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Abstract: Optimal fruit production from many tree crops relies on the transfer of cross-pollen between
trees of different cultivars rather than the transfer of self-pollen between trees of the same cultivar.
However, many orchards are established with wide blocks of single cultivars, which can result in high
percentages of self-fertilised fruit and sub-optimal yield and quality. We aimed to determine whether
outcrossing rates and yield of Hass avocado fruit decline with increasing distance from polliniser
trees of cultivar Shepard and whether selfed fruit are smaller than outcrossed fruit. Outcrossing rates
declined from 49% at six trees (40 m) from a block of Shepard trees to 30% at thirty trees (160 m) from
a block of Shepard trees. Tree yield across this distance declined by 44% as a result of a 69% decline in
the number of outcrossed fruit per tree, without a significant decline in the number of selfed fruit per
tree. Outcrossed Hass fruit were 12% heavier than selfed Hass fruit, with 3% greater diameter and
5% greater length. The study results demonstrate the importance of interplanting Type B avocado
pollinisers closely with Type A Hass trees to increase fruit yield and size.

Keywords: cross-pollination; mating system; Persea americana; outcrossing; pollenizer; self-compatibility;
single-nucleotide polymorphisms; xenia

1. Introduction

Fruits and nuts contribute approximately 8.5% of the annual global food production [1].
Many fruit and nut crops rely heavily on pollination services to generate high yields [2–4],
but shortfalls in the populations of both wild and managed pollinators are placing pressure
on food production [4–8]. In addition, the flowers of many fruit and nut crops are partially
or completely self-incompatible, requiring the deposition of cross-pollen from a different
cultivar onto the stigma for optimal pollen tube growth, ovule fertilisation and fruitlet
set [9–15]. Some fruit and nut trees selectively retain cross-fertilised fruitlets at the expense
of self-fertilised fruitlets during fruit growth and development, resulting in much of the
final crop being outcrossed [16–21]. The cross-fertilised fruit are often larger than the
self-fertilised fruit [9,21–27]. Therefore, optimising food production from many fruit and
nut crops relies on effective pollination services that maximise the transfer of cross-pollen
between different cultivars rather than transferring self-pollen among trees of the same
cultivar. However, many fruit and nut orchards are established with wide blocks of trees,
with each block containing a single cultivar. The wide separation of trees of the different
cultivars can reduce the opportunities for cross-pollen deposition, especially in the middle
of single-cultivar blocks [13,18,19,28]. This can result in high proportions of self-fertilised
fruit [18,19,28–30] and reduced yield or quality [26,31–35].

Avocado trees are regarded as bee-pollinated and self-compatible, with orchards often
producing a mixture of self-fertilised and cross-fertilised fruit [17,29,36–40]. Self-fertilised
and cross-fertilised fruit of the most widely-grown cultivar, Hass, sometimes differ little
in size or nutritional quality [29], although cross-fertilised fruit were heavier with greater
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diameter than self-fertilised fruit in one recent study [39]. Despite the self-compatibility
of Hass flowers, Hass orchards typically include polliniser trees of another cultivar to
maximise the opportunities for effective pollination. The polliniser trees are used because
there is limited overlap each day between the opening of the male and female phases of
Hass flowers. Avocado displays heterodichogamy, with the flowers of Type A cultivars
such as Hass typically opening in the female phase in the morning of one day, closing in
the middle of the day, and opening in the male phase on the afternoon of the following
day [39–43]. The flowers of Type B cultivars such as Shepard and Fuerte typically open
in the female phase in the afternoon, close overnight, and open in the male phase for the
following morning. Therefore, the opportunities for pollen deposition on female Hass
flowers may be greatest when they have ready access to pollen from nearby Type B cultivars
in the morning. However, the levels of cross-fertilisation (i.e., outcrossing) among mature
avocado fruit often decline with increasing distance from polliniser trees [16,17,29,36,44,45].
This suggests that there is limited pollen flow between the different cultivars when the
Type A and Type B cultivars are each planted in wide, single-cultivar blocks.

In this study, we hypothesised that (a) outcrossing levels among Hass avocado fruit
would decline with increasing distance from polliniser trees; (b) tree yields would also
decline with increasing distance from polliniser trees; and (c) cross-fertilised fruit would be
larger than self-fertilised fruit. The results of this study have important implications for
optimising avocado orchard designs and maximising food production in the face of global
shortfalls in pollinator populations.

2. Materials and Methods

The experiment was conducted in Eastridge avocado orchard (25◦13′17′′ S 152◦18′45′′ E),
near Childers, Queensland, Australia. This 95 ha orchard has a red clay-loam soil and
contains the cultivars Hass, Shepard, Carmen Hass, and Maluma in large single-cultivar
blocks [38]. We selected trees in the 57th to 76th rows of a 132-row block of 9-year-old
Hass trees, i.e., 20 consecutive rows (Figure 1). We selected the 2nd, 6th and 30th trees
from the northern end of each of the 75-tree-long rows. The first tree at the northern end of
each row was adjacent to a block of Shepard trees but separated from the Shepard block
by approximately 15 m. Tree spacing within the Hass block was 10 m between rows and
5 m within rows. Therefore, the 2nd, 6th and 30th trees in each row were 20 m, 40 m and
160 m, respectively, from the block of Shepard polliniser trees. Honeybee hives had been
established prior to flowering at the northern ends of the 5th to 18th rows, the 80th to
81st rows, and the 116th to 130th rows in the 132-row block of Hass trees (Figure 1).

We harvested ten mature fruit from each tree (i.e., 10 fruit × 60 trees = 600 fruit in
total) on 17–19 May 2022 using a stratified sampling design. We divided each tree into two
quadrants on each side of the tree (i.e., four quadrants in total) and harvested two fruit
per quadrant, one from the inside and one from the outside of the canopy. Two additional
fruit were harvested near the trunk. These ten fruit were weighed collectively. We then
counted all remaining fruit in the tree canopy. Tree yield was calculated by multiplying the
average fruit mass in the ten-fruit subsample × the total number of fruit per tree. Each of
the ten fruit in the subsample was then weighed individually, and its diameter and length
were recorded.

We extracted DNA from the embryo of each of the ten fruit using methods described
previously [29]. Each embryo was genotyped using the Agena MassARRAY platform
(Agena Bioscience, San Diego, CA, USA) to assign paternity by amplifying DNA regions
with unique single nucleotide polymorphisms (SNPs) that we identified previously from
all cultivars in the orchard [46].

Cultivars Hass and Carmen Hass appear to be genetically identical [46] and were,
therefore, considered to be the same cultivar when assigning seed paternity. Each potential
cross-pollen parent in the orchard had DNA sequences with unique homozygous SNPs,
and so the presence of one of these unique SNPs in DNA sequences from Hass seeds
identified the pollen parent [46]. We calculated the proportion of harvested fruit that were
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outcrossed in each tree, and we estimated the total number of outcrossed fruit per tree by
multiplying the proportion of harvested fruit that were outcrossed × the total number of
fruit per tree.
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Figure 1. (A) Schematic diagram of the layout of Eastridge (ER) avocado orchard with blocks of 
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located in Hass blocks ER5 and ER14, opposite Shepard blocks ER7 and ER8. The approximate 
locations of honeybee hives are shown in yellow boxes. (B) Honeybee hives located between blocks 
of Hass and Shepard trees. 
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Figure 1. (A) Schematic diagram of the layout of Eastridge (ER) avocado orchard with blocks of
Carmen Hass, Hass, Maluma and Shepard trees. The experimental trees, shown as red dots, were
located in Hass blocks ER5 and ER14, opposite Shepard blocks ER7 and ER8. The approximate
locations of honeybee hives are shown in yellow boxes. (B) Honeybee hives located between blocks
of Hass and Shepard trees.

We assessed the effect of distance to another cultivar on outcrossing rate, fruit number
and tree yield via random block analysis of variance (ANOVA), regarding the 20 different
orchard rows as blocks. Tukey’s Honestly Significant Difference (HSD) tests were performed
when differences among the three means were detected via ANOVA. We also assessed
the effect of distance to the nearest honeybee hive on yield using regressions, with yield
regarded as the dependent variable and distance to the nearest hive regarded as the
independent variable. We assessed the effect of pollen parentage on fruit diameter, fruit
length and fruit mass by three-way ANOVA, with pollen parentage, orchard row, and
distance to another cultivar as the factors. Means were regarded as significantly different at
p < 0.05. Means are reported with standard errors (SEs).

3. Results

The percentage of Hass fruit that were outcrossed declined from 52 ± 3% and 49 ± 3%
at two trees and six trees away from cultivar Shepard, respectively, to 30 ± 4% at 30 trees
away from cultivar Shepard (Figure 2A). Almost all outcrossed fruit were pollinated
by Shepard, except that two fruit were pollinated by Maluma. The number of selfed
fruit per tree did not differ significantly with increasing distance from cultivar Shepard
(Figure 2B). However, the number of outcrossed fruit per tree declined by 69% at 30 trees,
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compared with either two trees or six trees, from cultivar Shepard (Figure 2B). As a result,
the total number of fruit per tree declined by 43% or 45% at 30 trees, compared with
2 trees or 6 trees, respectively, from cultivar Shepard (Figure 2B). Tree yield declined by
43% or 44% at 30 trees, compared with at two trees or six trees, respectively, away from
cultivar Shepard (Figure 2C). Outcrossing rate, fruit number and tree yield did not differ
significantly between the second and sixth trees along the Hass row (Figure 2A–C).
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Figure 2. (A) Outcrossing rate among fruit, (B) number of outcrossed fruit, number of selfed fruit,
and total number of fruit, and (C) fruit yield on Hass avocado trees located at 2 trees (20 m), 6 trees
(40 m) or 30 trees (160 m) from a polliniser cultivar (Shepard). Means (+SE for outcrossing rate, total
number of fruit, and fruit yield; −SE for number of selfed fruit, and number of outcrossed fruit) with
different letters are significantly different (random block ANOVA and Tukey’s HSD test; p < 0.05;
n = 20 trees).

Tree yield was not related significantly (r2 < 0.001; p = 0.886) to the distance to the
nearest honeybee hives when all 60 trees were included in the analysis (Figure 3). Tree
yield was also not related significantly (r2 < 0.001; p = 0.943) to the distance to the nearest
honeybee hives among the 20 trees that were located only two trees away from cultivar
Shepard. However, tree yield was related positively to the distance to the nearest honeybee
hives for the 20 trees that were located six trees away from cultivar Shepard (r2 = 0.227;
p < 0.05) as well as for the 20 trees that were located 30 trees away from cultivar Shepard
(r2 = 0.120; p < 0.05).
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Figure 3. (A) Bubble plot showing relative yield of Hass avocado trees located at 2 trees (20 m), 6 trees
(40 m) or 30 trees (160 m) from a polliniser cultivar (Shepard). The row numbers (57–76) in the Hass
orchard block are shown. Coefficients are provided for the regressions between yield and distance to
the nearest honeybee hives. (B) Regression line between yield and distance to the nearest honeybee
hives for all experimental trees (r2 < 0.001; p = 0.886; n = 60).
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The outcrossed Hass fruit that were pollinated by cultivar Shepard had 2.6 mm greater
diameter and 4.8 mm greater length than selfed Hass fruit (Table 1). These outcrossed fruit
were 12% heavier than selfed fruit (Table 1).

Table 1. Diameter, length and fresh mass of selfed and outcrossed Hass avocado fruit.

Parameter Mother Cultivar × Father Cultivar

Hass × Hass
(Selfed)

Hass × Shepard
(Outcrossed)

Diameter (mm) 77.8 ± 0.3 a 80.4 ± 0.3 b
Length (mm) 99.3 ± 0.5 a 104.1 ± 0.6 b

Fresh mass (g) 306 ± 3 a 344 ± 4 b
Means (±SE) with different letters within a row are significantly different (three-way ANOVA; p < 0.05; n = 322
selfed fruit and 232 outcrossed fruit).

4. Discussion

Our results demonstrated that tree yields in the orchard were limited by the amount of
cross-pollen transferred from the Type-B Shepard polliniser trees to flowers in the middle
of the Type-A Hass block. The predominant flower visitors at the study site in Australia
are honeybees [38], as with avocado orchards in other countries [47–50]. These foragers
appeared to transfer pollen from male-phase Hass flowers to female-phase Hass flowers at
similar levels throughout the block. Hass flowers are unlikely to display significant levels
of autogamous self-pollination due to the wide temporal separation of their female and
male flower phases [39–43], although close pollination among flowers of the same tree or
of trees of the same cultivar can occur depending on the length of the overlap between
sexual stages. The results, therefore, suggest that the abundance of pollinators did not
change significantly throughout the block. However, the pollinators did not transport
sufficient cross-pollen into the middle of the block. Honeybees can forage over much
longer distances than 160 m [51–53], but individual workers may forage over shorter
distances or remain within the same row when large orchards of mass-flowering trees are
at peak flowering during spring [54–56]. This short foraging range may explain why the
outcrossing rates or yield of orchard trees often decline in the middle of single-cultivar
blocks [26,30,31,57,58]. We considered whether the declining yield in the middle of the
block might be due to the increasing distance to the nearest honeybee hives, but we found
no significant relationship between yield and proximity to the nearest hives when all
60 experimental trees were included in the analysis. In fact, we found that yield in the
middle of the Hass block was related positively, rather than negatively, with increasing
distance from the honeybee hives. To further understand the potential interactions between
honeybee hive proximity, honeybee foraging range, and polliniser location, we are currently
assessing the abundance of honeybees and other insects at different locations within the
orchard blocks and determining what percentages of each foraging species are carrying
self-pollen and cross-pollen at each location.

Outcrossing rates among avocado trees have declined at increasing distances from
polliniser trees in blocks of Ettinger and Fuerte in Israel [17,36] and in blocks of Hass in
Israel, California and Spain [16,44,45]. The yield of Ettinger avocado trees declined between
the second row (12 m) and the seventh row (42 m) in one orchard and between the first row
(6 m) and the eighth row (48 m) away from the polliniser trees in another orchard [17]. The
yields of individual Hass trees in three orchards in Israel and California were correlated
positively with outcrossing rates [16,45,59], although they were not correlated significantly
in three other Californian orchards [45,60]. Hass yields declined between the fourth row
(30 m) and the eighth row (60 m) from polliniser trees in one orchard in Israel [16] and
between the first row and the fifth row (unknown distance) from polliniser trees in four
orchards in California [45]. In contrast, Hass yields did not decline significantly between
the first row (20 m) and the third row (36 m) from polliniser trees in Spain [44], and Ardith
yields did not decline significantly between the first row (6 m) and the fifth row (30 m) from



Agronomy 2024, 14, 122 6 of 9

polliniser trees in Israel [17]. These latter results are similar to the current findings that
Hass yields did not decline between two trees (20 m) and six trees (40 m) from the polliniser
trees in Australia. However, the Hass yields in Australia did decline between 6 trees (40 m)
and 30 trees (160 m) from the polliniser trees. The current study adds to previous findings
by demonstrating that the number of selfed fruit per Hass tree was similar at different
distances from Type-B polliniser trees but that the differences in yield could be attributed
directly to differences in the number of outcrossed fruit per tree.

Outcrossed Hass fruit were 12% heavier than selfed Hass fruit, having both greater
diameter and greater length. Avocado produces a single-seeded fruit, and so the effects of
pollen parentage on fruit characteristics represent true xenia effects that are not confounded
by pollen–parentage effects on the number of seeds per fruit [22,26]. Similar effects of
outcrossing have been observed on other single-seeded fruits, with cross-fertilisation
increasing fruit or nut mass by 9–28% in almond [61,62], 3–23% in hazelnut [23], 6–7% in
lychee [21,63], 10–32% in macadamia [26,35] and 23–26% in plum [25]. The production of
mainly selfed fruit, with lower mass and diameter, in the middle of single-cultivar Hass
blocks is not optimal for fruit quality or financial returns because avocado growers are often
paid a premium for cartons that contain larger fruit [64–67]. Furthermore, selfed Hass fruit
possess lower concentrations of calcium in the flesh [29], and low calcium concentrations
in the fruit flesh are associated with reduced shelf life [68–70].

The results from several countries, therefore, demonstrate the importance for avocado
yield and fruit quality of planting Type-B polliniser trees more closely alongside Type-A
Hass trees. Wide blocks of individual cultivars allow convenient and cost-effective man-
agement of pests, diseases, irrigation, fertilisers, harvesting and post-harvest processing
because orchard management can be targeted at each cultivar [29,57,71–73]. There appears,
though, to be a balance between establishing blocks with many rows of a single cultivar for
cost-effective management versus interplanting different cultivars more closely to maximise
yield and fruit quality. Cross-pollen was transported effectively for at least 30–36 m in
previous studies of Hass and Ardith orchards [16,17,44] and at least 40 m in the present
study. Yield declines have been observed by 42–48 m from polliniser trees in Ettinger
blocks [17]. They have also been observed by 60 m [16] and, in the current study, by 160
m from polliniser trees in Hass blocks. Blocks of Hass trees may need to be no more than
120 m wide if there are compatible, synchronously flowering, Type-B pollinisers on both
sides of the block and no more than 60 m wide if the pollinisers are planted on only one side.
However, further research is required to gain a finer-scale understanding of the optimal
widths of Hass blocks that maximise yield and fruit quality while minimising management
costs. This research will be guided by identifying how far bees forage from their hives
in avocado orchards, what proportions of bees carry cross-pollen at different distances
from polliniser trees, how this proportion can be improved with better hive placement, and
whether technologies such as pollen-dusting of bees or pollen-spraying on flowers have
the potential to increase outcrossing levels.
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