Genetic Dissection of Bentazone Tolerance Loci in Cultivated Soybeans: A Genome-Wide Association Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and the Determination of Bentazone Tolerance
2.2. Publicly Available Resequencing Data of 418 Cultivated Soybean Accessions
2.3. GWAS
2.4. Statistical Analyses
3. Results
3.1. ANOVA for the Bentazone Reaction with Cultivated Soybean Accessions
3.2. Bentazone Reactions to 418 Cultivated Soybean Accessions
3.3. GWAS for Bentazone Reactions in Cultivated Soybeans
3.4. Putative Genes Predicted to Be Involved in the Bentazone Reaction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravelombola, W.S.; Qin, J.; Shi, A.; Nice, L.; Bao, Y.; Lorenz, A.; Chen, S. Genome-wide association study and genomic selection for tolerance of soybean biomass to soybean cyst nematode infestation. PLoS ONE 2020, 15, e0235089. [Google Scholar] [CrossRef]
- Satpute, G.K.; Ratnaparkhe, M.B.; Chandra, S.; Kamble, V.G.; Kavishwar, R.; Singh, A.K.; Nguyen, H.T. Breeding and Molecular Approaches for Evolving Drought-Tolerant Soybeans. In Plant Stress Biology; Giri, B., Sharma, M.P., Eds.; Springer: Berlin, Germany, 2020; pp. 83–130. [Google Scholar] [CrossRef]
- Chaudhari, D.D.; Patel, B.D.; Patel, V.J.; Patel, H.K. Soybean yield and economics as influenced by weed management practices and its carryover effect on follow-up crops. Int. J. Chem. Stud. 2020, 8, 326–329. [Google Scholar] [CrossRef]
- Dykun, A.; Zherebko, V.; Dykun, M. The effectiveness of herbicides in soybean cultivation. Žemės Ūkio Moksl. 2020, 27, 115–124. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.A.; Burke, I.C.; Everman, W.J.; VanGessel, M.J.; Davis, V.M.; Sikkema, P.H. Perspectives on potential soybean yield losses from weeds in North America. Weed Technol. 2017, 31, 148–154. [Google Scholar] [CrossRef]
- Song, J.S.; Chung, J.H.; Lee, K.J.; Kwon, J.; Kim, J.W.; Im, J.H.; Kim, D.S. Herbicide-based weed management for soybean production in the Far Eastern region of Russia. Agronomy 2020, 10, 1823. [Google Scholar] [CrossRef]
- Fartyal, D.; Agarwal, A.; James, D.; Borphukan, B.; Ram, B.; Sheri, V.; Reddy, M.K. Developing dual herbicide-tolerant transgenic rice plants for sustainable weed management. Sci. Rep. 2018, 8, 11598. [Google Scholar] [CrossRef]
- Businesswire. Available online: https://www.businesswire.com/ (accessed on 1 March 2023).
- Gianessi, L.P.; Reigner, N.P. The value of herbicides in US crop production. Weed Technol. 2007, 21, 559–566. [Google Scholar] [CrossRef]
- Hull, H.M. Herbicide Handbook of the Weed Society of America; Humphrey Press: Geneva, NY, USA, 1976; 293p. [Google Scholar]
- Shaner, D.F.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef]
- Milne, G.W.A. (Ed.) Pesticides: An International Guide to 1800 Pest Control Chemicals, 2nd ed.; Ashgate Publishing Ltd.: Hampshire, UK, 2004; ISBN 978-0-471-72334-9. [Google Scholar]
- Wagner, G.; Nadasy, E. Effect of pre-emergence herbicides on growth parameters of green pea. Commun. Agric. Appl. Biol. Sci. 2006, 71, 809–813. [Google Scholar]
- Byker, H.P.; Van Wely, A.C.; Soltani, N.; Lawton, M.B.; Robinson, D.E.; Sikkema, P.H. Single and sequential applications of dicamba for the control of glyphosate-resistant common ragweed in glyphosate-and dicamba-resistant soybean. Can. J. Plant Sci. 2017, 98, 552–556. [Google Scholar] [CrossRef]
- Ali, L.; Jo, H.; Song, J.T.; Lee, J.D. The prospect of bentazone-tolerant soybean for conventional cultivation. Agronomy 2020, 10, 1650. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Feist, D.; Eskelsen, S.; Scott, J.E.; Knezevic, S.Z. Weed control in soybean with preemergence and postemergence applied herbicides. Crop Forage Turfgrass Manag. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Nosratti, I.; Mahdavi-Rad, S.; Heidari, H.; Saeidi, M. Differential tolerance of pumpkin species to bentazon, metribuzin, trifluralin, and oxyfluorfen. Planta Daninha 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Guo, J.; Song, X.; Sun, S.; Shao, B.; Tao, B.; Zhang, L. RNA-Seq transcriptome analysis of potato with differential tolerance to bentazone herbicide. Agronomy 2021, 11, 897. [Google Scholar] [CrossRef]
- Han, Y.C.; Wang, C.Y. Physiological basis of bentazon tolerance in rice (Oryza sativa L.) lines. Weed Biol. Manag. 2002, 2, 186–193. [Google Scholar] [CrossRef]
- Zhu, J.; Patzoldt, W.L.; Radwan, O.; Tranel, P.J.; Clough, S.J. Effects of Photosystem-II-Interfering Herbicides Atrazine and Bentazon on the Soybean Transcriptome. Plant Genome J. 2009, 2, 191–205. [Google Scholar] [CrossRef]
- Nohatto, M.A.; Agostinetto, D.; Langaro, A.C.; Oliveira, C.D.; Ruchel, Q. Antioxidant activity of rice plants sprayed with herbicides. Pesqui. Agropecu. Trop. 2016, 46, 28–34. [Google Scholar] [CrossRef]
- Yuan, J.S.; Tranel, P.J.; Stewart, C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007, 12, 6–13. [Google Scholar] [CrossRef]
- Franco-Ortega, S.; Goldberg-Cavalleri, A.; Walker, A.; Brazier-Hicks, M.; Onkokesung, N.; Edwards, R. Non-target site herbicide resistance is conferred by two distinct mechanisms in black-grass (Alopecurus myosuroides). Front. Plant Sci. 2021, 12, 636652. [Google Scholar] [CrossRef]
- Yang, Q.; Deng, W.; Li, X.; Yu, Q.; Bai, L.; Zheng, M. Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.). BMC Genom. 2016, 17, 551. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Wu, X.; Zhu, L. A bentazon and sulfonylurea sensitive mutant: Breeding, genetics and potential application in seed production of hybrid rice. Theor. Appl. Genet. 2002, 105, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, Q.; Chen, H.; Pan, G.; Xiao, S.; Dai, Y.; Liu, K. Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Mol. Breed. 2007, 19, 59–68. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Wang, F.; Wang, Y.; Liu, K. Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobacco. Plant Cell Tissue Organ Cult. 2012, 109, 419–428. [Google Scholar] [CrossRef]
- Kato, S.; Yokota, Y.; Suzuki, R.; Fujisawa, Y.; Sayama, T.; Kaga, A.; Ishimoto, M. Identification of a cytochrome P450 hydroxylase, CYP81E22, as a causative gene for the high sensitivity of soybean to herbicide bentazon. Theor. Appl. Genet. 2020, 133, 2105–2115. [Google Scholar] [CrossRef]
- Wolff, D.W.; Collins, W.W.; Monaco, T.J. Inheritance of tolerance to the herbicide bentazon in peppers (Capsicum annuum L.). J. Am. Soc. Hortic. Sci. 1992, 117, 985–990. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Javid, M.; Noy, D.; Sudheesh, S.; Forster, J.W.; Kaur, S. Identification of QTLs associated with metribuzin tolerance in field pea (Pisum sativum L.). Euphytica 2017, 213, 91. [Google Scholar] [CrossRef]
- Mian, M.A.R.; Shipe, E.R.; Alvernaz, J.; Mueller, J.D.; Ashley, D.A.; Boerma, H.R. QTLs associated with chlorimuron ethyl sensitivity in soybean: Effects on seed yield and related traits. Theoret. Appl. Genet. 1997, 94, 971–974. [Google Scholar] [CrossRef]
- Pandian, B.A.; Sathishraj, R.; Djanaguiraman, M.; Prasad, P.V.; Jugulam, M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants 2020, 9, 454. [Google Scholar] [CrossRef]
- Bhoite, R.; Si, P.; Liu, H.; Xu, L.; Siddique, K.H.; Yan, G. Inheritance of pre-emergent metribuzin tolerance and putative gene discovery through high-throughput SNP array in wheat (Triticum aestivum L.). BMC Plant Biol. 2019, 19, 457. [Google Scholar] [CrossRef]
- Le Nguyen, K.; Grondin, A.; Courtois, B.; Gantet, P. Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci. 2019, 24, 263–274. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Roorkiwal, M.; Barmukh, R.; Cowling, W.A.; Chitikineni, A.; Siddique, K.H. Fast-forward breeding for a food-secure world. Trends Genet. 2021, 37, 1124–1136. [Google Scholar] [CrossRef]
- Bhat, J.A.; Yu, D. High-throughput NGS-based genotyping and phenotyping: Role in genomics-assisted breeding for soybean improvement. Legum. Sci. 2021, 3, e81. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Tian, Z. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.; Kim, K.S.; Jeong, S.; Kim, J.Y.; Park, S.K.; Lee, J.S.; Jeong, S.C.; Kang, S.T.; Ha, B.K.; Kim, D.Y.; et al. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 2019, 14, e0224074. [Google Scholar] [CrossRef] [PubMed]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. 1971, 1, 929–931. [Google Scholar] [CrossRef]
- Ali, L.; Jo, H.; Song, J.T.; Lee, J.D. Evaluation of bentazone reaction by growth stage and bentazone dose across soybean genotypes. Plant Breed. Biotechnol. 2021, 9, 331–344. [Google Scholar] [CrossRef]
- Ali, L.; Jo, H.; Choi, S.M.; Kim, Y.; Song, J.T.; Lee, J.D. Comparison of hyperspectral imagery and physiological characteristics of bentazone-tolerant and -susceptible soybean cultivars. Agronomy 2022, 12, 2241. [Google Scholar] [CrossRef]
- Kim, M.S.; Lozano, R.; Kim, J.H.; Bae, D.N.; Kim, S.T.; Park, J.H.; Choi, M.S.; Kim, J.; Ok, H.C.; Park, S.K.; et al. The patterns of deleterious mutations during the domestication of soybean. Nat. Commun. 2021, 12, 97. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Jackson, S.A. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh Bi, I.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Oseland, E.; Shannon, K.; Zhou, J.; Fritschi, F.; Bish, M.D.; Bradley, K.W. Evaluating the spectral response and yield of soybean following exposure to sublethal rates of 2, 4-d and dicamba at vegetative and reproductive growth stages. Remote Sens. 2021, 13, 3682. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Vieira, F.G.; Xiao, Y.; Li, Z.; Wang, J.; Chu, C. The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication. Mol. Plant 2016, 9, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Gahlaut, V.; Meher, P.K.; Mir, R.R.; Jaiswal, J.P.; Rao, A.R.; Gupta, P.K. Genome-wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PLoS ONE 2016, 11, e0159343. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Li, Z.; Lu, Y.; Li, C.; Gong, S.; Yan, S.; Zhang, Z. Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci. Rep. 2017, 7, 10840. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, C.; Segura, V.; Bauchet, G.; Stevens, R.; Do, P.T.; Nikoloski, Z.; Causse, M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014, 165, 1120–1132. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Gou, Z.; Zhang, Y.; Wang, X.; Ren, H.; Qiu, L. Genome-wide association study of soybean seed germination under drought stress. Mol. Genet. Genom. 2020, 295, 661–673. [Google Scholar] [CrossRef]
- Kaler, A.S.; Dhanapal, A.P.; Ray, J.D.; King, C.A.; Fritschi, F.B.; Purcell, L.C. Genome-wide association mapping of carbon isotope and oxygen isotope ratios in diverse soybean genotypes. Crop Sci. 2017, 57, 3085–3100. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Chen, X.; Guo, Y.; Liang, W.; Wang, H. Genome-wide identification of soybean ABC transporters relate to aluminum toxicity. Int. J. Mol. Sci. 2021, 22, 6556. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Choi, J.; Rabbee, M.F.; Baek, K.H. In silico genome-wide analysis of the ATP-binding cassette transporter gene family in soybean (Glycine max L.) and their expression profiling. Biomed Res. Int. 2019, 2019, 8150523. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yu, Q.; Wang, J.; Han, H.; Mao, L.; Nyporko, A.; Powles, S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2100136118. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Chen, Z.J.; Liu, J.; Nan, Z.; Yang, H. Genome-wide identification of Oryza sativa: A new insight for advanced analysis of ABC transporter genes associated with the degradation of four pesticides. Gene 2022, 834, 146613. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | Degree of Freedom | Sum of Square | Mean of Square | F-Value | p-Value |
---|---|---|---|---|---|
Year (Y) | 2 | 10.982 | 5.491 | 87.2 | <0.0001 |
Replication in Y | 3 | 0.001 | 0.003 | 9.5 | 0.0001 |
Genotype (G) | 417 | 776.784 | 1.862 | 5.0 | <0.0001 |
G × Y | 696 | 667.568 | 0.959 | 4.6 | <0.0001 |
Error | 2216 | 1517.100 | 0.680 |
Year | Mean | SD | CV | SK | KUR | Kolmogorov-Sminov |
---|---|---|---|---|---|---|
2019 | 2.54 | 0.87 | 34% | −0.187 | −0.638 | 0.23 ** |
2020 | 2.54 | 0.79 | 31% | 0.276 | −0.368 | 0.18 ** |
2021 | 2.71 | 0.67 | 25% | −0.136 | −0.094 | 0.30 ** |
Year | Chromosome | Position (Wm82.a2.v1) | −log10 (p) | Minor Allele Frequency | R2 of Model without SNP | R2 of Model with SNP | Allelic Effect |
---|---|---|---|---|---|---|---|
2019 | 20 | 3,180,608 | 5.0 | 0.26 | 0.007 | 0.072 | −1.073 |
2020 | 5 | 33,890,084 | 5.0 | 0.31 | 0.023 | 0.094 | −0.626 |
5 | 33,890,132 | 5.1 | 0.36 | 0.023 | 0.095 | 1.187 | |
6 | 45,537,285 | 5.2 | 0.32 | 0.023 | 0.097 | −1.191 | |
6 | 45,542,880 | 5.1 | 0.31 | 0.023 | 0.095 | −1.165 | |
2021 | 3 | 2,396,680 | 5.1 | 0.26 | 0.011 | 0.071 | 1.077 |
5 | 33,888,469 | 6.1 | 0.33 | 0.011 | 0.085 | 1.149 | |
5 | 33,889,712 | 6.5 | 0.33 | 0.011 | 0.091 | 1.196 | |
5 | 33,889,777 | 6.1 | 0.37 | 0.011 | 0.086 | −0.611 | |
5 | 33,890,196 | 5.7 | 0.33 | 0.011 | 0.080 | 1.122 | |
5 | 33,893,210 | 5.6 | 0.34 | 0.011 | 0.079 | 0.575 | |
5 | 33,897,411 | 6.0 | 0.37 | 0.011 | 0.083 | −0.599 | |
5 | 33,898,865 | 6.3 | 0.36 | 0.011 | 0.088 | −0.639 | |
5 | 33,906,810 | 6.1 | 0.37 | 0.011 | 0.085 | 0.604 | |
5 | 33,909,318 | 5.6 | 0.32 | 0.011 | 0.078 | 1.109 | |
5 | 33,910,238 | 5.7 | 0.34 | 0.011 | 0.079 | −0.598 | |
5 | 33,910,587 | 5.6 | 0.33 | 0.011 | 0.079 | −0.585 | |
5 | 33,911,240 | 5.7 | 0.37 | 0.011 | 0.080 | −0.587 | |
5 | 33,911,700 | 6.1 | 0.37 | 0.011 | 0.085 | −0.612 | |
5 | 33,911,822 | 5.9 | 0.33 | 0.011 | 0.083 | 0.597 | |
5 | 33,912,867 | 5.8 | 0.35 | 0.011 | 0.081 | 1.134 | |
5 | 33,913,504 | 5.7 | 0.18 | 0.011 | 0.080 | −1.082 | |
5 | 33,919,165 | 6.0 | 0.32 | 0.011 | 0.084 | 1.145 | |
5 | 33,919,559 | 6.0 | 0.32 | 0.011 | 0.083 | 1.147 | |
5 | 33,919,921 | 5.6 | 0.32 | 0.011 | 0.078 | −0.104 | |
5 | 33,920,300 | 6.3 | 0.32 | 0.011 | 0.088 | 1.198 | |
5 | 33,920,327 | 6.0 | 0.38 | 0.011 | 0.084 | −0.607 | |
5 | 33,920,665 | 5.5 | 0.32 | 0.011 | 0.077 | −0.568 | |
5 | 33,922,937 | 6.1 | 0.38 | 0.011 | 0.085 | −0.612 | |
5 | 33,923,052 | 5.6 | 0.32 | 0.011 | 0.078 | 0.579 | |
5 | 33,923,330 | 6.2 | 0.38 | 0.011 | 0.086 | −0.620 | |
5 | 33,923,680 | 5.2 | 0.32 | 0.011 | 0.072 | 1.061 | |
5 | 33,924,925 | 5.7 | 0.38 | 0.011 | 0.080 | −0.586 | |
5 | 33,925,495 | 5.1 | 0.35 | 0.011 | 0.072 | 1.051 | |
5 | 33,925,711 | 5.6 | 0.33 | 0.011 | 0.078 | 0.574 | |
5 | 33,927,103 | 5.7 | 0.32 | 0.011 | 0.080 | 0.796 | |
5 | 33,929,254 | 5.1 | 0.32 | 0.011 | 0.072 | −0.555 | |
5 | 33,931,369 | 5.1 | 0.35 | 0.011 | 0.072 | 1.065 | |
5 | 33,931,839 | 5.5 | 0.39 | 0.011 | 0.077 | 0.600 | |
5 | 33,932,264 | 5.2 | 0.32 | 0.011 | 0.073 | 0.558 | |
5 | 33,934,052 | 5.1 | 0.33 | 0.011 | 0.071 | 0.546 | |
13 | 30,701,036 | 5.1 | 0.21 | 0.011 | 0.072 | −0.678 |
Gene | Chromosome | Start Position (Wm82.a2.v1) | End Position (Wm82.a2.v1) | Predicted Protein (Pfam) |
---|---|---|---|---|
Glyma.05g145000 | 5 | 33,892,148 | 33,900,808 | ATP-binding cassette (ABC) transporter |
Glyma.05g145100 | 5 | 33,899,542 | 33,899,844 | Unknown |
Glyma.05g145200 | 5 | 33,913,231 | 33,916,617 | Ankyrin repeat family protein |
Glyma.05g145300 | 5 | 33,919,262 | 33,920,958 | Transmembrane amino acid transporter protein |
Glyma.05g145400 | 5 | 33,922,696 | 33,929,901 | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.; Ali, L.; Song, J.T.; Lee, J.-D. Genetic Dissection of Bentazone Tolerance Loci in Cultivated Soybeans: A Genome-Wide Association Study. Agronomy 2023, 13, 2345. https://doi.org/10.3390/agronomy13092345
Jo H, Ali L, Song JT, Lee J-D. Genetic Dissection of Bentazone Tolerance Loci in Cultivated Soybeans: A Genome-Wide Association Study. Agronomy. 2023; 13(9):2345. https://doi.org/10.3390/agronomy13092345
Chicago/Turabian StyleJo, Hyun, Liakat Ali, Jong Tae Song, and Jeong-Dong Lee. 2023. "Genetic Dissection of Bentazone Tolerance Loci in Cultivated Soybeans: A Genome-Wide Association Study" Agronomy 13, no. 9: 2345. https://doi.org/10.3390/agronomy13092345
APA StyleJo, H., Ali, L., Song, J. T., & Lee, J. -D. (2023). Genetic Dissection of Bentazone Tolerance Loci in Cultivated Soybeans: A Genome-Wide Association Study. Agronomy, 13(9), 2345. https://doi.org/10.3390/agronomy13092345