed based on the oleic acid content in leaves. External
independent samples were used to test the accuracy of the model, and it was found that the
testing sets R2, RMSE, and RPD were 0.96, 0.23%, and 4.86, respectively, which had a good
estimation effect. Then, with the oleic acid content in leaves as the intermediate variable, an
indirect prediction model for the oleic acid content in rapeseed was constructed according
to the technical route of “spectral characteristic band—oleic acid content in leaves—oleic
acid content in rapeseed”, and the prediction’s R2 was 0.71, the RMSE was 0.54%, and the
RPD was 1.88. The effect of the indirect prediction model is slightly worse than that of the
direct estimation model. This may be due to error propagation in the model. Although
the direct estimation model has high accuracy, it relies on a large number of manually
measured samples, which has low efficiency, a high cost, and is harmful to crops. Although
the accuracy of the indirect spectral prediction is reduced, it can still reach the accuracy
of quantitative estimation, and hyperspectral technology can achieve fast, efficient, and
non-destructive oleic acid content prediction, which is of great significance for assisting the
rapid screening of the oleic acid traits of high-oleic-acid rape-breeding materials. Therefore,
how to further improve the accuracy and robustness of the spectral prediction of oleic acid
content should be the focus of future research.

5. Conclusions

In this study, the correlation between the oleic acid content in rapeseed and eight
agronomic parameters, such as SS, SP, and Chl, was analysed by the grey correlation
analysis and Pearson correlation analysis. It was concluded that the correlation between
the oleic acid content in leaves and the oleic acid content in rapeseed was the highest,
and this could be used as a sensitive agronomic parameter for the estimation of the oleic
acid content in rapeseed. Then, a linear estimation model of the oleic acid content in
rapeseed based on the oleic acid content in leaves was constructed, which was verified by
external independent samples. The model’s R2, RMSE, and RPD were 0.96, 0.23%, and
4.86, respectively, which indicates a good estimation effect. On this basis, the estimation
effect of different model algorithms on the oleic acid content in leaves was compared
and analysed, and it was found that the SVR estimation model based on the feature
band extracted after the SNV transformation had the best effect. Finally, with the oleic
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acid content in leaves as the intermediate variable, an indirect spectral prediction model
of the oleic acid content in rapeseed was established, with an R2 of 0.71, an RMSE of
0.54%, and an RPD of 1.88, which could realize the spectral quantitative estimation of
the oleic acid content in rapeseed. Overall, this study identified the oleic acid content
in leaves as a sensitive agronomic parameter for the spectral prediction of the oleic acid
content in rapeseed, verified by the feasibility of the indirect prediction idea of “spectral
characteristic band—oleic acid content in leaves—oleic acid content in rapeseed” and
enhanced by the agronomic interpretation of the spectral prediction of oleic acid content.
This study primarily focused on the interpretability of utilizing spectral technology for the
early screening of high-oleic-acid rapeseed-breeding materials. Consequently, varieties or
materials with a low oleic acid content and a medium oleic acid content were not included
in the scope of this study. Different planting regions, cultivation practices, environmental
conditions, and varieties of rapeseed may exhibit significant variations. The broader
applicability of methods for predicting rapeseeds’ oleic acid content could be explored by
increasing the sample size, encompassing a wider range of diversity types, and assimilating
multimodal data.
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