Layered-Strip Fertilization Improves Nitrogen Use Efficiency by Enhancing Absorption and Suppressing Loss of Urea Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Material Preparation
2.2. Experimental Design
2.3. Sampling and Analyses
2.4. Distribution of Urea-N
2.5. Statistical Analysis
3. Results
3.1. N Distribution in Soil and N Absorption in Wheat
3.2. Urea-N Residue and Absorption
3.3. Nitrogen Use Efficiency (NUE)
3.4. Balance of Urea-N
4. Discussion
4.1. N Distribution in Soil and N Absorption in Wheat
4.2. Urea-N Distribution in Soil and Urea-N Absorption in Wheat
4.3. NUE and Balance of Urea-N
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.Q.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, Y.; Searchinger, T.D.; Zhou, M.; Pan, D.; Yang, J.N.; Wu, L.; Cui, Z.L.; Zhang, W.F.; Zhang, F.S.; et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 2020, 1, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Keitel, C.; Zhang, Y.; Wangeci, A.N.; Dijkstra, F.A. Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize. Agric. Ecosyst. Environ. 2022, 338, 108089. [Google Scholar] [CrossRef]
- Billen, G.; Garnier, J.; Lassaletta, L. The nitrogen cascade from agricultural soils to the sea: Modelling nitrogen transfers at regional watershed and global scales. Phil. Trans. R. Soc. B 2013, 368, 20130123. [Google Scholar] [CrossRef]
- Grant, C.A.; Flaten, D.N. 4R management of phosphorus fertilizer in the northern great plains. J. Environ. Qual. 2019, 48, 1356–1369. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency—Trends and perspectives. Sci. Total. Environ. 2020, 731, 139113. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Skrzypczak, D.; Szopa, D.; Izydorczyk, G.; Moustakas, K.; Witek-Krowiak, A. Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis. J. Environ. Manag. 2023, 326, 116602. [Google Scholar] [CrossRef]
- Bai, J.; Li, Y.; Zhang, J.; Xu, F.; Bo, Q.; Wang, Z.; Li, Z.; Li, S.; Shen, Y.; Yue, S. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 2021, 280, 124478. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Han, Q.; Ren, X.; Jia, Z. Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agric. Water Manag. 2020, 241, 106382. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Chen, G.Z.; Wang, J.Y.; Huang, F.Y.; Cai, T.; Zhang, P.; Jia, Z.K. Can deep fertilizer application enhance maize productivity by delaying leaf senescence and decreasing nitrate residue levels? Field Crops Res. 2022, 277, 108417. [Google Scholar] [CrossRef]
- Su, W.; Liu, B.; Liu, X.; Li, X.; Ren, T.; Cong, R.; Lu, J. Effect of depth of fertilizer banded-placement on growth, nutrient uptake and yield of oilseed rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Yuan, M.; Fernández, F.G.; Pittelkow, C.M.; Greer, K.D.; Schaefer, D. Soil and crop response to phosphorus and potassium management under conservation tillage. Agron. J. 2020, 112, 2302–2316. [Google Scholar] [CrossRef]
- Zhu, C.H.; Ouyang, Y.Y.; You, D.; Yu, J.Q.; Xi, L.; Zheng, J.G.; Li, X.Y. Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China. J. Integr. Agric. 2021, 20, 581–592. [Google Scholar] [CrossRef]
- Lyu, Y.F.; Yang, X.D.; Pan, H.Y.; Zhang, X.H.; Cao, H.X.; Ulgiati, S.; Wu, J.; Zhang, Y.Z.; Wang, G.Y.; Xiao, Y.L. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: A study case from Southwest China. J. Clean. Prod. 2021, 293, 126198. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of N, P, K as fertilizer in soil: A review. Pedosphere 2022, 35, 385–406. [Google Scholar]
- Wang, H.; Köbke, S.; Dittert, K. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Glob. Ecol. Conserv. 2020, 22, e00933. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 2021, 750, 142299. [Google Scholar] [CrossRef]
- Bai, N.; Mi, X.T.; Tao, Z.K.; Kang, J.Y.; He, G.; Wang, Z.H. China’s nitrogen management of wheat production needs more than high nitrogen use efficiency. Eur. J. Agron. 2022, 139, 126557. [Google Scholar] [CrossRef]
- Rahman, M.H.; Haque, K.M.S.; Khan, M.Z.H. A review on application of controlled released fertilizers influencing the sustainable agricultural production: A Cleaner production process. Environ. Technol. Innov. 2021, 23, 101697. [Google Scholar] [CrossRef]
- Shen, Y.Z.; Wang, B.C.; Zhu, S.X.; Xie, W.; Wang, S.Q.; Zhao, X. Single application of a new polymer-coated urea improves yield while mitigates environmental issues associated with winter wheat grown in rice paddy soil. Field Crops Res. 2022, 285, 108592. [Google Scholar] [CrossRef]
- Xue, L.; Yu, Y.; Yang, L. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in taihu lake region with proper fertilizer management. Environ. Res. Lett. 2014, 9, 115010. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Z.; Hu, Y.; Schmidhalter, U.; Zhang, W.; Ruan, S.; Chen, X. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2022. Available online: http://www.stats.gov.cn/sj/ndsj/2022/indexch.htm (accessed on 22 March 2023).
- Liu, Z.; Yu, N.N.; Camberato, J.J.; Gao, J.; Liu, P.; Zhao, B.; Zhang, J.W. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain: An economic and environmental assessment over 8 years. Sci. Rep. 2019, 9, 19335. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhao, X.; Li, S.; Zhang, X.; Virk, A.; Qi, J.; Kan, Z.; Wang, X.; Ma, S.; Zhang, H. Meta-analysis of management-induced changes in nitrogen use efficiency of winter wheat in the North China Plain. J. Clean. Prod. 2020, 251, 119632. [Google Scholar] [CrossRef]
- Ju, X.; Zhang, C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. J. Integr. Agric. 2017, 16, 2848–2862. [Google Scholar] [CrossRef]
- Meng, X.P.; Guo, Z.Y.; Yang, X.N.; Su, W.N.; Li, Z.M.; Wu, X.R.; Ahmad, I.; Cai, T.; Han, Q.F. Straw incorporation helps inhibit nitrogen leaching in maize season to increase yield and efficiency in the Loess Plateau of China. Soil Tillage Res. 2021, 211, 105006. [Google Scholar] [CrossRef]
- Chen, G.; Wu, P.; Wang, J.; Zhou, Y.; Ren, L.; Cai, T.; Zhang, P.; Jia, Z. How do different fertilization depths affect the growth, yield, and nitrogen use efficiency in rain-fed summer maize? Field Crops Res. 2023, 290, 108759. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.Q.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B.; Ren, B.Z. Nitrogen placement at sowing affects root growth, grain yield formation, N use efficiency in maize. Plant Soil 2020, 457, 355–373. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Nazaries, L.; Singh, B.K.; Singh, B.P. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Glob. Chang. Biol. 2018, 24, 2775–2790. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L.) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Boldt-Burisch, K.; Naeth, M.A. Heterogeneous soil conditions influence fungal alkaline phosphatase activity in roots of Lotus corniculatus. Appl. Soil Ecol. 2017, 116, 55–63. [Google Scholar] [CrossRef]
- Hu, S.; Qiao, B.; Yang, Y.; Rees, R.; Huang, W.; Zou, J.; Zhang, L.; Zheng, H.; Liu, S.; Shen, S.; et al. Optimizing nitrogen rates for synergistically achieving high yield and high nitrogen use efficiency with low environmental risks in wheat production-Evidences from a long-term experiment in the North China Plain. Eur. J. Agron. 2023, 142, 126681. [Google Scholar] [CrossRef]
- Qiang, S.C.; Sun, X.; Zhang, Y.; Zhao, H.; Fan, J.L.; Zhang, Y.; Sun, M.; Gao, Z.Q. Deep placement of mixed controlled-release and conventional urea improves grain yield, nitrogen use efficiency of rainfed spring maize. Arch. Agron. Soil Sci. 2021, 67, 1848–1858. [Google Scholar] [CrossRef]
- Wu, H.; Cai, A.; Dong, W.; Xing, T.; Xu, M.; Lu, C. Nutrient stoichiometric management promotes carbon sequestration by improving microbial nutrient availability and metabolic efficiency in straw-amended soil. J. Soil. Sediment. 2023, 23, 1182–1192. [Google Scholar] [CrossRef]
- Wan, X.; Wu, W.; Shah, F. Nitrogen fertilizer management for mitigating ammonia emission and increasing nitrogen use efficiencies by 15N stable isotopes in winter wheat. Sci. Total Environ. 2021, 790, 147587. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Bagheri, H.; Abyaneh, H.Z.; Izady, A. Nutrient and colloid leaching from un-amended versus vermicompost-amended soil. Soil Tillage Res. 2021, 213, 105092. [Google Scholar] [CrossRef]
- Qiang, S.C.; Zhang, Y.; Zhao, H.; Fan, J.L.; Zhang, F.C.; Sun, M.; Gao, Z.Q. Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China. Agric. Water Manag. 2022, 262, 107442. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, F.S.; Chen, X.P.; Miao, Y.X.; Li, J.L.; Shi, L.W.; Xu, J.F.; Ye, Y.L.; Liu, C.S.; Yang, Z.P.; et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Res. 2008, 105, 48–55. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Zhao, Y.; Bai, Y.; Feng, B.; Li, Y.; Nan, W.; Chen, J.; Cai, T.; Zhang, P.; et al. Diffusion and transformation of methane within the soil profile and surface uptake in dryland spring maize fields under different fertilizer application depths. Agric. Ecosyst. Environ. 2023, 344, 108305. [Google Scholar] [CrossRef]
Depth | CK | Usur | Ustr | Umix | CUsur | CUstr | CUmix |
---|---|---|---|---|---|---|---|
0–10 cm | - | 160 | 53 | 53 | 160 | 53 | 53 |
10–20 cm | - | - | 53 | 53 | - | 53 | 53 |
20–30 cm | - | - | 53 | 53 | - | 53 | 53 |
30–40 cm | - | - | - | - | - | - | - |
Treatment | Ndff-Absorption (kg ha−1) | Ndff-Residue (kg ha−1) | Ndff-Loss (kg ha−1) |
---|---|---|---|
Usur | 79.01 ± 2.75 d | 52.21 ± 0.54 b | 28.79 ± 2.96 a |
Ustrip | 92.15 ± 1.15 ab | 60.61 ± 1.54 a | 7.24 ± 0.69 c |
Umix | 78.24 ± 2.38 d | 62.46 ± 4.16 a | 19.31 ± 4.98 b |
CUsur | 85.40 ± 3.00 c | 56.97 ± 2.51 ab | 17.63 ± 1.41 b |
CUstr | 93.57 ± 1.55 a | 59.27 ± 2.32 ab | 7.16 ± 3.16 c |
CUmix | 86.82 ± 0.70 bc | 54.63 ± 2.14 ab | 18.56 ± 2.25 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wang, L.; Liu, X.; Li, Q.; Lu, C.; Dong, W. Layered-Strip Fertilization Improves Nitrogen Use Efficiency by Enhancing Absorption and Suppressing Loss of Urea Nitrogen. Agronomy 2023, 13, 2428. https://doi.org/10.3390/agronomy13092428
Wu H, Wang L, Liu X, Li Q, Lu C, Dong W. Layered-Strip Fertilization Improves Nitrogen Use Efficiency by Enhancing Absorption and Suppressing Loss of Urea Nitrogen. Agronomy. 2023; 13(9):2428. https://doi.org/10.3390/agronomy13092428
Chicago/Turabian StyleWu, Hongliang, Luming Wang, Xiuping Liu, Qiang Li, Changai Lu, and Wenxu Dong. 2023. "Layered-Strip Fertilization Improves Nitrogen Use Efficiency by Enhancing Absorption and Suppressing Loss of Urea Nitrogen" Agronomy 13, no. 9: 2428. https://doi.org/10.3390/agronomy13092428
APA StyleWu, H., Wang, L., Liu, X., Li, Q., Lu, C., & Dong, W. (2023). Layered-Strip Fertilization Improves Nitrogen Use Efficiency by Enhancing Absorption and Suppressing Loss of Urea Nitrogen. Agronomy, 13(9), 2428. https://doi.org/10.3390/agronomy13092428