The Molecular Composition of Peat Organic Matter and Prospects for Its Use in Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Precision Reports. Global Humic Acid Organic Fertilizer Industry Research Report, in-Depth Analysis of Current Status and Outlook of Key Countries 2023–2028; Precision Reports: Maharashtra, India, 2023. [Google Scholar]
- Povolotskaya, Y.S. Summary of human preparations. Int. J. Human. Nat. Sci. 2019, 5-1, 37–40. [Google Scholar] [CrossRef]
- Bezuglova, O.; Klimenko, A. Application of humic substances in agricultural industry. Agronomy 2022, 12, 584. [Google Scholar] [CrossRef]
- Lodygin, E.; Shamrikova, E.; Kubik, O.; Chebotarev, N.; Abakumov, E. The role of organic and mineral fertilization in maintaining fertility and productivity of cryolithozone soils. Agronomy 2023, 13, 1384. [Google Scholar] [CrossRef]
- Naumova, G.V.; Makarova, N.L.; Zhmakova, N.A.; Ovchinnikova, T.F. The influence of humic substances on the enzymatic activity of the soil when growing certain crops. North Cauc. Ecol. Her. 2019, 15, 19–23. [Google Scholar]
- Hassanpanah, D.; Gurbanov, E.; Gadimov, A.; Shahrairi, R. Determination of yield stability in advanced potato cultivars as affected by water deficit and potassium humate in Ardabil region, Iran. Pak. J. Biol. Sci. 2008, 10, 1354–1359. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Filippova, O.I. Mitigating activity of humic substances in relation to wheat seedlings under unfavorable temperatures. Agrochem. Her. 2018, 2, 33–37. [Google Scholar] [CrossRef]
- Dobrovolsky, G.V.; Taskaev, A.I.; Zaboeva, I.V. (Eds.) Soil Atlas of the Komi Republic; LC Komi Republician Publishing House: Syktyvkar, Russia, 2010; p. 356. [Google Scholar]
- Wang, M.C.; Yang, C.H. Type of fertilizer applied to a paddy–upland rotation affects selected soil quality attributes. Geoderma 2003, 114, 93–108. [Google Scholar] [CrossRef]
- Grekhova, I.V. Humic preparation of lowland peat. Theor. Appl. Ecol. 2015, 1, 85–88. [Google Scholar] [CrossRef]
- Vasilevich, R.; Vasilevich, M.; Lodygin, E.; Abakumov, E. Geochemical characteristics of the vertical distribution of heavy metals in the hummocky peatlands of the cryolithozone. Int. J. Env. Res. Public Health 2023, 20, 3847. [Google Scholar] [CrossRef]
- Kaverin, D.; Pastukhov, A.; Novakovskiy, A.; Malkova, G.; Sadurtdinov, M.; Skvortsov, A.; Tsarev, A.; Zamolodchikov, D.; Shiklomanov, N.; Pochikalov, A.; et al. Long-term active layer monitoring at CALM sites in the Russian European North. Polar Geogr. 2021, 44, 203–216. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. [Google Scholar]
- Kaverin, D.A.; Pastukhov, A.V.; Lapteva, E.M.; Biasi, C.; Marushchak, M.; Martikainen, P. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra. Eurasian Soil Sci. 2016, 49, 498–511. [Google Scholar] [CrossRef]
- Pastukhov, A.V.; Marchenko-Vagapova, T.I.; Kaverin, D.A.; Kulizhskii, S.P.; Kuznetsov, O.L.; Panov, V.S. Dynamics of peat plateau near the southern boundary of the East European permafrost zone. Eurasian Soil Sci. 2017, 50, 526–538. [Google Scholar] [CrossRef]
- Routh, J.; Hugelius, G.; Kuhryb, P.; Filley, T.; Tillman, P.K.; Becher, M.; Crill, P. Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic. Chem. Geol. 2014, 368, 104–117. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1018–1020. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Pol. Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The molecular composition of humic acids in permafrost peats in the European Arctic as paleorecord of the environmental conditions of the Holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- Winkler, A.; Haumaier, L.; Zech, W. Insoluble alkyl carbon components in soils derive mainly from cutin and suberin. Org. Geochem. 2005, 36, 519–529. [Google Scholar] [CrossRef]
- Kovaleva, N.O.; Kovalev, I.V. Lignin phenols in soils as biomarkers of paleovegetation. Eurasian Soil Sci. 2015, 48, 946–958. [Google Scholar] [CrossRef]
- Rasyid, U.; Johnson, W.D.; Wilson, M.A.; Hanna, J.V. Changes in organic structural group composition of humic and fulvic acids with depth in sediments from similar geographical but different depositional environments. Org. Geochem. 1992, 18, 521–529. [Google Scholar] [CrossRef]
- Tadini, A.M.; Pantano, G.; Toffoli, A.L.; Fontaine, B.; Spaccini, R.; Piccolo, A.; Moreira, A.B.; Bisinoti, M.C. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses. Sci. Total Environ. 2015, 506–507, 234–240. [Google Scholar] [CrossRef]
- Keeler, C.; Kelly, E.F.; Maciel, G.E. Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma 2006, 130, 124–140. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Silva, A.M.S.; Duarte, A.C. Two-dimensional NMR studies of water-soluble organic matter in atmospheric aerosols. Environ. Sci. Technol. 2008, 42, 8224–8230. [Google Scholar] [CrossRef]
- Klavins, M.; Purmalis, O. Properties and structure of raised bog peat humic acids. J. Mol. Struct. 2013, 1050, 103–113. [Google Scholar] [CrossRef]
- Archegova, I.B. Effect of freezing on the sorption, composition, and properties of humic substances. Sov. Soil Sci. 1979, 11, 39–49. [Google Scholar]
- Krumins, J.; Klavins, M.; Krukovskis, R. Characterisation of humic acids in fen peat. Int. J. Agric. Res. Gov. Ecol. 2020, 16, 74–89. [Google Scholar] [CrossRef]
- Inisheva, L.I.; Yudina, N.V.; Sokolova, I.V.; Lariona, G.V. Characteristics of humic acids of particular peat types. Khim. Rastit. Syr’ya 2013, 4, 179–185. [Google Scholar] [CrossRef]
- Savel’eva, A.V.; Yudina, N.V.; Inisheva, L.I. Characteristics of humic acids in a system of geochemically linked bog landscapes. Solid Fuel Chem. 2020, 54, 253–259. [Google Scholar] [CrossRef]
- Roland, T.P.; Daley, T.J.; Caseldine, C.J.; Charman, D.J.; Turney, C.S.M.; Amesbury, M.J.; Thompson, G.J.; Woodley, E.J. The 5.2 ka climate event: Evidence from stable isotope and multi-proxy palaeocological peatland records in Ireland. Quat. Sci. Rev. 2015, 124, 209–223. [Google Scholar] [CrossRef]
- Lodygin, E.; Shamrikova, E. Use of the pK Spectroscopy method in the study of protolytic properties of humic substances and other soil polyelectrolytes. Agronomy 2021, 11, 1051. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Kubik, O.S.; Deneva, S.V.; Punegov, V.V. Composition of the water-soluble soil fraction on the barents sea coast: Organic carbon and nitrogen, low-molecular weight components. Eurasian Soil Sci. 2019, 52, 1347–1362. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification; Taylor & Francis: London, UK, 1995; p. 266. [Google Scholar] [CrossRef]
Depth, cm | Peat Layer | Peat Type | Dominant Botanical Species | Degree of Decomposition, % | Ash, % | pH H2O | C/N | Gravimetric Concentrations of HAs, % |
---|---|---|---|---|---|---|---|---|
Hemic Folic Cryic Histosol | ||||||||
0–10 | Hi | Raised | Polytrichum | 20–25 | 5.4 ± 0.3 1 | 3.75 ± 0.06 | 30.1 ± 2.3 | 16.6 |
10–20 | He1 | Raised | Subshrub | 35–40 | 5.9 ± 0.4 | 3.70 ± 0.06 | 24.5 ± 1.8 | 24.8 |
20–40 | He2 | Fen | Carex, Eriophorum | 30–40 | 4.2 ± 0.3 | 3.74 ± 0.06 | 21.4 ± 1.6 | 21.8 |
40–60 | Hef1 | Fen, frozen | Betula sp., wood | 30–35 | 6.4 ± 0.4 | 4.34 ± 0.07 | 32.0 ± 2.4 | 26.9 |
60–80 | Hef2 | Fen, frozen | Carex, Menyanthes | 30–35 | 33.1 ± 1.0 | 4.86 ± 0.07 | 22.4 ± 1.7 | 11.2 |
80–100 | Hef3 | Fen, frozen | Betula sp., Carex, wood | 35–40 | 16.6 ± 0.5 | 4.94 ± 0.07 | 26.8 ± 2.0 | 3.9 |
100–150 | Hef4 | Fen, frozen | Betula sp., Carex, wood | 30–40 | 47.5 ± 1.4 | 4.95 ± 0.07 | 22.2 ± 1.7 | 2.4 |
150–175 | Hef5 | Fen, frozen | Betula sp., Carex, wood | 35–40 | 54.7 ± 1.6 | 5.37 ± 0.08 | 22.0 ± 1.7 | 4.1 |
175–200 | Chgf | – | Betula sp., Picea, grass, wood | >50 | 86.3 ± 2.6 | 5.33 ± 0.08 | 17.2 ± 1.3 | 3.4 |
Hemic Folic Cryic Histosol (Turbic) | ||||||||
0–5 | Hi@ | Raised | Polytrichum | 20–25 | 8.0 ± 0.5 | 3.61 ± 0.05 | 28.7 ± 2.2 | 27.6 |
5–20 | He1 | Transitional | Eriophorum, Subshrub | 40–45 | 4.9 ± 0.3 | 3.42 ± 0.05 | 25.5 ± 1.9 | 24.1 |
20–40 | He2 | Fen | Carex | 30–35 | 4.6 ± 0.3 | 3.66 ± 0.05 | 26.6 ± 2.0 | 14.2 |
40–60 | Hef1 | Fen, frozen | Carex, Hypnaceous | 30–50 | 14.1 ± 0.4 | 4.24 ± 0.06 | 23.6 ± 1.8 | 8.5 |
60–80 | Hef2 | Fen, frozen | Carex, Subshrub | 35–40 | 54.3 ± 1.6 | 5.05 ± 0.08 | 25.0 ± 1.9 | 3.8 |
80–100 | Hef3 | Fen, frozen | Carex | 35 | 44.9 ± 1.3 | 5.00 ± 0.08 | 24.1 ± 1.8 | 3.4 |
100–150 | Hef4 | Fen, frozen | Betula sp., Carex, Picea, wood | 35–40 | 65.1 ± 2.0 | 5.47 ± 0.08 | 23.4 ± 1.8 | 5.0 |
150–175 | Chgf1 | – | Betula sp., Carex, Picea, wood | 40–45 | 76.9 ± 2.3 | 5.32 ± 0.08 | 21.0 ± 1.6 | 1.9 |
175–200 | Chgf2 | – | Betula sp., Carex, Equisetum, Picea, wood | >50 | 88.2 ± 2.6 | 5.51 ± 0.08 | 18.6 ± 1.4 | 4.3 |
Horizon | Chemical Shift, ppm | |||||||
---|---|---|---|---|---|---|---|---|
0–47 | 47–60 | 60–108 | 108–144 | 144–164 | 164–183 | 183–190 | 190–204 | |
Alkyl | O,N-Alkyl | Aromatic | Carboxyl, Ester, Amide | Quinone | Carbonyl | |||
Hemic Folic Cryic Histosol | ||||||||
Raw peats | ||||||||
Hi | 36.8 | 0.9 | 55.5 | 1.7 | 0.7 | 4.2 | 0.0 | 0.1 |
He1 | 47.6 | 1.1 | 44.4 | 1.2 | 0.7 | 5.0 | 0.1 | 0.0 |
He2 | 54.1 | 1.5 | 37.4 | 0.9 | 0.2 | 5.4 | 0.2 | 0.2 |
Hef1 | 57.4 | 1.8 | 34.8 | 1.6 | 0.2 | 3.7 | 0.1 | 0.3 |
Hef2 | 61.3 | 1.3 | 30.5 | 1.5 | 0.8 | 4.6 | 0.0 | 0.2 |
Humic acids | ||||||||
Hi | 40.4 | 10.4 | 22.0 | 13.6 | 3.9 | 8.4 | 0.3 | 1.0 |
He1 | 46.6 | 10.5 | 20.3 | 11.2 | 3.8 | 7.4 | 0.2 | 0.1 |
He2 | 37.6 | 10.2 | 22.2 | 15.4 | 5.3 | 8.3 | 0.3 | 0.7 |
Hef1 | 35.5 | 10.4 | 23.2 | 16.9 | 4.9 | 7.7 | 0.7 | 0.7 |
Hef2 | 35.6 | 11.4 | 22.1 | 16.9 | 4.8 | 7.5 | 0.9 | 0.9 |
Hef3 | 30.4 | 14.5 | 20.4 | 19.4 | 5.3 | 7.8 | 1.1 | 1.0 |
Hef4 | 34.8 | 15.8 | 21.5 | 16.0 | 3.1 | 8.0 | 0.5 | 0.2 |
Hef5 | 32.1 | 11.9 | 19.9 | 20.7 | 5.9 | 8.8 | 0.2 | 0.6 |
Chgf | 33.2 | 12.2 | 18.5 | 20.6 | 5.1 | 9.1 | 0.1 | 1.4 |
Fulvic acids | ||||||||
Hi | 12.1 | 6.6 | 74.0 | 1.6 | 0.0 | 5.7 | 0.0 | 0.0 |
He1 | 7.1 | 4.5 | 80.1 | 2.3 | 0.1 | 5.7 | 0.0 | 0.1 |
He2 | 11.7 | 7.2 | 72.4 | 3.0 | 0.1 | 5.5 | 0.0 | 0.1 |
Hef1 | 9.8 | 5.0 | 64.7 | 10.2 | 2.2 | 6.7 | 0.5 | 1.0 |
Hef2 | 16.2 | 9.0 | 61.2 | 4.5 | 1.0 | 7.3 | 0.1 | 0.6 |
Hef3 | 10.7 | 5.0 | 70.8 | 3.4 | 0.2 | 9.6 | 0.0 | 0.2 |
Hef4 | 15.3 | 10.0 | 61.9 | 3.1 | 0.5 | 9.1 | 0.0 | 0.1 |
Hef5 | 14.5 | 7.7 | 55.0 | 9.2 | 2.2 | 11.1 | 0.0 | 0.2 |
Chgf | 16.9 | 10.1 | 56.4 | 3.7 | 0.8 | 11.5 | 0.0 | 0.5 |
Hemic Folic Cryic Histosol (Turbic) | ||||||||
Raw peats | ||||||||
Hi@ | 50.6 | 4.1 | 33.2 | 5.8 | 1.2 | 4.9 | 0.0 | 0.2 |
He1 | 33.1 | 2.1 | 49.5 | 6.6 | 2.6 | 5.3 | 0.2 | 0.5 |
He2 | 40.1 | 4.7 | 40.1 | 5.6 | 4.0 | 5.2 | 0.0 | 0.2 |
Hef1 | 32.9 | 2.5 | 45.2 | 7.0 | 7.1 | 4.7 | 0.3 | 0.3 |
Hef2 | 30.7 | 5.4 | 48.2 | 5.7 | 4.5 | 5.2 | 0.2 | 0.1 |
Humic acids | ||||||||
Hi@ | 40.8 | 10.9 | 22.2 | 14.0 | 2.9 | 8.5 | 0.1 | 0.5 |
He1 | 36.1 | 12.6 | 24.0 | 14.9 | 4.7 | 7.5 | 0.1 | 0.2 |
He2 | 19.0 | 8.9 | 24.6 | 25.1 | 10.8 | 9.7 | 0.4 | 1.5 |
Hef1 | 20.7 | 12.6 | 23.5 | 25.1 | 7.5 | 8.7 | 0.9 | 1.1 |
Hef2 | 39.3 | 12.2 | 22.8 | 14.2 | 5.0 | 6.1 | 0.2 | 0.1 |
Hef3 | 38.4 | 12.6 | 18.0 | 17.0 | 3.5 | 8.0 | 0.9 | 1.6 |
Hef4 | 38.0 | 13.4 | 18.8 | 16.1 | 2.7 | 8.3 | 1.3 | 1.5 |
Chgf1 | 27.7 | 9.4 | 17.2 | 25.3 | 9.2 | 10.8 | 0.0 | 0.4 |
Chgf2 | 39.8 | 10.2 | 16.7 | 17.3 | 4.8 | 10.0 | 0.3 | 0.9 |
Fulvic acids | ||||||||
Hi@ | 11.2 | 6.8 | 69.8 | 4.6 | 0.4 | 6.8 | 0.2 | 0.2 |
He1 | 17.2 | 8.6 | 59.0 | 4.6 | 1.1 | 8.7 | 0.1 | 0.7 |
He2 | 24.2 | 8.9 | 54.0 | 5.8 | 0.7 | 6.1 | 0.0 | 0.2 |
Hef1 | 18.2 | 7.9 | 61.1 | 2.5 | 1.3 | 8.1 | 0.0 | 0.9 |
Hef2 | 18.3 | 8.1 | 55.8 | 6.8 | 1.6 | 9.4 | 0.0 | 0.1 |
Hef3 | 15.0 | 7.9 | 57.9 | 3.4 | 1.2 | 12.4 | 0.5 | 1.8 |
Hef4 | 15.4 | 8.8 | 59.2 | 3.0 | 1.3 | 10.6 | 0.5 | 1.3 |
Chgf1 | 17.9 | 9.8 | 47.4 | 8.4 | 1.4 | 14.3 | 0.0 | 0.8 |
Chgf2 | 14.9 | 9.4 | 59.3 | 3.6 | 0.4 | 12.1 | 0.0 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Vasilevich, R.; Abakumov, E. The Molecular Composition of Peat Organic Matter and Prospects for Its Use in Agriculture. Agronomy 2023, 13, 2414. https://doi.org/10.3390/agronomy13092414
Lodygin E, Vasilevich R, Abakumov E. The Molecular Composition of Peat Organic Matter and Prospects for Its Use in Agriculture. Agronomy. 2023; 13(9):2414. https://doi.org/10.3390/agronomy13092414
Chicago/Turabian StyleLodygin, Evgeny, Roman Vasilevich, and Evgeny Abakumov. 2023. "The Molecular Composition of Peat Organic Matter and Prospects for Its Use in Agriculture" Agronomy 13, no. 9: 2414. https://doi.org/10.3390/agronomy13092414
APA StyleLodygin, E., Vasilevich, R., & Abakumov, E. (2023). The Molecular Composition of Peat Organic Matter and Prospects for Its Use in Agriculture. Agronomy, 13(9), 2414. https://doi.org/10.3390/agronomy13092414