Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure and Data Source and Collection
2.2. Experiment Design
- u = mean.
- Wi = the effect of watering volume factor.
- Pj = the effect of growing house.
- rk = replication.
- Wi Pj = the effect of the interaction between watering volume and growing house.
- -
- Treatments are ordered according to mean.
- -
- The formula used is as follows:
- -
- Test criteria are determined as follows.
2.2.1. Preparation, Nursery and Transplanting
2.2.2. Watering Volume Application
3. Results
3.1. Observation of Weather within Research
3.2. Growth Rate
3.3. Fruit Diameter (mm)
3.4. Single Fruit Weight
3.5. Fruits per Plant
3.6. Fruit Yield per Plant
3.7. Root Dry Weight
3.8. Shoot Dry Weight
3.9. Root–Shoot Ratio
3.10. Biological Yield per Plant
3.11. Chlorophyl Content (SPAD)
3.12. Fruit Texture (Firmness and Elasticity)
4. Discussion
4.1. Growth Rate
4.2. Fruit Diameter
4.3. Single Fruit Weight
4.4. Fruits per Plant
4.5. Fruit Yield per Plant
4.6. Biological Yield per Plant
4.7. Root Dry Weight
4.8. Shoot Dry Weight
4.9. Root–Shoot Ratio
4.10. Chlorophyl Content
4.11. Fruit Texture (Firmness and Elasticity)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsouvaltzis, P.; Gkountina, S.; Siomos, A.S. Quality Traits and Nutritional Components of Cherry Tomato in Relation to the Harvesting Period, Storage Duration and Fruit Position in the Truss. Plants 2023, 12, 315. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.R.; El-Abd, S.O.; Singer, S.M.; Abou-Hadid, A.F. Effect of shade on the growth and yield of tomato plants. Acta Hort. 1996, 434, 313–320. [Google Scholar] [CrossRef]
- Dede Melomey, L.; Danquah, A.; Offei, S.K.; Ofori, K.; Danquah, E.Y.; Osei, M.K. Review on Tomato (Solanum lycopersicum L.) Improvement Programmes in Ghana. In Recent Advances in Tomato Breeding and Production; Intechopen: London, UK, 2019; pp. 49–69. [Google Scholar] [CrossRef]
- Islam, M.Z.; Lee, Y.; Mele, M.A.; Choi, I. Effect of fruit size on fruit quality, shelf life and microbial activity in cherry tomatoes. AIMS Agric. Food 2019, 4, 340–348. [Google Scholar] [CrossRef]
- Rahul, S.; Rahman, M.; Rakibuzzaman, M.; Islam, M.N.; Uddin, A.F.M.J. Study on growth and yield characteristics of twelve cherry tomato lines. Horticulture 2018, 17, 1403–1409. [Google Scholar] [CrossRef]
- Muttappanavar, R.D.; Sadashiva, A.T.; Vijendrakumar, R.C.; Roopa, B.N.; Vasantha, P.T. Combining Ability Analysis of Growth, Yield and Quality Traits in Cherry Tomato (Solanum lycopersicum var. cersiforme). Mol. Plant Breed. 2014, 5, 2014. [Google Scholar] [CrossRef]
- Singh, P.K.; Hussain, Z.; Raman, S.; Patel, N. Pusa Golden Cherry Tomato-2: New promising yellow cherry tomato for protected cultivation. In Indian Horticulture; Center for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute: New Delhi, India, 2022; p. 8. [Google Scholar]
- Kumar, B.; Singh, P.; Singh, R.P.; Kewat, R.N.; Singh, R.P. Evaluation of Quality Parameters at Ripening Stage in New Tomato (Lycopersicon esculentum Mill.) Germplasms. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 117–122. [Google Scholar] [CrossRef]
- Michailidis, P.A.; Krokida, M.K. Drying and Dehydration Processes in Food Preservation and Processing. In Conventional Food Processing; Bhattacharya, S., Ed.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2015; pp. 1–31. [Google Scholar]
- Ha, H.T.N.; Thuy, N.M. Application of intermittent vacuum treatment on the osmotic dehydration of black cherry tomatoes (Solanum lycopersicum cv. OG). J. Appl. Biol. Biotechnol. 2022, 10, 136–142. [Google Scholar] [CrossRef]
- Pratiwi, A.; Sastra, E.; Utami, I. Growth Response of Oval Red Cherry Tomatoes (Solanum lycopersicum Var. Cerasiforme) to Different Frequency of Watering. Bioeduscience 2021, 5, 183–187. [Google Scholar] [CrossRef]
- Rm, K.; Mbega, E.; Ndakidemi, P. Drought Tolerance Mechanisms in Plants: Physiological Responses Associated with Water Deficit Stress in Solanum lycopersicum. Adv. Crop Sci. Technol. 2018, 6, 362. [Google Scholar] [CrossRef]
- Liu, L.; Shi, X.; Zhang, S.; Shi, Y.; Long, Y. Saccharinity test on cherry tomatoes based on hyperspectral imaging. Int. J. Des. Nat. Ecodynamics 2020, 15, 103–111. [Google Scholar] [CrossRef]
- Alfeo, V.; Planeta, D.; Velotto, S.; Palmeri, R.; Todaro, A. Cherry tomato drying: Sun versus convective oven. Horticulturae 2021, 7, 40. [Google Scholar] [CrossRef]
- Valliyodan, B.; Ye, H.; Song, L.; Murphy, M.; Shannon, J.G.; Nguyen, H.T. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J. Exp. Bot. 2017, 68, 1835–1849. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, J.; Lian, L.; Song, J.; Du, X.; Liu, W.; Zhao, W.; Yang, L.; Li, C.; Qin, Y.; et al. Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose- accumulating cherry tomato fruits. BMC Plant Biol. 2022, 22, 303. [Google Scholar] [CrossRef] [PubMed]
- Song, J.I.E.; Shi, W.; Liu, R.; Xu, Y.; Sui, N.A.; Zhou, J.; Feng, G.U. The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte Suaeda salsa to salinity. Plant Species Biol. 2017, 32, 107–114. [Google Scholar] [CrossRef]
- Dannehl, D.; Huber, C.; Rocksch, T.; Huyskens-Keil, S.; Schmidt, U. Interactions between changing climate conditions in a semi-closed greenhouse and plant development, fruit yield, and health-promoting plant compounds of tomatoes. Sci. Hortic. 2012, 138, 235–243. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Chandni; Singh, D.; Akhtar, S.; Dutta, S.K. Effect of Microclimate on Yield and Quality Attributes of Cherry Tomato (Solanum lycopersicum L. var. cerasiforme) under Open Field and Polyhouse Conditions. Int. J. Environ. Clim. Chang. 2020, 11, 24–30. [Google Scholar] [CrossRef]
- Devgan, K.; Kaur, P.; Kumar, N.; Kaur, A. Active modified atmosphere packaging of yellow bell pepper for retention of physico-chemical quality attributes. J. Food Sci. Technol. 2019, 56, 878–888. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Montero, J.I. Evaporative cooling in greenhouses: Effect on microclimate, water use efficiency and plant respons. Acta Hortic. 2006, 719, 373–383. [Google Scholar] [CrossRef]
- Dannehl, D.; Josuttis, M.; Ulrichs, C.; Schmidt, U. The potential of a confined closed greenhouse in terms of sustainable production, crop growth, yield and valuable plant compounds of tomatoes. J. Appl. Bot. Food Qual. 2014, 87, 210–219. [Google Scholar] [CrossRef]
- Romacho, I.; Hita, O.; Soriano, T.; Morales, M.I.; Escobar, I.; Suarez-Rey, E.M.; Hernández, J.; Castilla, N. The growth and yield of cherry tomatoes in net covered greenhouses. Acta Hortic. 2006, 719, 529–534. [Google Scholar] [CrossRef]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Abhivyakti; Kumari, P. Impact of microclimatic modification on tomato quality through mulching inside and outside the polyhouse. Agric. Sci. Dig.—A Res. J. 2015, 35, 178. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Valera, D.L.; López, A.; Álvarez, A.J.; Escamirosa, C. Effects of insect-proof screens used in greenhouse on microclimate and fruit yield of tomato (Solanum lycopersicum L.) in a mediterranean climate. Acta Hortic. 2012, 927, 707–714. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Meléndez-Martínez, A.J.; Moriana, A.; Girón, I.F.; Martín-Palomo, M.J.; Galindo, A.; López-Pérez, D.; Torrecillas, A.; Beltrán-Sinchiguano, E.; Corell, M. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes. Agric. Water Manag. 2019, 213, 212–221. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Rigakis, N.; Bartzanas, T.; Kitta, E. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Hortic. Sci. Biotechnol. 2012, 87, 7–12. [Google Scholar] [CrossRef]
- Holcman, E.; Sentelhas, P.C.; Mello, S.C. Microclimatic changes caused by different plastic coverings in greenhouses cultivated with cherry tomato in southern Brazil. Rev. Bras. Meteorol. 2015, 30, 125–133. [Google Scholar] [CrossRef]
- Hemming, S.; de Zwart, F.; Elings, A.; Petropoulou, A.; Righini, I. Cherry tomato production in intelligent greenhouses-sensors and ai for control of climate, irrigation, crop yield, and quality. Sensors 2020, 20, 6430. [Google Scholar] [CrossRef]
- Hussain, K.; Lone, S.; Malik, A.; Masoodi, K.Z.; Dar, Z.A.; Nazir, N.; Ali, G.; Farwah, S. Genetic variability studies in cherry tomato for growth, yield, and quality traits in open field conditions. Int. J. Agric. Appl. Sci. 2021, 2, 60–64. [Google Scholar] [CrossRef]
- Kaur, A.; Dhillon, N.S. Estimation of yield and quality traits of cherry tomato under the influence of micronutrients in protected condition. Pharma Innov. 2022, 11, 629–632. [Google Scholar]
- Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J.M. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. J. Sci. Food Agric. 2014, 94, 63–70. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G.; Jia, D.; Wang, J.; Mota, M.; Pereira, L.S.; Huang, Q.; Xu, X.; Liu, H. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agric. Water Manag. 2013, 129, 181–193. [Google Scholar] [CrossRef]
- Pék, Z.; Szuvandzsiev, P.; Daood, H.; Neményi, A.; Helyes, L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol. 2014, 9, 383–395. [Google Scholar] [CrossRef]
- Barbagallo, R.N.; Di Silvestro, I.; Patanè, C. Yield, physicochemical traits, antioxidant pattern, polyphenol oxidase activity and total visual quality of field-grown processing tomato cv. Brigade as affected by water stress in Mediterranean climate. J. Sci. Food Agric. 2013, 93, 1449–1457. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pék, Z. Effect of irrigation on processing tomato yield and antioxidant components. Turkish J. Agric. For. 2012, 36, 702–709. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.; Li, F.; Sun, J.; Wang, Y.; Sun, C. Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Oliveira, C.E.d.S.; Zoz, T.; Jalal, A.; Seron, C.d.C.; da Silva, R.A.; Filho, M.C.M.T. Tolerance of tomato seedling cultivars to different values of irrigation water salinity. Rev. Bras. Eng. Agric. Ambient. 2022, 26, 697–705. [Google Scholar] [CrossRef]
- Jarquín-Enríquez, L.; Mercado-Silva, E.M.; Maldonado, J.L.; Lopez-Baltazar, J. Lycopene content and color index of tomatoes are affected by the greenhouse cover. Sci. Hortic. 2013, 155, 43–48. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Cantore, V.; Lechkar, O.; Karabulut, E.; Sellami, M.H.; Albrizio, R.; Boari, F.; Stellacci, A.M.; Todorovic, M. Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.). Agric. Water Manag. 2016, 167, 53–61. [Google Scholar] [CrossRef]
- Harmanto; Salokhe, V.M.; Babel, M.S.; Tantau, H.J. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar] [CrossRef]
- Qasim, M.; Ahmad, I.; Ahmad, T. Optimizing fertigation frequency for Rosa hybrida L. Pakistan J. Bot. 2008, 40, 533–545. [Google Scholar]
- Valenzano, V.; Parente, A.; Serio, F.; Santamaria, P. Effect of growing system and cultivar on yield and water-use efficiency of greenhouse-grown tomato. J. Hortic. Sci. Biotechnol. 2008, 83, 71–75. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Mapelli-Brahm, P.; Hernanz, D.; Stinco, C.M.; Beltrán-Sinchiguano, E.; Meléndez-Martínez, A.J. Study of Commercial Quality Parameters, Sugars, Phenolics, Carotenoids and Plastids in Different Tomato Varieties; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 277, ISBN 3495455701. [Google Scholar]
- Gent, M.P.N. Effect of degree and duration of shade on quality of greenhouse tomato. HortScience 2007, 42, 514–520. [Google Scholar] [CrossRef]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Ozbahce, A.; Tari, A.F. Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions. Agric. Water Manag. 2010, 97, 1405–1410. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, Q.; Hou, M. The effects of saline water drip irrigation on tomato yield, quality, and blossom-end rot incidence—A 3a case study in the South of China. PLoS ONE 2015, 10, e0142204. [Google Scholar] [CrossRef]
- Abdel-Razz, H.; Ibrahim, A.; Wahb-Allah, M.; Alsadon, A. Response of Cherry Tomato (Solanum lycopersicum var. cerasiforme) to Pruning Systems and Irrigation Rates under Greenhouse Conditions. Asian J. Crop Sci. 2013, 5, 275–285. [Google Scholar] [CrossRef]
- Walter, S.; Heuberger, H.; Schnitzler, W.H. Sensibility of different vegetables to oxygen deficiency and aeration with H2O2 in the rhizosphere. Acta Hortic. 2004, 659, 499–508. [Google Scholar] [CrossRef]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Asadi, S.; Lebaschy, M.H.; Khourgami, A.; Hosein, A.; Rad, S. Effect of drought stress on the morphology of three Salvia sclarea populations. Ann. Biol. Res. 2012, 3, 4503–4507. [Google Scholar]
- Maleki, M.; Ebrahimzade, H.; Gholami, M.; Niknam, V. The effect of drought stress and exogenous abscisic acid on growth, protein content and antioxidative enzyme activity in saffron (Crocus sativus L.). Afr. J. Biotechnol. 2011, 10, 9068–9075. [Google Scholar] [CrossRef]
- Salazar, C.; Hernández, C.; Pino, M.T. Plant water stress: Associations between ethylene and abscisic acid response. Chil. J. Agric. Res. 2015, 75, 71–79. [Google Scholar] [CrossRef]
- Hidayat, C.; Frasetya, B.; Syamsudin, I.N. Adjustment of phosphorus concentration to increase growth and yield of cherry tomato using hydroponic drip system. J. Agro. 2018, 5, 140–147. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int. J. Agric. Biol. 2008, 10, 451–454. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Wahid, A.; Cheema, Z.A.; Cheema, M.A.; Khaliq, A. Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci. 2008, 194, 325–333. [Google Scholar] [CrossRef]
- Gheidary, S.; Akhzari, D.; Pessarakli, M. Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L. J. Plant Nutr. 2017, 40, 1507–1514. [Google Scholar] [CrossRef]
- Teitel, M. The effect of screened openings on greenhouse microclimate. Agric. For. Meteorol. 2007, 143, 159–175. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C. Impact of Greenhouse Microclimate on Plant Growth and Development with Special Reference to the Solanaceae. Eur. J. Plant Sci. Biotechnol. 2008, 2, 31–44. [Google Scholar]
- Rostami Ajirloo, A.; Amiri, E. Responses of Tomato Cultivars to Water-Deficit Conditions (Case Study: Moghan Plain, Iran). Commun. Soil Sci. Plant Anal. 2018, 49, 2267–2283. [Google Scholar] [CrossRef]
- Al Hassan, M.; Martínez Fuertes, M.; Ramos Sánchez, F.J.; Vicente, O.; Boscaiu, M. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, nbha4319793. [Google Scholar] [CrossRef]
- Ezin, V.; De La Pena, R.; Ahanchede, A. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz. J. Plant Physiol. 2010, 22, 131–142. [Google Scholar] [CrossRef]
- Soleh, M.A.; Ariyanti, M.; Dewi, I.R.; Kadapi, M. Chlorophyll fluorescence and stomatal conductance of ten sugarcane varieties under waterlogging and fluctuation light intensity. Emir. J. Food Agric. 2018, 30, 935–940. [Google Scholar] [CrossRef]
- Van Der Ploeg, A.; Heuvelink, E. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Joung, M.; Shin, Y. Physicochemical quality, antioxidant compounds, and activity of “Beta Tiny” and “TY Nonari” cherry tomatoes during storage. Korean J. Food Sci. Technol. 2021, 53, 63–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Kusumiyati, K.; Soleh, M.A.; Khan, M.R.; Sundari, R.S. Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby. Agronomy 2023, 13, 2417. https://doi.org/10.3390/agronomy13092417
Ahmad F, Kusumiyati K, Soleh MA, Khan MR, Sundari RS. Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby. Agronomy. 2023; 13(9):2417. https://doi.org/10.3390/agronomy13092417
Chicago/Turabian StyleAhmad, Farhan, Kusumiyati Kusumiyati, Muhammad Arief Soleh, Muhammad Rabnawaz Khan, and Ristina Siti Sundari. 2023. "Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby" Agronomy 13, no. 9: 2417. https://doi.org/10.3390/agronomy13092417
APA StyleAhmad, F., Kusumiyati, K., Soleh, M. A., Khan, M. R., & Sundari, R. S. (2023). Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby. Agronomy, 13(9), 2417. https://doi.org/10.3390/agronomy13092417