Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Determination Items and Methods
2.3.1. Greenhouse Gas Emissions Measurement and Calculation
2.3.2. Yield and Biomass Measurement
2.4. Data Analysis
3. Results
3.1. Effects of Different Planting Patterns on Rice Yield in Paddy Field
3.2. Effects of Different Cropping Patterns on Greenhouse Gas Emissions in Paddy Field
3.2.1. Annual Characteristics of CH4 Emissions from Paddy Field
3.2.2. Annual Characteristics of N2O Emissions from Paddy Field
3.2.3. Cumulative Emissions of Greenhouse Gases from Paddy Fields, Global Warming Potential and Emission Intensity
4. Discussion
4.1. Effects of Different Planting Patterns on Greenhouse Gas Emissions in Paddy Fields
4.2. Effects of Different Cropping Patterns on GWP and GHGI in Paddy Field
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Savage, K.; Phillips, R.; Davidson, D. High temporal frequency measurements of greenhouse gas emissions from soils. Bio-Geosci. 2014, 11, 2709. [Google Scholar] [CrossRef]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- Xia, L.L.; Yan, X.Y.; Cai, Z.C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China. J. Agro-Environ. Sci. 2020, 39, 834–841. [Google Scholar]
- Pan, G.; Smith, P.; Pan, W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agric. Ecosyst. Environ. 2009, 129, 344–348. [Google Scholar] [CrossRef]
- Yue, Q.; Wu, S.Y.; Zhang, Y.F.; Zong, J.; Sheng, Q.; Guo, Z.; Chen, D.Y.; Wang, C.; Xu, Q.R.; Wang, X. Life cycle assessment on greenhouse effects and economic benefits for different paddy rice-upland rotation systems. J. Agro-Environ. Sci. 2022, 41, 1825–1835. [Google Scholar]
- Win, K.T.; Nonaka, R.; Win, A.T.; Sasada, Y.; Toyota, K.; Motobayashi, T. Effects of water saving irrigation and rice variety on greenhouse gas emissions and water use efficiency in a paddy field fertilized with anaerobically digested pig slurry. Paddy Water Environ. 2015, 13, 51–60. [Google Scholar] [CrossRef]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.C.; Shen, Q.R.; Zou, J.W.; Guo, S.W. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-Tonthat, T.; Liebig, M.A.; Wang, J. Net Global Warming Potential and Greenhouse Gas Intensity Influenced by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilization. J. Environ. Qual. 2014, 43, 777–788. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, C.S.; Peng, X.L.; Li, Y.P.; Hao, Q.J. Effects of the crop rotation on greenhouse gases from flooded paddy fields. Environ. Sci. 2019, 40, 392–400. [Google Scholar]
- Zhou, W.; Zhang, Y.F.; Zhu, P.P.; Sheng, Q.; Cheng, L.G.; Zheng, J.C. Effects of different cropping patterns on greenhouse gases emissions from rice fields in the lower reaches of Yangtze River. Jiangsu J. Agric. Sci. 2017, 33, 340–345. [Google Scholar]
- Biernat, L.; Taube, F.; Loges, R.; Kluß, C.; Reinsch, T. Nitrous Oxide Emissions and Methane Uptake from Organic and Conventionally Managed Arable Crop Rotations on Farms in Northwest Germany. Sustainability 2020, 12, 3240. [Google Scholar] [CrossRef]
- Lei, H.J.; Wang, W.Y.; Liu, H.; Zhang, Z.H. Research on the emission characteristics of N2O and CO2 from incubated soil under the condition of aerated irrigation. J. North China Univ. Water Res. Electr. Power (Nat. Sci. Ed.) 2020, 41, 84–90. [Google Scholar]
- Dong, Y.F.; Huang, J.; Li, F.S.; Wang, K.; Fang, Z.T.; Liu, J.W.; Huang, Z.H.; Luo, W.G. Emissions of CH4 and N2O under different irrigation methods and nitrogen treatments. J. Plant Nutr. Fert. 2017, 23, 578–588. [Google Scholar]
- Guo, T.F.; Liang, G.Q.; Zhou, W.; Wang, X.B.; Sun, J.W.; Li, S.L.; Hu, C. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil. J. Plant Nutr. Fert. 2016, 22, 337–345. [Google Scholar]
- Cheng, C.; Zeng, Y.J.; Yang, X.X.; Huang, S.; Luo, K.; Shi, Q.H.; Pan, X.H.; Shang, Q.Y. Effects of different tillage methods on net global warming potential and greenhouse gas intensity in double rice-cropping fields. J. Environ. Sci. 2015, 35, 1887–1895. [Google Scholar]
- Zheng, S.Y.; Yang, C.L.; Xu, S.H.; Jiang, L.G.; Wang, N.N.; Zhang, Y. Effect of tillage pattern & nitrogen fertilizer on CH4 emission from rice fields and relationship with reducing substance in soil. Guangdong Agric. Sci. 2014, 41, 49–53. [Google Scholar]
- Li, C.F.; Cao, C.G.; Zhang, M.; Yuan, W.L.; Wang, J.P.; Dai, G.Z. Nitrous oxide emission from rice-duck complex ecosystem. Sci. Agric. Sin. 2008, 41, 2895–2901. [Google Scholar]
- Hu, L.F.; Li, L.; Chen, F.; Ye, T.L.; Yang, G.L. The impact of different tillage systems on methane emissions from rice fields in southern China. Ecol. Environ. 2006, 15, 1216–1219. [Google Scholar]
- Zhang, G.B.; Ma, J.; Ma, E.D.; Xu, H.; Cai, Z.C. Effects of urea application on methane production, oxidation, and emission from a paddy soil. Soils 2010, 42, 178–183. [Google Scholar]
- Hou, X.; Li, Y.; Wan, Y.; Shi, S.; Li, M. Greenhouse gases emission from paddy fields under different rice straw treatments. China Environ. Sci. 2012, 32, 803–809. [Google Scholar]
- Dan, J.; Krüger, M.; Frenzel, P.; Conrad, R. Effect of a late season urea fertilization on methane emission from a rice field in Italy. Agric. Ecosyst. Environ. 2001, 83, 191–199. [Google Scholar] [CrossRef]
- Shrestha, M.; Shrestha, P.M.; Frenzel, P.; Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere. ISME J. 2010, 4, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.W.; Liu, S.W.; Qin, Y.M.; Pan, G.X.; Zhu, D.W. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agric. Ecosyst. Environ. 2009, 129, 516–522. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, L.G.; Wang, Z.C.; Zhang, C.S.; Zhu, P.P.; Sheng, J.; Zheng, J.C. Characteristics of CH4 and N2O emissions and greenhouse effects for mechanical transplanting rice in rice-wheat rotation system. J. Agro-Environ. Sci. 2010, 29, 1403–1409. [Google Scholar]
- Zhou, S.; Zhang, X.X.; Wang, C.; Sun, H.F.; Zhang, J.N. Research Progress and prospects of water and crop residue management to mitigate greenhouse gases emissions from paddy field. J. Agro-Environ. Sci. 2020, 39, 852–862. [Google Scholar]
- Xiong, L.P.; Wu, J.M.; Ji, X.H.; Peng, H.; Li, C.J. A review on soil CH4 and N2O emissions from paddy-upland rotation systems. J. Agro-Environ. Sci. 2020, 39, 863–871. [Google Scholar]
- Peng, Y.L.; Cui, Y.L.; Cai, S.; Liu, B.; Shu, Y.H. Effects of different water and fertilizer managements on greenhouse gas emissions of rice fields in Poyang Lake Basin. Trans. Chin. Soc. Agric. Eng. 2020, 36, 85–93. [Google Scholar]
- Zhang, Y.; Zhou, W.; Chen, L.; Wang, Z.; Zhu, P.; Sheng, J.; Zheng, J. Methane and nitrous oxide emissions under different paddy-upland crop systems during rice growth season in Taihu Lake. Chin. J. Eco-Agric. 2013, 21, 290–296. [Google Scholar] [CrossRef]
- Wang, X.M.; Sun, Y.; Wang, Q.; Song, Q.L.; Zeng, X.N.; Feng, Y.J. Research progress on greenhouse gas emissions and emission reduction in rice fields. Heilongjiang Agric. Sci. 2018, 7, 149–154. [Google Scholar]
- Yang, B.; Zheng, Q.X.; Wang, J.Y.; Xu, X.; Huang, Q.W.; Shen, Q.R. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in China: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, X.Y. Effects of dry-wet cycles on CO2 and N2O emissions from soils in different ecosystems. Acta Ecol. Sin. 2013, 33, 1251–1259. [Google Scholar] [CrossRef]
- Ball, B.C.; Scott, A.; Parker, J.P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Till. Res. 1999, 53, 29–39. [Google Scholar] [CrossRef]
- Xue, Y.; Es, H.M.V.; Schindelbeck, R.R. Effects of a placement, carbon distribution and temperature on N2O emissions in clay loam and loamy sand soils. Soil Use Manag. 2013, 29, 240–249. [Google Scholar] [CrossRef]
- Li, S.Y.; Chen, Y.; Li, T.T.; Zhu, A.; Huang, J.; Wang, H.; Liu, L.J.; Yang, J.C. Effects of water and nutrient management on greenhouse gas emissions in paddy fields. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2019, 40, 16–23. [Google Scholar]
- Zhang, Z.Y.; Yu, X.H.; Xiong, S.P.; Ma, X.M.; Wang, X.C.; Liu, Y.; Yan, G.X.; Li, Y.G. Effects of tillage methods and nitrogen fertilizer reduction on soil enzyme activities and greenhouse gas emissions of wheat yellow cinnamon soil. J. Agro-Environ. Sci. 2020, 39, 418–428. [Google Scholar]
- Huang, T.Q.; Ma, Y.C.; Xiong, Z.Q.; Kong, X.W.; Yu, F.Y. CH4 and N2O emissions from paddy field during the upland crop growing season in relation to cropping pattern. J. Ecol. Rural Environ. 2010, 26, 519–523. [Google Scholar]
- Zhong, C.; Yang, B.J.; Zhang, P.; Li, P.; Huang, G.Q. Effect of paddy-upland rotation with different winter crops on rice yield and CH4 and N2O emissions in paddy fields. J. Nucl. Agric. Sci. 2019, 33, 379–388. [Google Scholar]
Treatment | Cropping Pattern |
---|---|
CRR (CK) | Chinese milk vetch-early rice-late rice |
CRI | Chinese milk vetch-early rice-sweet potato || late soybean |
RRR | Rape-early rice-late rice |
RRI | Rape-early rice-sweet potato || late soybean |
PRR | Potato-early rice-late rice |
Treatments | Crops | 2019 | 2020 | ||
---|---|---|---|---|---|
Fresh Weight | Dry Weight | Fresh Weight | Dry Weight | ||
CRR(CK) | Chinese milk vetch | 31,527.9 b | 6107.53 ab | 33,528.87 b | 6405.92 ab |
CRI | Chinese milk vetch | 34,651.37 a | 6583.76 a | 36,690.28 a | 6812.34 a |
RRR | Rape | 20,611.89 d | 5173.58 c | 23,148.61 c | 5902.90 c |
RRI | rape | 23,169.33 c | 5757.57 b | 24,327.47 c | 6348.51 b |
PRR | Potato | 18,435.17 d | 3746.03 d | 20,314.5 d | 4022.27 d |
Crop | Variety | Sowing or Transplanting Date, Harvest Date | Cropping Pattern | Fertilizing Amount |
---|---|---|---|---|
Chinese milk vetch | Yujiang big leaf seed | 30 September 2018–7 April 2019, 30 September 2019.9.30–7 April 2020 | broadcast sowing | calcium magnesium phosphate 45 kg·ha−1 |
rape | Deyou 558 | 8 November 2018–7 April 2019, 6 November 2019–7 April 2020 | broadcast sowing | N 63.75 kg·ha−1, P2O5 45 kg·ha−1, K2O 225 kg·ha−1 |
potato | Dongnong 303 | 26 November 2018–10 April 2019, 28 November 2019–10 April 2020 | drill seeding | N 63.75 kg·ha−1, P2O5 45 kg·ha−1, K2O 225 kg·ha−1 |
soybean | Kuixian II | 1 August 2019–25 October 2019, 18 August 2020–18 August 2020 | hole seeding | N 150 kg·ha−1, P2O5 150 kg·ha−1, K2O 375 kg·ha−1 |
sweet potato | Guangshu 87 | 1 August 2019–31 October 2019, 18 August 2020–17 November 2020 | drill seeding | N 80 kg·ha−1, P2O5 375 kg·ha−1, K2O 80 kg·ha−1 |
early rice | Zhongjiazao 17 | 26 April 2019–24 July 2019, 4 May 2020–30 July 2020 | transplanting | N 180 kg·ha−1, P2O5 90 kg·ha−1, K2O 120 kg·ha−1 |
late rice | Tianyou Huazhan | 3 August 2019–30 October 2019, 2 August 2020–3 December 2020 | transplanting | N 180 kg·ha−1, P2O5 90 kg·ha−1, K2O 120 kg·ha−1 |
Year | Treatment | Early Rice Yield | Late Rice Yield | Total Yield |
---|---|---|---|---|
2019 | CRR(CK) | 7559.6 ± 243.09 ab | 10,176.67 ± 141.60 b | 17,736.26 ± 362.95 c |
CRI | 6892.93 ± 240.25 bc | 13,752.37 ± 465.95 a | 20,645.30 ± 342.01 a | |
RRR | 6512.12 ± 155.71 bc | 10,650.33 ± 140.94 b | 17,162.45 ± 383.28 c | |
RRI | 5931.31 ± 624.74 c | 12,957.64 ± 468.63 a | 18,888.95 ± 381.63 b | |
PRR | 8086.87 ± 187.3 a | 10,763.44 ± 415.51 b | 18,850.31 ± 421.75 b | |
2020 | CRR(CK) | 7467.89 ± 327.93 ab | 8702.02 ± 207.31 b | 16,169.91 ± 437.29 b |
CRI | 7832.57 ± 494.70 a | 12,026.60 ± 366.79 a | 19,859.18 ± 452.29 a | |
RRR | 6675.84 ± 322.59 b | 8573.74 ± 300.30 b | 15,249.58 ± 292.04 b | |
RRI | 7362.82 ± 611.19 ab | 11,559.51 ± 453.78 a | 18,922.33 ± 778.40 a | |
PRR | 7564.94 ± 346.86 ab | 8921.62 ± 239.71 b | 16,486.15 ± 522.88 b |
Year | Treatment | CH4 Cumulative Emissions | N2O Cumulative Emissions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Winter Crop Season | Early Rice Season | Late Rice Season | Total | Average | Winter Crop Season | Early Rice Season | Late Rice Season | Total | Average | ||
2019 | CRR(CK) | 2.82 ± 1.85 a | 197.94 ± 48.24 a | 303.43 ± 42.71 a | 504.19 ± 92.39 a | 168.06 ± 21.78 a | 0.22 ± 0.37 a | −0.27 ± 0.12 a | 0.06 ± 0.11 b | 0.02 ± 0.41 b | 0.00 ± 0.10 b |
CRI | −0.41 ± 2.27 ab | 82.20 ± 21.37 b | 0.41 ± 0.40 d | 82.19 ± 23.60 d | 27.40 ± 5.56 c | −0.03 ± 0.47 a | 0.02 ± 0.16 a | 4.34 ± 1.74 a | 4.33 ± 1.35 a | 1.44 ± 0.32 a | |
RRR | −8.06 ± 6.31 b | 113.10 ± 18.67 b | 231.53 ± 24.01 b | 336.56 ± 35.87 b | 112.19 ± 8.45 b | −0.02 ± 0.19 a | 0.20 ± 0.06 a | 0.12 ± 0.10 b | 0.30 ± 0.30 b | 0.10 ± 0.07 b | |
RRI | 0.59 ± 4.13 ab | 61.00 ± 4.84 b | −1.62 ± 0.91 d | 59.97 ± 7.01 d | 19.99 ± 1.65 c | 0.06 ± 0.05 a | 0.15 ± 0.02 a | 2.51 ± 1.26 a | 2.73 ± 1.09 a | 0.91 ± 0.26 a | |
PRR | 1.02 ± 2.07 a | 89.69 ± 7.19 b | 130.45 ± 52.25 c | 221.16 ± 54.65 c | 73.72 ± 12.88 b | 0.07 ± 0.25 a | 0.42 ± 0.08 a | 0.04 ± 0.02 b | 0.53 ± 0.15 b | 0.18 ± 0.04 b | |
2020 | CRR(CK) | 0.15 ± 1.26 a | 323.37 ± 29.40 a | 193.70 ± 4.86 b | 517.21 ± 30.91 a | 172.40 ± 7.29 a | 0.78 ± 0.03 b | 0.61 ± 0.24 b | 0.05 ± 0.00 c | 1.43 ± 0.24 c | 0.48 ± 0.05 e |
CRI | −2.83 ± 1.37 a | 184.15 ± 11.97 b | 4.84 ± 0.61 d | 186.16 ± 12.59 d | 62.06 ± 2.97 d | 0.12 ± 0.01 c | 0.70 ± 0.22 b | 6.00 ± 0.01 a | 6.82 ± 0.22 a | 2.28 ± 0.05 a | |
RRR | −1.03 ± 4.14 a | 116.74 ± 6.13 c | 252.65 ± 6.21 a | 368.37 ± 7.10 b | 122.79 ± 1.67 b | 0.93 ± 0.10 b | 1.47 ± 0.29 a | 0.04 ± 0.00 c | 2.44 ± 0.31 c | 0.81 ± 0.07 d | |
RRI | −1.23 ± 4.15 a | 68.69 ± 3.60 d | 1.19 ± 1.94 d | 68.65 ± 15.27 e | 22.88 ± 3.6 e | 0.33 ± 0.04 c | 0.90 ± 0.04 b | 4.85 ± 0.06 b | 6.09 ± 0.19 a | 2.03 ± 0.05 b | |
PRR | 2.61 ± 4.83 a | 106.24 ± 5.31 c | 141.44 ± 8.95 c | 250.29 ± 27.44 c | 83.43 ± 6.47 c | 1.46 ± 0.17 a | 1.87 ± 0.18 a | 0.03 ± 0.00 c | 3.36 ± 0.21 b | 1.12 ± 0.05 c |
Year | Treatment | GWP /(CO2 kg·ha−1) | Contribution Rate/% | Biomass (kg·ha−1) | GHGI (CO2 kg·kg−1) | |||
---|---|---|---|---|---|---|---|---|
CH4 | N2O | Total | CH4 | N2O | ||||
CRR (CK) | 12,604.60 ± 1633.29 a | 4.66 ± 0.58 b | 12,609.21 ± 1603.68 a | 99.96 | 0.04 | 39,458.42 b | 0.32 ± 0.08 a | |
CRI | 2054.71 ± 417.11 c | 1290.75 ± 284.81 a | 3345.46 ± 198.34 d | 61.42 | 38.58 | 45,773.38 a | 0.07 ± 0.01 cd | |
2019 | RRR | 8414.07 ± 634.11 b | 89.66 ± 23.37 b | 8503.73 ± 696.01 b | 98.95 | 1.05 | 39,761.99 b | 0.21 ± 0.02 b |
RRI | 1499.28 ± 123.89 c | 814.10 ± 180.61 a | 2314.04 ± 258.64 d | 64.79 | 35.21 | 43,780.54 a | 0.05 ± 0.01 d | |
PRR | 5529.07 ± 966.09 b | 158.10 ± 31.27 b | 5687.17 ± 936.37 bc | 97.22 | 2.78 | 40,884.73 b | 0.14 ± 0.02 bc | |
CRR(CK) | 12,930.21 ± 946.30 a | 426.27 ± 50.73 e | 13,356.48 ± 547.03 a | 96.81 | 3.19 | 36,720.24 b | 0.36 ± 0.04 a | |
CRI | 4654.07 ± 222.53 d | 2033.10 ± 47.16 a | 6687.17 ± 194.79 c | 69.60 | 30.40 | 44,262.04 a | 0.15 ± 0.01 d | |
2020 | RRR | 9209.28 ± 217.38 b | 726.04 ± 64.37 d | 9935.31 ± 141.22 b | 92.69 | 7.31 | 36,945.74 b | 0.27 ± 0.01 b |
RRI | 1716.21 ± 169.91 e | 1814.14 ± 39.99 b | 3530.34 ± 296.50 d | 48.61 | 51.39 | 44,096.37 a | 0.08 ± 0.01 e | |
PRR | 6257.13 ± 285.10 c | 1001.72 ± 44.57 c | 7258.85 ± 445.27 c | 86.20 | 13.80 | 37,310.48 b | 0.19 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Huang, Y.; Yuan, J.; Hassan, M.U.; Liu, N.; Yang, B. Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions. Agronomy 2023, 13, 2384. https://doi.org/10.3390/agronomy13092384
Tang H, Huang Y, Yuan J, Hassan MU, Liu N, Yang B. Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions. Agronomy. 2023; 13(9):2384. https://doi.org/10.3390/agronomy13092384
Chicago/Turabian StyleTang, Haiying, Yao Huang, Jiaxin Yuan, Muhammad Umair Hassan, Ning Liu, and Binjuan Yang. 2023. "Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions" Agronomy 13, no. 9: 2384. https://doi.org/10.3390/agronomy13092384
APA StyleTang, H., Huang, Y., Yuan, J., Hassan, M. U., Liu, N., & Yang, B. (2023). Effects of Typical Cropping Patterns of Paddy-Upland Multiple Cropping Rotation on Rice Yield and Greenhouse Gas Emissions. Agronomy, 13(9), 2384. https://doi.org/10.3390/agronomy13092384