Population Genetic Analysis of a Bread Wheat Panel from Northern and Huang-Huai Agro-Ecological Regions in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions
2.2. Plant Materials
2.3. DNA Extraction and Genotyping by a Wheat 15K SNP Array
2.4. Population Structure Analysis
2.5. Genetic Diversity Evaluation
2.6. Inference of Ancestry Informative Markers
3. Results
3.1. Distribution of SNP Markers across the Wheat Genome
3.2. Phylogenetic Relationship in the Bread Wheat Panel
3.3. Genetic Diversity within the Three Geographical Groups
3.4. Genomes of the Three Geographical Groups Showed Differently Patterned Mosaics of Different Landrace Groups
4. Discussion
4.1. Genetically Related Chinese Modern Wheat Breeding Lines Have Close Geographical Origins
4.2. Modern Wheat Breeding Lines Have Mosaic Genomic Regions Derived from Different Landrace Groups
4.3. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, H.; Liu, J.; Wen, J.; Nie, X.; Xu, L.; Chen, N.; Li, Z.; Wang, Q.; Zheng, Z.; Li, M.; et al. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol. 2019, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rasheed, A.; He, Z.; Imtiaz, M.; Arif, A.; Mahmood, T.; Ghafoor, A.; Siddiqui, S.U.; Ilyas, M.K.; Wen, W.; et al. Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor. Appl. Genet. 2019, 132, 2509–2523. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Jiao, C.; Hou, J.; Li, T.; Liu, H.; Wang, Y.; Zheng, J.; Liu, H.; Bi, Z.; Xu, F.; et al. Resequencing of 145 cultivars reveals asymmetric sub-genome selection and strong founder genotype effects on wheat breeding in China. Mol. Plant 2020, 13, 1733–1751. [Google Scholar] [CrossRef]
- Zhang, Y.Z. The ancient crops in Xinjiang. Agric. Archaeol. 1983, 3, 122–126. [Google Scholar]
- Li, S.C.; Wang, H. Reconsideration of carbonization wheat found in Donghuishan Site. Collect. Stud. Archaeol. 2013, 10, 399–405. [Google Scholar]
- Wang, J.R.; Luo, M.C.; Chen, Z.X.; You, F.M.; Wei, Y.M.; Zheng, Y.L.; Dvorak, J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 2013, 198, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Long, T.W.; Leipe, C.; Jin, G.; Wagner, M.; Guo, R.; Schroder, O.; Tarasov, P.E. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat. Plants 2018, 4, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hao, C.; Zha, J.; Li, C.; Jiao, C.; Xi, W.; Hou, J.; Li, T.; Liu, H.; Zhang, X. Genomic footprints of wheat evolution in China reflected by a Wheat660K SNP array. Crop J. 2020, 9, 29–41. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, Z.; Chen, M.; Chen, J.; Zhu, T.; Wang, R.; Liu, Y.; Qi, P.; Chen, G.; Jiang, Q.; et al. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnol. J. 2018, 16, 280–291. [Google Scholar] [CrossRef]
- Guo, W.; Xin, M.; Wang, Z.; Yao, Y.; Hu, Z.; Song, W.; Yu, K.; Chen, Y.; Wang, X.; Guan, P.; et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Zhuang, Q.S. Chinese Wheat Improvement and Pedigree Analysis; Agricultural Publisher of China: Beijing, China, 2002; ISBN 7-109-07944-9. [Google Scholar]
- Zeng, X.S. On the expansion of wheat in ancient China. J. Chin. Dietary Cul. 2005, 1, 99–133. [Google Scholar]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A.; et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Pasam, R.; Shi, F.; Kant, S.; Keeble-Gagnere, G.; Kay, P.; Forrest, K.; Fritz, A.; Hucl, P.; Wiebe, K.; et al. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 2019, 51, 896–904. [Google Scholar] [CrossRef]
- Pont, C.; Leroy, T.; Seidel, M.; Tondelli, A.; Duchemin, W.; Armisen, D.; Lang, D.; Bustos-Korts, D.; Goue, N.; Balfourier, F.; et al. Tracing the ancestry of modern bread wheats. Nat. Genet. 2019, 51, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Akhunov, E.D.; Akhunova, A.R.; Anderson, O.D.; Anderson, J.A.; Blake, N.; Clegg, M.T.; Coleman-Derr, D.; Conley, E.J.; Crossman, C.C.; Deal, K.R.; et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genom. 2010, 11, 1–22. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.W.; Wang, S.; Lun, Y.; Gardiner, L.J.; MacLachlan, R.; Hucl, P.; Wiebe, K.; Wong, D.; Forrest, K.; IWGSC; et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Bio. 2015, 16, 1–18. [Google Scholar] [CrossRef]
- Kihara, H. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. 1944, 19, 889–890. [Google Scholar]
- Dvorak, J.; Luo, M.C.; Yang, Z.L.; Zhang, H.B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 1998, 97, 657–670. [Google Scholar] [CrossRef]
- Kilian, B.; Ozkan, H.; Deusch, O.; Effgen, S.; Brandolini, A.; Kohl, J.; Martin, W.; Salamini, F. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol. Biol. Evol. 2006, 24, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Tanno, K.I.; Willcox, G. How fast was wild wheat domesticated? Science 2006, 311, 1886. [Google Scholar] [CrossRef] [PubMed]
- Marcussen, T.; Sandve, S.; Heier, L.; Spannagl, M.; Peeifer, M.; IWGSC; Jakobsen, K.S.; Wulff, B.B.H.; Steuernagel, B.; Mayer, K.X.; et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 2014, 345, 1250092. [Google Scholar] [CrossRef] [PubMed]
- International Wheat Genome Sequencing Consortium (IWGSC); Mayer, K.F.X.; Rogers, J.; Dolezel, J.; Pozniak, C.; Eversole, K.; Feuillet, C.; Gill, B.; Friebe, B.; Lukaszewski, A.J.; et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar] [CrossRef] [PubMed]
- Nevo, E.; Noy-Meir, I.; Beiles, A.; Krugman, T.; Agami, M. Natural selection of allozyme polymorphisms: Micro-geographical spatial and temporal ecological differentiations in wild emmer wheat. Isr. J. Bot. 1991, 40, 419–449. [Google Scholar]
- Salarpour, M.; Abdolshahi, R.; Pakniyat, H.; Heidari, B.; Aminizadeh, S. Mapping quantitative trait loci for drought tolerance/susceptibility indices and estimation of breeding values of doubled haploid lines in wheat (Triticum aestivum). Crop Pasture Sci. 2021, 72, 500–513. [Google Scholar] [CrossRef]
- Shariatipour, N.; Heidari, B.; Tahmasebi, A.; Richards, C. Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality, and agronomic traits in Wheat (Triticum aestivum L.). Front. Plant Sci. 2021, 12, 709817. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Rajaram, S.; Xin, Z. A History of Wheat Breeding in China; CIMMYT: Texcoco, Mexico, 2001; ISBN 970-648-079-X. [Google Scholar]
- International Wheat Genome Sequencing Consortium (IWGSC); Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.J. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, G.; Sun, G.L.; Sun, D.K.; Ren, X.F. Transcriptome and metabolite insights into domestication process of cultivated barley in China. Plants 2022, 11, 209. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Elston, R. Linkage information content of polymorphic genetic markers. Human Hered. 1999, 49, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Rubin, C.J.; Zody, M.C.; Eriksson, J.; Meadows, J.R.S.; Sherwood, E.; Webster, M.T.; Jiang, L.; Ingman, M.; Sharpe, T.; Ka, S.; et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010, 464, 587–591. [Google Scholar] [CrossRef]
- Dai, F.; Chen, Z.H.; Wang, X.; Li, Z.; Jin, G.; Wu, D.; Cai, S.; Wang, N.; Wu, F.; Nevo, E.; et al. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc. Natl. Acad. Sci. USA 2014, 111, 13403–13408. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Allaby, R.G.; Kistler, L.; Gutaker, R.M.; Ware, R.; Kitchen, J.L.; Smith, O.; Clarke, A.C. Archaeogenomic insights into the adaptation of plants to the human environment: Pushing plant-hominin co-evolution back to the Pliocene. J. Human Evol. 2015, 79, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Chen, L.; Sun, D.; You, F.M.; Wang, J.; Peng, Y.; Nevo, E.; Beiles, A.; Sun, D.; Luo, M.C.; et al. SNP revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol. Boil. 2013, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ren, X.F.; Song, X.; Li, X.; Zhou, Y.; Harlev, E.; Sun, D.; Nevo, E. Incipient sympatric speciation in wild barley caused by geological-edaphic divergence. Life Sci. Alliance 2020, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bonman, J.M.; Babiker, E.M.; Cuesta-Marcos, A.; Esvelt-Klos, K.; Brown-Guedira, G.; Chao, S.; See, D.; Chen, J.; Akhunov, E.; Zhang, J.; et al. Genetic diversity among wheat accessions from the USDA National Small Grains Collection. Crop Sci. 2015, 55, 1243–1253. [Google Scholar] [CrossRef]
- Hao, C.; Wang, Y.; Chao, S.; Li, T.; Liu, H.; Wang, L.; Zhang, X. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B. Population- and quantitative-genetic models of selection limits. In Plant Breeding Reviews; Janick, J., Ed.; Wiley: Hoboken, NJ, USA, 2003; Volume 24, pp. 177–225. ISBN 9780471353164. [Google Scholar]
- Hamblin, M.T.; Buckler, E.S.; Jannink, J.L. Population genetics of genomics-based crop improvement methods. Trends Genet. 2011, 27, 98–106. [Google Scholar] [CrossRef]
- Yu, Z.; Peng, Y.; Islam, M.; She, M.; Lu, M.; Lafiandra, D.; Roy, N.; Juhasz, A.; Yan, G.; Ma, W. Molecular characterization and phylogenetic analysis of active y-type high molecular weight glutenin subunit genes at Glu-A1 locus in wheat. J. Cereal Sci. 2019, 86, 9–14. [Google Scholar] [CrossRef]
- Guo, X.; Gao, A.; Liu, W.; Yang, X.; Li, X.; Li, L. Evaluation of genetic diversity, population structure, and linkage disequilibrium among elite Chinese wheat (Triticum aestivum L.) cultivars. Aust. J. Crop Sci. 2011, 5, 1167–1172. [Google Scholar] [CrossRef]
- Hao, C.; Wang, L.; Ge, H.; Dong, Y.; Zhang, X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE 2011, 6, e17279. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Hao, C.; Wang, Z.; Geng, S.; Jia, M.; Wang, F.; Han, X.; Kong, X.; Yin, L.; Tao, S.; et al. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Mol. Plant 2022, 15, 504–519. [Google Scholar] [CrossRef] [PubMed]
- Van Heerwaarden, J.; Huford, M.B.; Ross-Ibarra, J. Historical genomics of North American maize. Proc. Natl. Acad. Sci. USA 2012, 109, 12420–12425. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, X.; Liu, D.; Li, Y.; Lightfoot, D.A.; Yang, Z.; Zhao, L.; Zhou, G.; Wang, Z.; Huang, L.; et al. Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol. 2016, 209, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wan, H.S.; Yang, W.Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 2014, 52, 735–742. [Google Scholar] [CrossRef]
Groups | n | π | MAF | PIC | Hexp |
---|---|---|---|---|---|
Region: | |||||
HH1 | 72 | 0.31167 | 0.2663 | 0.2668 | 0.3346 |
NW | 120 | 0.31058 | 0.2597 | 0.2675 | 0.3360 |
HH2 | 59 | 0.27835 | 0.2353 | 0.2378 | 0.2940 |
Years: | |||||
Before 2000 | 39 | 0.34995 | 0.2834 | 0.2728 | 0.3435 |
2000–2009 | 98 | 0.33023 | 0.2647 | 0.2747 | 0.3458 |
After 2009 | 155 | 0.28510 | 0.2489 | 0.2629 | 0.3291 |
Code | Accessions Name | Group | Code | Accessions Name | Group |
---|---|---|---|---|---|
1 | Chinese Spring | Landrace1 | 35 | Yingman 208 | Shandong |
2 | Baihulutou | Landrace1 | 36 | Shannong k32561 | Shandong |
3 | Mazhamai | Landrace1 | 37 | Shannong 27 | Shandong |
4 | Laofulin 10 | Landrace2 | 38 | Taishan 5366 | Shandong |
5 | Shuangfengshou | Landrace2 | 39 | Shannong 2149 | Shandong |
6 | Baiqimai | Landrace2 | 40 | Lumai 14 | Shandong |
7 | Songhuajiang 1 | Landrace2 | 41 | Daimai 2251 | Shandong |
8 | Hengdalihong | Landrace2 | 42 | Jimai 60 | Shandong |
9 | Bawangbian | Landrace2 | 43 | Keyuan 026 | Shandong |
10 | Shijiazhuang 75 | Landrace2 | 44 | Luyan 213 | Shandong |
11 | Hongheshang | Landrace2 | 45 | Yimai 1 | Shandong |
12 | Xiaobaimang | Landrace2 | 46 | Zimai 28 | Shandong |
13 | Nongda 399 | Hebei | 47 | Yimai 2 | Shandong |
14 | Jifeng 717 | Hebei | 48 | Yangguang 503 | Shandong |
15 | Jinhe 9123 | Hebei | 49 | Yangguang 10 | Shandong |
16 | Shimai 22 | Hebei | 50 | Yannong 836 | Shandong |
17 | Jimai 817 | Hebei | 51 | Jingyang 670 | Shandong |
18 | Jimai 26 | Hebei | 52 | Wennong 5 | Shandong |
19 | Shimai 28 | Hebei | 53 | Aikang 58 | Henan |
20 | ShiH09-7075 | Hebei | 54 | Zhoumai 35 | Henan |
21 | Shi 4185 | Hebei | 55 | Zhengyumai 9989 | Henan |
22 | Shimai 12 | Hebei | 56 | Cunmai 8 | Henan |
23 | Shimai 14 | Hebei | 57 | Dunfeng 801 | Henan |
24 | Heng 11-6021 | Hebei | 58 | Xinmai 28 | Henan |
25 | Jimai 161 | Hebei | 59 | Zhengmai 9023 | Henan |
26 | Kenong 1006 | Hebei | 60 | Yimai 6 | Henan |
27 | Jimai 120 | Hebei | 61 | Zhoumai 16 | Henan |
28 | Kenong 8162 | Hebei | 62 | Xun 2016 | Henan |
29 | Kenong 1002 | Hebei | 63 | Fengyuan 2017 | Henan |
30 | Qingnong 9 | Shandong | 64 | Xianmai 10 | Henan |
31 | Qingmai 6 | Shandong | 65 | Cunmai 12 | Henan |
32 | Liangxing 99 | Shandong | 66 | Fengdecunmai 10 | Henan |
33 | Jimai 22 | Shandong | 67 | Zhoumai 18 | Henan |
34 | Shannong 24 | Shandong |
Groups | Heibei | Henan | Shandong |
---|---|---|---|
Landrace1 | 2353 | 1720 | 1423 |
Landrace2 | 3704 | 4337 | 4634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Gao, H.; Liu, Q.; Zhao, Y.; He, W.; Wang, G.; Zhou, Y.; Song, Z.; Zhao, X.; Ren, X.; et al. Population Genetic Analysis of a Bread Wheat Panel from Northern and Huang-Huai Agro-Ecological Regions in China. Agronomy 2023, 13, 2408. https://doi.org/10.3390/agronomy13092408
Jin X, Gao H, Liu Q, Zhao Y, He W, Wang G, Zhou Y, Song Z, Zhao X, Ren X, et al. Population Genetic Analysis of a Bread Wheat Panel from Northern and Huang-Huai Agro-Ecological Regions in China. Agronomy. 2023; 13(9):2408. https://doi.org/10.3390/agronomy13092408
Chicago/Turabian StyleJin, Xiaojie, Huimin Gao, Qian Liu, Yun Zhao, Wenchuang He, Guijuan Wang, Yu Zhou, Zheng Song, Xiaobin Zhao, Xifeng Ren, and et al. 2023. "Population Genetic Analysis of a Bread Wheat Panel from Northern and Huang-Huai Agro-Ecological Regions in China" Agronomy 13, no. 9: 2408. https://doi.org/10.3390/agronomy13092408
APA StyleJin, X., Gao, H., Liu, Q., Zhao, Y., He, W., Wang, G., Zhou, Y., Song, Z., Zhao, X., Ren, X., Peng, Y., & Zhang, Y. (2023). Population Genetic Analysis of a Bread Wheat Panel from Northern and Huang-Huai Agro-Ecological Regions in China. Agronomy, 13(9), 2408. https://doi.org/10.3390/agronomy13092408