Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Environment
2.2. Growth Measurement and Root Extraction Methods
2.3. Leaf Stomatal Measurement
2.4. Three-Dimensional Root Imaging and Root Volume and Surface Measurement
2.5. Leaf Photosynthetic Rate Measurement
2.6. Statistical Analysis
3. Results
3.1. Growing Environment
3.2. Growth
3.3. Leaf Stomata
3.4. Three-Dimensional Root Imaging, Root Volume, and Surface Area
3.5. Leaf Photosynthetic Rate
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motamayor, J.C.; Risterucci, A.M.; Lopez, P.A.; Ortiz, C.F.; Moreno, A.; Lanaud, C. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity 2002, 89, 380–386. [Google Scholar] [CrossRef]
- Cheesman, E. Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop. Agric. 1944, 21, 144–159. [Google Scholar]
- Bertolde, F.Z.; Almeida, A.A.F.; Almeida, A.F.; Pirovani, C.P.; Pirovani, C.P.; Gomes, F.P.; Ahnert, D.; Baligar, V.C.; Valle, R.R. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 2012, 50, 447–457. [Google Scholar] [CrossRef]
- International Cocoa Organization. ICCO Quarterly Bulletin of Cocoa Statistics, XLIX, 1, Cocoa Year 2022/23; International Cocoa Organization: Abidjan, Côte d’Ivoire, 2023. [Google Scholar]
- International Cocoa Organization. ICCO Quarterly Bulletin of Cocoa Statistics, XLV, 1, Cocoa Year 2018/19; International Cocoa Organization: Abidjan, Côte d’Ivoire, 2019. [Google Scholar]
- World Cocoa Foundation. Cocoa & Forests Initiative Annual Report Ghana 2021; World Cocoa Foundation: Washington, DC, USA, 2021. [Google Scholar]
- Wood, G.A.R.; Lass, R.A. Cocoa, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2001; ISBN 978-0-470-69898-3. [Google Scholar]
- Famuwagun, I.B.; Agele, S.O. Cacao growth and development under different nursery and field conditions. In Theobroma Cacao, Deploying Science for Sustainability of Global Cocoa Economy; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Almeida, A.A.F.; Valle, R.R. Ecophysiology of the cacao tree. Braz. J. Plant Physiol. 2008, 19, 425–448. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Leffelaar, P.A.; Gerritsma, W.; Mommer, L.; Anten, N.P.R. A physiological production model for cocoa (Theobroma cacao). Agric. Syst. 2005, 84, 195–225. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, V.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, NY, USA, 2013; pp. 1–30. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Biol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Schjoerring, J.K. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agric. Ecosyst. Environ. 2013, 178, 57–63. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica 2018, 56, 911–920. [Google Scholar] [CrossRef]
- Baligar, V.C.; Bunce, J.A.; Machado, R.C.R.; Elson, M.K. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 2008, 46, 216–221. [Google Scholar] [CrossRef]
- Lahive, F.; Handley, L.R.; Hadley, P. Climate Change Impacts on Cacao: Genotypic Variation in Responses of Mature Cacao to Elevated CO2 and Water Deficit. Agronomy 2021, 11, 818. [Google Scholar] [CrossRef]
- De Kroon, H.; Visser, E.J. Root Ecology; Springer Science & Business Media: Berlin, Germany, 2003; p. 168. [Google Scholar]
- Weaver, J.E.; Jean, F.C.; Crist, J.W. Development and Activities of Roots of Crop Plants: A Study in Crop Ecology; No. 316; Carnegie Institution of Washington: Washington, DC, USA, 1922. [Google Scholar]
- Kummerow, J.; Kummerow, M.; Souza, S.W. Fine-root growth dynamics in cacao (Theobroma cacao). Plant Soil 1982, 65, 193–201. [Google Scholar] [CrossRef]
- Moser, G.; Leuschner, C.; Hertel, D.; Holsche, D.; Kohler, M.; Leitner, D.; Michalzik, B.; Prihastanti, E.; Tjitrosemito, S.; Schwendenmann, L. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor. Syst. 2010, 79, 171–187. [Google Scholar] [CrossRef]
- Nygren, P.; Leblanc, H.A.; Lu, M.; Cristino, A.; Gómez, L. Distribution of coarse and fine roots of Theobroma cacao and shade tree Inga edulis in a cocoa plantation. Ann. For. Sci. 2013, 70, 229–239. [Google Scholar] [CrossRef]
- Abe, J.; Morita, S. Growth direction of nodal roots in rice: Its variation and contribution to root system formation. Plant Soil 1994, 165, 333–337. [Google Scholar] [CrossRef]
- Morita, S.; Toyota, M. Root system morphology of pepper and melon at harvest stage grown with drip irrigation under dessert conditions in Baja California Mexico. Jpn. J. Crop Sci. 1998, 67, 353–357. [Google Scholar] [CrossRef]
- Nakanishi, T.; Matsubayashi, M. Nondestructive water imaging by neutron beam analysis in living plants. J. Plant Physiol. 1997, 151, 442–445. [Google Scholar] [CrossRef]
- Arsenault, J.L.; Pouleur, S.; Messier, C.; Guay, R. WinRhizo, a root measuring system with a unique overlap correction method. Hortic. Sci. 1995, 30, 906. [Google Scholar]
- Mooney, S.J.; Pridmore, T.P.; Helliwell, J.; Bennett, M.J. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant Soil 2012, 352, 1–22. [Google Scholar] [CrossRef]
- Pfeifer, J.; Kirchgessner, N.; Colombi, T.; Walter, A. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography. Plant Methods 2015, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Baligar, V.C.; Elson, M.K.; Almeida, A.A.F.; de Araujo, Q.R.; Ahnert, D.; He, Z. The impact of carbon dioxide concentrations and low to adequate photosynthetic photon flux density on growth, physiology and nutrient use efficiency of juvenile cacao genotypes. Agronomy 2021, 11, 397. [Google Scholar] [CrossRef]
- Santos, E.A.d.; Almeida, A.A.F.d.; Branco, M.C.d.S.; Santos, I.C.d.; Ahnert, D. Path analysis of phenotypic traits in young cacao plants under drought conditions. PLoS ONE 2018, 13, e0191847. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Balasimha, D.; Daniel, E.V.; Bhat, P.G. Influence of environmental factors on photosynthesis in cocoa trees. Agric. For. Meteorol. 1991, 55, 15–21. [Google Scholar] [CrossRef]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef]
- Salazar, J.C.S.; Melgarejo, L.M.; Casanoves, F.; Rienzo, J.A.D.; DaMatta, F.M.; Armas, C. Photosynthesis limitations in cacao leaves under different agroforestry systems in the Colombian Amazon. PLoS ONE 2018, 13, e0206149. [Google Scholar] [CrossRef]
- Plessis, A.d.; Broeckhoven, C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater. 2019, 85, 27–40. [Google Scholar] [CrossRef]
Items | Specifications |
---|---|
X-ray tube type | Open directional microfocus X-ray tube, equipped with 2 tubes |
Maximum voltage/Maximum power | 300 kV/500 W |
Geometrical magnification | 1.3× to 100× |
Minimum voxel size | 2 μm |
Minimum detection size | 4 μm |
Detector type | Dynamic 41|100, Flat panel detector, 410 × 410 mm, 4048 × 4048 pixels, pixel size 100 μm |
Focus–detector distance | 800 mm |
Maximum focus object distance | 600 mm |
Manipulation | Granite-based precision 4-axis manipulator |
Rotatable angle | 0–360° |
Equipment | Phoenix V|tome|x M300 |
Software | Phoenix datos|x |
Items | Conditions |
---|---|
Voxel size | 0.0673 mm |
Number of pictures | 2700–3600 sheets |
Exposure time | 334 ms |
Voltage | 100 kV |
Power | 150 μA |
Temperature (°C) | Relative Humidity (%) | CO2 Concentration (μmol mol−1) | ||
---|---|---|---|---|
Ambient CO2 | Daytime (06:00–17:59) | 31.0 ± 3.3 | 57.6 ± 12.7 | 512.5 ± 112.6 |
Nighttime (18:00–05:59) | 25.0 ± 2.9 | 73.9 ± 7.1 | 513.3 ± 83.5 | |
Elevated CO2 | Daytime (06:00–17:59) | 30.6 ± 3.3 | 58.0 ± 12.8 | 801.6 ± 178.8 |
Nighttime (18:00–05:59) | 24.7 ± 2.9 | 75.5 ± 7.3 | 517.1 ± 87.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishida, A.; Ogiwara, I.; Suzuki, S. Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy 2023, 13, 2264. https://doi.org/10.3390/agronomy13092264
Ishida A, Ogiwara I, Suzuki S. Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy. 2023; 13(9):2264. https://doi.org/10.3390/agronomy13092264
Chicago/Turabian StyleIshida, Akiko, Isao Ogiwara, and Sakae Suzuki. 2023. "Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings" Agronomy 13, no. 9: 2264. https://doi.org/10.3390/agronomy13092264
APA StyleIshida, A., Ogiwara, I., & Suzuki, S. (2023). Elevated CO2 Influences the Growth, Root Morphology, and Leaf Photosynthesis of Cacao (Theobroma cacao L.) Seedlings. Agronomy, 13(9), 2264. https://doi.org/10.3390/agronomy13092264