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Abstract: To optimise sector design in drip irrigation systems, a two-stage procedure is presented
and applied in a commercial vineyard plot. Soil apparent electrical conductivity (ECa) mapping
and soil purposive sampling are the two stages on which the proposal is based. Briefly, ECa data to
wet bulb depth provided by the VERIS 3100 soil sensor were mapped before planting using block
ordinary kriging. Looking for simplicity and practicality, only two ECa classes were delineated from
the ECa map (k-means algorithm) to delimit two potential soil classes within the plot with possible
different properties in terms of potential soil water content and/or soil water regime. Contrasting
the difference between ECa classes (through discriminant analysis of soil properties at different
systematic sampling locations), irrigation sectors were then designed in size and shape to match the
previous soil zoning. Taking advantage of the points used for soil sampling, two of these locations
were finally selected as candidates to install moisture sensors according to the purposive soil sampling
theory. As these two spatial points are expectedly the most representative of each soil class, moisture
information in these areas can be taken as a basis for better decision-making for vineyard irrigation
management.

Keywords: irrigation zoning; ECa soil sensor; moisture sensors location; soil sampling; vine crop;
irrigation sector design

1. Introduction

Soil is a natural body that is spatially variable. Furthermore, soil also varies in depth
and there are even highly dynamic soil properties that vary over time [1]. This adds greater
uncertainty when it comes to reliably knowing the spatiotemporal pattern of soil variation.
On the other hand, soil heterogeneity can occur at different spatial scales resulting in
different soil properties within the same plot, whether large or small. This is especially
common in fruit tree plantations and vineyards in many producing areas, with plots often
less than one hectare, and where the impact of small-scale soil variability on crop growth
and productivity may be important [2–6]. Focusing on irrigation, soil-adapted site-specific
irrigation management may be a real option given the soil-crop relationship. However,
managing irrigation at the plot level in this way requires a procedure (or protocol) that
allows soil spatial variability to be assessed in those properties directly related to and/or
influencing soil moisture content for optimal irrigation plot design.
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A variety of sensors are currently available for farmers and technicians for soil water
content (SWC) monitoring [7]. Problems with these moisture sensors are related to the low
spatial sampling resolution commonly used (usually one sampling point per plot to control
all sectors within the plot as a whole). So, while some areas within the plot edaphically
fit the data provided by the moisture probes, others may not be optimally managed. On
the other hand, in the framework of precision agriculture (PA), sensors to measure the soil
apparent electrical conductivity (ECa) have been extensively tested and validated [8–10].
Galvanic contact resistivity (GCR) sensors and electromagnetic induction (EMI) sensors are
the most used options [9]. To obtain usable data, electric current introduced or induced
by the sensor should cover a soil volume reaching, at least, the depth explored by the
crop roots. This means covering the wet soil depth in the drip irrigation systems installed
in vineyards. The volume of soil wetted by the irrigation emitter can vary greatly in
width and depth depending on soil type and irrigation management. In semi-arid areas
of southern Europe, it is common to find wet bulb depths that usually vary from 60 to
150 cm. Hence the recommendation to keep the first meter in depth at approximately field
capacity [11], installing moisture probes that measure to depths of 90 cm or more [12]. Two
ECa measurements are usually provided by commercial sensors, of which the so-called
deep-ECa allows the subsoil layer to be reached.

In the most efficient systems, ECa data are acquired continuously (on-the-go) and
georeferenced using a global navigation satellite system (GNSS) receiver. Mapping this
information (ECa map) is then a good starting point to characterise the soil and its vari-
ability [13]. In fact, there are many studies that show a significant spatial relationship
between ECa and a number of soil properties [5,14], such as soil texture [15,16], soil water
content [17], organic matter content [18], cation exchange capacity [19], and salinity [15]
(the latter especially in semi-arid areas). Therefore, the use of ECa sensors and the resulting
maps provide an indirect determination of soil characteristics [1] and, more importantly,
allow spatial patterns of some soil properties linked to the SWC to be obtained [20,21] and
used for zoning [22]. Often revealing boundaries of soil series with different properties [23],
ECa maps thus provide valuable ancillary information for the design of irrigation systems
in what can be called a “soil-based irrigation sector optimization strategy”.

Plot zoning based on ECa maps using different classification methods has become
a well-studied topic in recent years [24–28], with successful applications in vineyard [29]
and other orchards [30]. Once the zoning process has been applied, spatially delimited
zones often have different sizes and substantially irregular shapes. From this point of
view, designing adapted soil-based irrigation sectors is challenging. In fact, it addresses a
new disruptive concept by prioritizing the irrigation–soil binomial over seeking to design
regular and identical sectors according to exclusively hydraulic criteria. Economically, with
irrigation sectors adapted to soil variability, greater efficiency in water use and fertilizers
should be achievable [31].

Location of moisture probes is not a minor issue. Assuming two soil classes within
the plot, it is part of the design to decide on the optimal placement of at least two sets of
humidity probes (sensors) for irrigation control. Optimal location of sensors is required
so that measurements allow adequate control of the soil class (and therefore of linked
irrigation sectors) they are monitoring. As this is a critical point [7], various methods
to search for these optimal locations have been investigated in recent years. To cite a
recent example, Bazzi et al. [32] developed an algorithm reporting the number of leaf
sensors and their optimal locations (trees) to assist in precision irrigation. In the case study
presented in this paper, purposive soil sampling [33] is the proposed approach to find these
optimal locations.

Opportunities for site-specific management in vineyard plots have been thoroughly
discussed [29,34–36]. In vineyards, improvements in irrigation scheduling have been pro-
posed based on modelling the vine water status at different spatial scales [7,21]. However,
real application of these models requires that irrigation sectors (management units for the
farmer) adjust the spatial pattern of those soil properties (also including soil slope, soil
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mulching and terrain relief as influential factors [37,38]) that generate the main source
of variation in soil and crop moisture content. Adapting irrigation sectors to soil spatial
variability is not a common practice, probably because there are few studies showing
the advantage of applying variable-rate irrigation (VRI) based on irrigation prescription
maps [39]. In fact, many winegrowers and irrigation managers are unaware of the possible
use of ECa sensors to optimise the design of drip irrigation systems, with also a positive im-
pact on the water footprint in the current agronomic context of climate change and drought.
Faced with this situation, the Low Input Sustainable Agriculture (LISA) research project
was recently completed with the aim of developing easy ECa data processing protocols to
optimise the design of vineyard drip irrigation systems. A two-step procedure is presented
in this work and applied in a commercial vineyard plot. Specifically, by using soil ECa data
and purposive soil sampling, irrigation systems performance can be optimised based on
(i) designing irrigation sectors adapted to soil zoning, and (ii) locating optimal sites within
the plot where moisture sensors for irrigation control should be installed (smart points).
The ultimate goal is to make more efficient use of water in drip irrigation systems that
cover soils with different properties and with different requirements.

2. Materials and Methods
2.1. Study Area and Test Plot

The study area comprised a 14.5 ha plot located in Raimat (Lleida, NE Spain, 41◦39′43′′ N,
0◦29′54′′ E, Figure 1), planted with Vitis vinifera L. cv. Tempranillo from 1998 to 2015. The
plot is sited in an area whose original materials are marls with interbedded sandstones
and limestones of Tertiary origin. These materials have given rise to different soils that can
be found in the plot according to the relief [40]: Typic Xerorthents, shallow soils with silt
loam texture, located in the upper part of the plot with convex slope; Typic Xerorthents,
moderately deep soils with silt loam texture located in the convex-rectilinear slopes con-
necting with the infilled bottom; and Typic Xerorthents and Fluventic Haploxerepts, deep
soils with silty clay loam texture developed in the infilled bottom [41]. The average slope
of the plot was 8.1 ± 3.4%, with a range between 0.2% (almost flat in the infilled bottom)
and 19.8% (in the convex-rectilinear slope).
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Figure 1. (Top left) location of the study area. (Right) study plot (size of 14.5 ha) with location of the
soil sampling points. A shadow image showing the relief was overlaid to allow its interpretation.
(Bottom left) photographic image of the study plot at the moment of the soil apparent electrical
conductivity (ECa) survey. The position from which the photograph was taken is represented by a
camera icon in the image on the right.
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2.2. Outline of the Proposed Procedure

To solve the problem of adapting irrigation sectors to the soil spatial variability, the
following methodological scheme is proposed (Figure 2). First, ECa data are acquired by
means of an ECa surveyor, either of galvanic contact (Veris 3100 in the present case study)
or electromagnetic induction. ECa mapping has proven effective in delimiting areas with
rather clay soils and/or salinity problems in vineyard plots [42]. Then, ordinary block
kriging is performed to create an ECa map (raster map). It is recommended that ECa
measurements cover the expected depth of the wet bulb created by the irrigation emitters
(deep-ECa for the VERIS surveyor). Alternatively, the user may consider using an ECa map
focused primarily on the shallower topsoil if moisture from irrigation is concentrated in
this layer [43]. However, as many sensors provide shallow and deep measurements of ECa,
both maps can complement each other and be used together.
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Figure 2. Flowchart of the proposed methodology for soil-adapted irrigation sector design and
optimal location of moisture sensors at plot level.

In a second step, ECa data are clustered. The unsupervised k-means algorithm is used
by setting the number of classes to only two (high and low ECa). Two not simple questions
arise at this point. First, and for the sake of simplicity, delimiting only two ECa classes is
considered a practical way to facilitate a better design of soil-adapted irrigation sectors.
Indeed, other more complex scenarios are also possible (three or more classes), with the
farmer’s edaphic knowledge being a key factor in the final decision. Unless otherwise
stated, establishing two ECa-classes is the initial proposal (Figure 2), which can be modified
(thus increasing the number of classes) in plots with greater and proven soil heterogeneity.
Another issue concerns the use of one or two ECa maps in the clustering algorithm. Since
the k-means algorithm is intended for multivariate analysis, the procedure foresees using
the two maps (shallow-ECa and deep-ECa) obtained from the soil sensor. But this is
compatible with using only one map (deep-ECa in Figure 2) when, by recent surface tillage,
the structure and spatial pattern of the topsoil may have been greatly affected. This has
been the case of the plot under study.
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The third step serves to assess the differences in soil properties between the two ECa
classes. For that, soil sampling within each ECa class allows the two ECa classes to be
globally contrasted through a multivariate analysis of variance (MANOVA). Based on
these results, a proposal of irrigation sector design (irrigation sector map, step four) is
made resulting in two types of irrigation sector as they are linked to two different soil
classes (low or high ECa). Independent statistical tests (Student’s t-tests) finally allow key
soil properties linked to humidity, water retention, or soil water regime to be established
to differentiate the two types of irrigation sector probably requiring different irrigation
management. The fifth and final step is focused on establishing the optimal location of
the moisture probes. Considering the most significant soil property in the previous tests,
a purposive sampling analysis is carried out to decide on the best placement among the
sampling points previously used to characterise the soil at the plot level. In what follows
in this paper, points selected for this optimal location are named “smart points”. The
different procedures involved in each of the aforementioned steps are described in greater
detail below.

2.3. Apparent Electrical Conductivity (ECa) Data Acquisition and Mapping

An ECa survey was conducted on 6 June 2018 to map the spatial distribution of
the apparent soil electrical conductivity in the study plot. As has been mentioned, this
information can be used to delineate potential management zones to optimise drip irrigation
sectors for planned future vineyards. The interest of ECa measurements lies in the fact that
certain soil properties (texture, moisture content, salinity, etc.) influence this parameter [9].
Therefore, ECa mapping allows soil spatial variability to be quantified and analysed by
looking for possible soil spatial patterns associated with possible variations in one or more
soil physical properties.

The survey was carried out with a Veris 3100 sensor (Veris Technologies Inc. Salina,
KS, USA). This sensor (Figure 3) allows the ECa of the soil to be measured at two depths:
superficial from 0 to 30 cm (shallow ECa) and deep from 0 to 90 cm (deep ECa). By applying
a known voltage, an electrical direct current is transferred into the soil. The measurement
of the voltage drop between the transmitting and the receiving coulters (electrodes) makes
it possible to calculate the electrical resistivity and conductivity (Figure 3). The ECa data
acquisition step requires the use of a data logger of the same instrument and brand (Veris
3100), making it possible to connect a GNSS receiver via an RS-232 serial port. Data are
stored in a text file containing 5 columns: geographic coordinates (longitude and latitude),
shallow ECa (mS/m), deep ECa (mS/m), and elevation (m). The transformation to projected
coordinates Universal Transverse Mercator (UTM) makes it possible to add the coordinates
X (m) and Y (m).

In the present study, data were collected along linear strips separated from each other
at a distance of 12 m, as recommended by Veris Technologies Inc. Tractor speed was
between 7 and 10 km/h, with a sampling frequency of 1 Hz. Data were georeferenced
using a Trimble AgGPS332 (Trimble Inc., Westminster, CO, USA) GNSS receiver with
SBAS EGNOS differential correction in geographic coordinates WGS84 (EPSG 4326). The
original data file contained 6235 points. ECa values above or below±2.5 times the standard
deviation (SD) were considered outliers and removed from the original data file according
to the criteria of Taylor et al. [27]. The final ECa data set consisted of 6114 points, which
represented a density of 420 points/ha (Figure 4).

Mapping of the ECa was performed following the two phases involved in a conven-
tional geostatistical analysis. First, variographic analysis was performed obtaining the
experimental variograms of both the shallow and deep ECa. The fitting of theoretical
variogram models allowed parameters such as structural variance and range to be obtained
in addition to checking for a possible nugget effect on the spatial data. The use of the
former to assess the opportunity for differentiated management at the plot level would be
interesting. In a second step, spatial interpolation (kriging) was performed. Due to the large
amount of ECa data, block ordinary kriging based on local variograms was used to test the
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hypothesis of quasi-stationarity that presumably occurs in plots of several hectares. In the
present research, the software used to carry out the geostatistical analysis and interpolation
was Variogram Estimation and Spatial Prediction with Error (VESPER) from the University
of Sydney [44]. The blocks were 10 m × 10 m, projecting the interpolated values on a
grid of 2 m × 2 m (spatial resolution of the raster map). The resulting maps are presented
in Section 3.1.
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2.4. Cluster Analysis

Cluster analysis based on the k-means algorithm was used to classify the pixels of the
deep ECa map. The shallow ECa map was discarded because: (i) it presented a poorly
structured spatial variation pattern (probably due to soil tillage prior to planting) with a
much smaller variogram range and prominent nugget effect compared with the deep ECa
data (see Section 3.1) and, fundamentally, (ii) it only measured ECa down to depths of
30 cm, which was very far from the expected depth of the typical irrigation wet bulbs in
the area. The number of classes was set to two (low ECa and high ECa), as agreed with
the estate managers who preferred a simple first approach to the problem of designing
soil-adapted irrigation sectors. Without going into detail, the k-means algorithm is an
unsupervised classification method that, in the present case, allowed pixels of the deep
ECa raster map to be grouped into k = 2 groups or clusters. Initially, ECa pixels were
randomly assigned to these two groups or classes. Then, through iteration, pixels were
progressively reassigned until the sum of the squared differences between each pixel value
and the centroid (mean value) of its group or cluster reaches a minimum. In this way, ECa
pixels of one group were as similar as possible to each other but, at the same time, distant
in terms of the ECa value contained in the pixels of the other group. Thus, the k-means
algorithm allowed pixels to be classified into just two classes that managed to minimise the
variability between pixels within the same class while maximizing the variability between
classes. Management zone analyst (MZA) software was used for this task [45].

2.5. Soil Sampling and Multivariate Analysis to Contrast ECa Zoning and Irrigation

Differentiated management of irrigation and/or fertilization requires prior knowledge
of the key soil properties that cause the spatial variability of ECa. For this reason, soil was
first systematically sampled within each of the ECa classes and covering slightly more
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than half of the plot (Figure 1). Then, in order to contrast the two ECa classes in terms
of soil properties, a multivariate analysis of variance (MANOVA) was performed taking
the ECa class as the factor under analysis and the soil sample properties playing the role
of dependent variables. Compared with one-factor ANOVA, which applies to a single
response variable, the MANOVA method allows contrasting differences between the levels
of a certain factor (low ECa and high ECa) taking at the same time a set of response variables
(vector of soil sampled variables). As only two levels of ECa were considered (low and
high), equality of the two mean vectors corresponding to the two ECa classes was the null
hypothesis to be tested. Thirty-nine (39) sampling points were arranged in a regular pattern
of 50 m x 50 m and soils were sampled at 0–30 cm and 30–60 cm. The following properties
were determined: pH (extract 1:2.5), electrical conductivity (EC) at 25 ◦C (extract 1:5),
equivalent CaCO3 (%), organic matter (OM) content (%), USDA textural fractions (%),
and water retention capacity (WRC) at −33 kPa and −1500 kPa (%). In addition, another
property considered in each sampling point was the slope (%), which was calculated from
the digital elevation model of 5 m × 5 m produced by the Cartographic and Geologic
Institute of Catalonia using the Slope function in ArcMap 10.7 (ESRI, Redlands, CA, USA).

Additionally, discriminant analysis of the sampling points was performed to check
to what extent the points that fall within the two ECa classes were also discriminated in
the same way but now based on the soil properties they contained. A high coincidence
was expected assuming that ECa is a good tool for discriminating two very different soil
classes. Establishing the final irrigation sector map was then simply a matter of defining the
different irrigation sectors in size and shape to match the ECa variation pattern (or sectors
spatially adapted to the two soil classes). At this stage of the procedure, we sought to
obtain well-defined and compact sectors by refining the ECa class map. Statistical analyses
in this section were performed using JMP® Pro 16.0.0 software.

2.6. Location of Moisture Probes through Purposive Sampling

In accordance with the procedure shown in Figure 2, the final step was to determine the
optimal location to install the moisture probes for soil water content monitoring. Assuming
that two soil classes can be differentiated within the plot (Sections 2.4 and 2.5), two sets
of sensors (if different soil depths are monitored at the same site) should be installed in
two representative locations to ensure proper monitoring and irrigation control. It was
proposed to choose these locations from among the previously established soil sampling
grid points (Figure 1). Two selection methods were possible: randomly choosing the
two points (one per class) or purposely choosing the sites that best represented the two
previously defined soil classes (in this case usually marking the locations based on the
farmer’s intuition or experience instead of choosing them on purpose but based on a more
informed decision).

Figure 5 (adapted from Webster and Lark [33]) is used as an example to better un-
derstand the method behind purposive sampling. Assuming A and B represent the two
ECa classes of the previously defined ECa two-class map, purposive sampling requires
establishing a single soil property that, being significantly different according to the ECa
class (which is to say according to the two types of irrigation sector), can also influence the
irrigation management. To establish this reference soil property, a series of independent
statistical tests (Student’s t-tests) comparing the two types of irrigation sector were per-
formed. The soil property that showed the lowest type I error (significance level adjusted
by the Bonferroni correction) was finally used in the procedure. Adopting this soil property
as our prediction variable (z), purposive sampling attempts to purposely search for the
location within each ECa class whose actual value of z can also be considered as the most
representative at the class level. To perform this (Figure 5), it is first necessary to determine
the best predictor at the points marked with an empty circle (#) (i.e., any point inside the
class), as well as the uncertainty of this prediction.
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chosen sampling points as most representative of each class. The moisture probes should be installed
in these locations. Figure adapted from Webster and Lark [33].

Considering no other information is available, the best predictor for a soil property z at
i (point #, Figure 5) within the class k(k = A, B) is the mean of class k, µk. The uncertainty
of such a prediction can be expressed in terms of the mean squared error, MSE (1):

MSEk = Ei

[
(Zik − µk)

2
]
= σ2

k (1)

where σ2
k is the prediction variance, that is the variance within the corresponding stratum k.

As the class mean is estimated by µ̂k (because µk is an unknown parameter), and may also
be biased (if µ̂k is obtained from non-random sampling), Webster and Lark [33] suggest
adding these two error sources to obtain the full squared prediction error (2):

MSEk = σ2
k + var[µ̂k] + bias2[µ̂k] (2)

From a statistical optimization point of view, the goal is to install the moisture probes
at those points within the plot where the MSE is minimised, which is to say the points
that provide a reliable estimate of the class they represent. Taking the previous sampling
covering the plot (or most of the two bounded classes within the plot) as the reference
population, the farmer can randomly choose one of these points per class or, instead,
deliberately choose a particular point per class among them. Using this last method for
prediction, the zpk values at the sites, p, chosen as representatives within each class (colored
triangles in Figure 5, k = A, B) now replace the class means µ̂k as estimates of the variable
at the prediction points (empty circles in Figure 5). Since the two points are set by the
farmer (or advisor), it is true that var

[
zpk

]
= 0 for each class (there is no source of variation

in these values). However, the estimate is now biased at a value dk = zpk − µk. Substituting
the bias in (2) and taking the common within-class variance (σ2

W) by assuming equally
variable classes, the mean squared error of prediction can be assessed for the entire plot
using (3):

MSEp = σ2
W + ∑K

k=1 akd2
k , (3)

where ak is the area ratio of class k in the plot (or percentage of area occupied by class k).
Optimizing MSEp to a minimum value, σ2

W , can only be achieved by correctly choosing
those sites where the values zpk coincide with the class means µk. If the point per class is
chosen randomly, it can be shown that the error becomes larger, specifically 2σ2

W . Assuming
this range of error, our choice of sites for optimal sensor location is the one that meets the
requirement σ2

W < MSEp < 2σ2
W . To perform this, sites chosen as optimal locations were

those that, for the soil property of interest, were as close as possible to the class means.
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To verify that the inequality is true (and thus verify that choosing a point purposively by
class is better than doing so randomly), the previous σ2

W and MSEp were estimated using
the sampling points in the field. Averaging over the two classes, k = A, B (Figure 5), the
average within-class variance was obtained by (4):

s2
W = ∑K

k=1 ∑nk
i=1(zik − zk)

2/ ∑K
k=1(nk − 1) (4)

where nk is the number of sampling points in k, and zk is the mean. The prediction error
was finally estimated using (5):

M̂SEp =
1

NV
∑K

k=1 ∑V(k)
v=1

(
Zvk − zpk

)2
(5)

where zpk is the value at the point chosen as representative within the class k(k = A, B),
Zvk the value at the other sampled points acting as validation points and assuming they
have been probabilistically chosen (there are V(k) points depending on the class), and NV
the total number of validation points. More in-depth reasoning for purposive sampling can
be found in Webster and Lark [33].

3. Results
3.1. ECa Maps

Figure 6 shows the interpolated ECa maps (shallow and deep) structurally classified
in six classes using the same colour legend to facilitate visual interpretation. The values
of the shallow ECa (0–30 cm) were clearly lower compared with the deep ECa (0–90 cm).
According to Lund et al. [46], who established a correspondence between ECa values and
soil textural fractions and salt content, ECa values measured in the plot were lower than
the threshold indicating the presence of saline soils (about 100 mS/m). It is therefore
expected that the spatial variation in ECa is probably related to other properties such as
soil texture and/or soil water holding capacity. Based on previous knowledge of the soils
in the plot (see Section 2.1), there is a correspondence between the ECa values and the
soil classes present in the plot. Higher ECa values corresponded with the location of deep
Typic Xerorthents and Fluventic Haploxerepts in the infilled bottom, and lower values
corresponded with shallow or moderately deep Typic Xerorthents that appear in the upper
part of the plot and in the convex-rectilinear slopes connecting with the infilled bottom.
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To create the ECa two-class map (k-means algorithm) on which the potential irrigation
sectors are based, the deep ECa was chosen ahead of the shallow ECa (Figure 6—Right).
As mentioned in the methodology, the justification for this decision is that a large part of
the grapevine root system can be found in the top 100 cm of soil, with most of the fine roots
between 10 and 60 cm [47]. The deep ECa ensures reaching this depth by integrating the
response of soil properties up to 90 cm. The two ECa clusters showed significant differences
in the Eca average values: 37.4 ± 5.0 mS/m and 53.6 ± 6.8 mS/m, respectively.

3.2. Multivariate Analysis of Variance (MANOVA) of Soil Properties According to ECa Clusters

According to Uribeetxebarria et al. [5], a separate analysis of variance (ANOVA)
for each sampled soil property considering the two different levels of ECa may lead to
misleading and inconsistent results. This is because ECa reflects the combined effect
of soil properties as a whole and, for this reason, differences in soil should probably be
verified using a multivariate approach (MANOVA). Thus, multivariate analysis (MANOVA)
sought to check whether soils differed globally in its properties (jointly considering the
two sampled depths) according to the spatial class of ECa, that is, according to the spatial
location of the sampling points within the plot. Of the total available data (39 soil sampling
points), four sampling locations were discarded since data for the sampling depth of 30
to 60 cm were not finally available at these points. Thus, a total of 35 effective sampling
points were considered (Figure 7).
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The result of the MANOVA was significant, with a p-value of 0.0365 for the statistic

F = (n1+n2−p−1)T2

(n1+n2−2)p with p and (n1 + n2 − p− 1) degrees of freedom, being n1 and n2 the

sample sizes, T2 the Hotelling’s T2 statistic and p the number of response variables included
in the analysis (19 variables including soil properties at two depths and slope). Therefore,
the two ECa clusters were able to differentiate two soils within the plot with particular soil
and slope characteristics for each cluster. Figure 8 shows graphically the least squares mean
values of soil properties discriminated by ECa cluster. Apparently, soil texture and slope
are the most discriminated properties, emerging less sandy soils (or with finer textures)
and flatter in areas within the high deep ECa class.

According to these results (Figure 8), it can be observed that the low and the high ECa
classes can be distinguished by the silt content within the 0–30 cm layer, the sand content
of both soil layers, and the clay content plus the WRC at −33 kPa within the 30–60 cm layer.
In addition, the slope was also different between the two classes. This behaviour follows
the principles of the interpretation of ECa data as described by several researchers [15,19],
indicating that lower ECa values are related to higher sand content and higher values with
the increase in finer texture particles. In addition, slope is related to soil depth because
of the influence of this relief property in the erosion and deposition processes [48]. In the
case of the study plot, lower slopes are found in the infilled bottoms, where deposition of
finer soil particles from the connecting slopes occur. In contrast, shallower soils with higher
sand content were found in areas with higher slope. On the other hand, since the sampling
points are classified according to their soil properties into two groups that fully coincide
with the ECa clusters (discriminant analysis not shown), there is no doubt that the ECa
two-class map can be used as a reference for the optimised design of irrigation sectors.
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3.3. Potential Irrigation Sectors and Location of Smart Points for Soil Moisture Content
Monitoring

Based on the spatial distribution of the ECa clusters (Figure 6, right-hand side), 10 po-
tential irrigation sectors were delineated, aiming to cover an average area per sector of
about 1.50 ha, in accordance with owner criteria (Figure 9). Nevertheless, due to the irregu-
lar shape of the plot, the latter was not possible in all cases and different size sectors had to
be delineated in some cases, with the smallest sector being 0.68 ha and the biggest 2.16 ha.
Four sectors were designed covering the high ECa area and six within the low ECa area
(Figure 9).
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Table 1 shows the average soil properties in each of the analysed soil layers for each
type of irrigation sector (low and high ECa), together with the results of individual Student’s
t-tests in order to identify differences between irrigation sectors in terms of relevant soil
properties. As there were some border sampling points that could have been included in
another class of ECa with the delineation of the sectors, the mean values of Table 1 could
vary a little from those displayed in Figure 8. In any case, the sector and not the ECa cluster
should be the factor to consider in the analysis of the result of the irrigation design.

Table 1. Average soil properties in each type of the potential irrigation sectors. Total N = 35. Different
upper-case and lower-case letters in rows indicate statistically significant differences between groups
(low and high ECa irrigation sectors) at a p-value < 0.05, according to Student’s t-tests (the upper-case
and lower-case letters must be respectively compared between them) (see description of the acronyms
in Section 2.5).

Soil Property Irrigation Sectors with Low ECa (N = 20) Irrigation Sectors with High ECa (N = 15)
0–30 cm 30–60 cm 0–30 cm 30–60 cm

pH 8.37 a 8.4 A 8.27 b 8.4 A
EC1:5 0.33 a 0.45 A 0.37 a 0.49 A

CaCO3 (%) 27.3 a 27.5 A 27.5 a 27.5 A
OM (%) 2.2 a 1.5 A 1.8 a 1.9 A
Clay (%) 28.6 a 27.5 A 28.2 a 32.6 A
Silt (%) 48.1 b 50.2 A 52.6 a 48.9 A

Sand (%) 23.3 a 22.3 A 19.2 a 18.6 A
WRC–33 kPa (%) 25.1 a 24.4 A 26.5 a 25.3 A

WRC–1500 kPa (%) 13.1 a 12.5 A 13.1 a 12.6 A
Slope (%) 9.1 a 5.1 b

In Table 1 it can be seen that no significant differences were obtained, except for
pH for the first layer of soil, silt content, and slope. Of these properties, slope was the
most significant (p-value < 0.0001), with a higher average value in the low ECa irrigation
sectors (9.1%) compared with the high ECa sectors (5.1%). Silt content showed significant
differences in the first soil layer, with higher content in the high ECa sector (p-value 0.0195).
In contrast, sand content was lower in the high ECa sector (p-value 0.0993). As mentioned
in Section 3.1, the predominant soils in the higher slope areas correspond to shallow Typic
Xerorthents, with higher sand content than the soils located in the high ECa sectors. The
latter mainly corresponded to deeper Typic Xerorthents and Fluventic Haploxerepts in the
infilled bottom, which also had higher silt and clay content. Then, although statistically
significant differences (p-value < 0.05) were only found for silt content and pH, a clear
trend was observed, even in the 30–60 cm soil layer, in which higher clay content and
lower sand content are more present in the high ECa sectors (Table 1). These results also
confirm the relationships found in the MANOVA for soil texture and slope, thus confirming
that the proposed map of irrigation sectors (Figure 9) is a feasible option for differentiated
irrigation management.

The last step of the procedure referred to locating the moisture probes. As mentioned
in Section 2.6, at least two sites (one for each sector type) are required to monitor soil
water content and assist in irrigation control and scheduling. Taking into account Table 1
(where the results from 19 independent Student’s t-tests are shown), the variable that
showed the highest level of significance (p < 0.0001) was slope (%), which was also the only
variable that could be considered significant according to the Bonferroni corrected level
of significance (p < 0.05/19 = 0.0026). For this reason, it was decided to use slope as the
reference soil property in the purposive sampling method to decide on the optimal location
of the moisture probes. As in our method, a single variable was also used by Bazzi et al. [32]
to obtain optimal locations for leaf sensors, in that case in two vines within each class.

The selected points were, for the infilled bottom area with the lowest global slope,
the sampling point identified as 34, and, acting as a reference for the rest of the plot with
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higher slopes probably associated with shallower and sandier soils, the point identified
as number 6. Both locations (smart points) are shown in Figure 9 and the sampling points
in Figure 1. The two sites meet the requirement of minimizing the slope prediction MSE
for the plot as a whole. In this way, and given the low bias of both sites in relation to the
corresponding class mean, slope values at these points provide the best possible estimate of
the slope for any other location within the two irrigation classes. Furthermore, as expected,
sites should be purposely chosen from among the sampling points and not randomly, as the
corresponding prediction errors have shown (Table 2). On the other hand, the suitability of
clustering into two ECa classes is also demonstrated by the coefficient of determination
(R2 = 0.53, Table 2) and, fundamentally, by verifying that ˆMSEp is much lower than the
prediction error (s2

T + s2
T/N) when there is no classification and a single location for the

moisture sensors is chosen at random to control plot irrigation.

Table 2. Prediction statistics for slope for the map of irrigation sectors.

MSE of Prediction

R2 s2
W M̂SEp 2s2

W s2
T + s2

T/N
Slope (%) 0.53 3.468 3.475 6.936 7.59

R2: coefficient of determination; s2
W : pooled within-class variance or minimum value for the prediction error; 2s2

W :

mean squared error for the entire plot using random sampling; M̂SEp: mean squared error for the entire plot
using purposive sampling; s2

T : total variance of the N = 35 sampling points.

4. Discussion

The design of an irrigation system is a complex task due to the number of factors
involved in the process [49]. In general, both agronomic design and hydraulic design are
involved, the latter being a consequence of the former. From an agronomic point of view,
knowing the soil–water–crop interrelation is key to establishing crop water requirements,
especially for periods of greatest demand or maximum crop water stress. Once this has
been specified, the sizing of irrigation units (sectors), pipes, pumping systems, and emitters
per plant (in case of drip irrigation) is more of a hydraulic issue. Ultimately, the main
objective is to supply water homogeneously with minimal pressure variations along and
across the plot.

Although agronomic design is known to be fundamental (especially due to the soil-
crop relationship), irrigation systems are often designed exclusively under hydraulic criteria.
This is probably because the soil physical properties related to its water-holding capacity are
costly to determine [50]. Furthermore, soil characterization is usually performed through
composite samples (and much less so by adopting the basic and classic recommendation of
taking four samples per hectare), thus ignoring the fact that the soil-water-crop relationship
is site specific and possibly follows a pattern of spatial variation within the plot. In these
cases, soil spatial variability is neglected and the opportunity to adapt irrigation sectors to
soil property conditions is lost. Problems usually arise when watering with homogeneous
doses for the whole plot, over-irrigating some parts and under-irrigating others, making
the system inefficient. One example of this problem is given by Mirás-Avalos et al. [51],
in which the irrigation sectors in a vineyard of 17.5 ha planted in 2018–2019 did not
coincide with the spatial variability detected for soil water holding capacity and ECa. As
a consequence, the vineyard owners opted for a more efficient irrigation adapted to the
within-field soil spatial variability.

As already mentioned, adapting irrigation sectors to soil spatial variability is not usual.
However, through the use of soil sensors to characterise soil spatial variability, it is expected
that the current situation will gradually change as new PA technologies emerge [31].
Indeed, the application of on-the-go ECa soil sensors in agriculture is beginning to promote
a change in the way soil information can be presented and analysed to meet the demands
of using soil data at plot scales [52,53]. Different agricultural practices benefit from the
information provided by ECa maps by varying seeding and fertilizer application rates,
as well as soil characterization that can now be based on targeted sampling according
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to ECa classes or zones [6,26,54]. In crop irrigation, trials have been undertaken on the
use of ECa maps to delineate management zones for variable-rate irrigation in centre
pivot irrigation systems [55–57]. In these systems, the irrigation chart can be adjusted by
operating the centre pivot speed or sprinkler flow rate accordingly. However, this is not
the case for sprinkler and drip irrigation systems used in vineyards and other tree crop
plantations, where irrigation sectors are fixed and difficult to readjust if design errors are
noticed at a later date. Since the life of a vineyard plantation can be estimated at 20 years
or more [58], it can be assumed that an inadequate design of the system by not adapting
the irrigation sectors to the soil may have important negative economic consequences.
Taking into account the soil and its variability within the plot is therefore considered
crucial in the design of fixed irrigation systems and, in particular, before making any
decision on how irrigation sectors should be spatially dimensioned. Since there are no clear
recommendations on this subject, a procedure that helps integrate soil information (ECa
maps) in the initial design of pressurized irrigation projects becomes necessary for farmers
and advisors in this sector.

In this paper, a two-stage procedure using ECa data and soil purposive sampling
is proposed to better design drip irrigation systems in vineyard plots. The basic idea
behind the method is to spatially zone soil ECa in two contrasting soil classes, and to then
adapt irrigation sectors in size and shape to soil variation for better water management
efficiency. Unlike other approaches that have mainly focused on arable crops under central
pivot systems [56,57], the proposal made in the present study is, conceptually speaking,
somewhat disruptive. In fact, it commits to moving from an irrigation design that uses
exclusively hydraulic criteria to the design of sectors that make it possible to manage water
according to site-specific requirements. As drip irrigation systems already in operation are
difficult to modify, our option is different from those mentioned above, having to design
the vineyard’s irrigation system with the restrictions imposed by the soil within the plot.
On the other hand, taking advantage of soil sampling extended over a certain plot area, the
procedure also applies purposive sampling to identify two of the previous sampling points
(smart points) for the optimal location of moisture probes. Making use of measurements
from these sensors in these locations: (i) soil water content is monitored probably providing
reliable mean measurements for each soil class (irrigation sector class), and (ii) irrigation
rates and frequency can potentially be better adjusted.

However, drawbacks are also present. A first barrier to implementing this procedure
is its potential economic cost. Farmers would have the additional cost of ECa surveying
and mapping, soil sampling (which must have a sufficient density covering all or a large
part of the plot area), laboratory analysis, and data processing. Therefore, initially resistant
attitudes towards this technology can only be overcome by demonstrating the advantages
of paying for an ancillary information such as ECa maps in order to optimise irrigation
design. Undoubtedly, the role of irrigation advisors will be crucial for the success of
protocols such as the one presented in this paper, managing to convince farmers that
applying this new concept of soil-adapted irrigation sectors is the best option in terms of
efficiency and sustainability. Unfortunately, there is presently little use of ECa soil sensors
for this purpose due to the lack of awareness of such techniques in the irrigation sector.
Nonetheless, we think that growers should consider using ECa maps as one more tool
for decision making. They are aware that poorly designed irrigation systems in terms of
sectorization are not usually changed until the end of the plantation life and, if it is decided
that a readjustment is required, it is always technically complicated and economically
expensive to make changes once the irrigation system is already operational.

The other issue that deserves discussion concerns the choice of location for the moisture
probes. We recommend purposive sampling, seeking those points (one per class) where the
reference soil property is closest to the class mean. This is relatively straightforward when a
systematic sample of sufficient size like the one used in our protocol is available. However,
in cases where systematic sampling can be avoided because the spatial distribution of
soil classes is known in advance, choosing good representatives depends exclusively on
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the experience of the observer [33]. Hence, where possible, a systematic sampling with a
resolution adapted to the size of the plot should be performed. Another approach is to
choose the location (among the sampling points) that presents a more restrictive value in
terms of influencing the water stress of the crop. This would avoid watering based only on
average values within the class, which can perhaps cause water deficit in areas that require
applying irrigation in advance. This is a matter to be assessed and especially linked to the
expected amount of common within-class variance (σ2

W) (see Section 2.6).
Purposive sampling also puts into question that the choice of sites is based on a single

soil property. In other work [32], researchers have also used a single piece of information
(stem water potential (SWP)) on which to base the optimal placement of leaf sensors in
almond orchards and vineyards. At first sight, in our case, using the slope instead of a
soil property more closely associated to soil water content may seem surprising. However,
since each location is characterized by a set of interrelated soil properties, it has been shown
that, depending on the slope, the soil changes in depth and texture probably influence the
soil water content in each site. This is important in terms of irrigation management, with
the presence of sandier soils with steeper slopes in some sectors (low ECa class) allowing
irrigation programming to be planned differently from that of other sectors (high ECa
class) with lower slope and somewhat more clayey and possibly deeper soils. In short,
differentiated irrigation management should focus on adapting the frequency of irrigation
to the characteristics of the sector.

5. Conclusions

A spatially based sequenced procedure for using ECa maps as a source of soil infor-
mation is proposed in order to optimise sector design in vineyard drip irrigation systems.
Irrigation sectors are differentiated into two types linked to two soil classes (low and high
ECa classes). In a later step, two sites are identified (one per class) to install moisture probes
to monitor soil moisture and help in irrigation control. The procedure has proven to be
satisfactory in a commercial plot planned for vineyard planting. Two issues are key for the
procedure to be successful: (i) ECa acquisition at high resolution to then obtain ECa maps
on which to base the plot zoning, and (ii) systematic soil sampling in a large part of the
plot to compare the previously ECa classes in terms of properties related to soil moisture
and water-holding capacity. Assuming two soils requiring specific irrigation management
are contrasted within the plot, the size and shape of the irrigation sectors are then adjusted
to the ECa spatial pattern (or soil spatial variability). Finally, taking advantage of the previ-
ous soil sampling, the suitability of purposely (instead of randomly) choosing two of the
sampling points (smart points) as optimal locations for moisture probe sensors installation
is demonstrated. In short, the use of ECa maps and a purposive sampling strategy can
play a role in the design of irrigation systems, seeking to adapt sectors to within-field soil
variability for better water use.

The proposed protocol contributes to a rational use of irrigation water in agriculture
and to the sustainability of the production systems, particularly in semiarid regions where
irrigation water can be a scarce resource. The fact that the irrigation sectors are designed
according to the variability of soil properties, and probes are placed in locations representa-
tive of that variation, allows to better match the soil-crop binomial in terms of irrigation
doses, irrigation scheduling and fertigation. As management of irrigation sectors is now
site-specific, nutrient needs can also be applied at variable-rate doses contributing to the
reduction in pollution of drainage and/or groundwater.

Some issues are pending further investigation. Specifically, the proposed procedure
may need to be adapted to different conditions, as for example in cases where the relief
does not play an important role (flat terrain) or in saline soils where the ECa values can
be masked by the response of the salts. Plot zoning in more than two classes is another
issue that, being closely linked to the spatial pattern of the ECa, remains open to the
final decision of farmers and irrigation advisors. Also, selection of locations for moisture
sensors can be simply directed, looking for average or extreme points, in cases where the
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existing soil classes within the plot are already known, thus avoiding the cost of systematic
soil sampling.
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